Exercices associés au cours d'Analyse Numérique I^* Résolution de systèmes linéaires Méthodes directes

1 Exercices cours

EXERCICE 1 : Résolution système triangulaire supérieur

Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice triangulaire inversible et $\mathbf{b} \in \mathbb{C}^n$.

- Expliquer comment calculer $\mathbf{x} \in \mathbb{C}^n$, solution de $\mathbb{A}\mathbf{x} = \mathbf{b}$ et expliciter les formules permettant de calculer l'ensemble des composantes de \mathbf{x} .
- $\stackrel{\mathbf{Q. \ 2}}{|}$ Ecrire la fonction ResTriSup permettant de résoudre le système triangulaire supérieur $\mathbb{A} \boldsymbol{x} = \boldsymbol{b}$.

EXERCICE 2: Matrice de permutation

Soit $(i,j) \in [1,n]^2$, $i \neq j$, on note $\mathbb{P}_n^{[i,j]} \in \mathcal{M}_n(\mathbb{R})$ la matrice identitée dont on a permuté les lignes i et j.

Représenter cette matrice et la définir proprement.

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. On note $\boldsymbol{A}_{r,:}$ le r-ème vecteur ligne de \mathbb{A} et $\boldsymbol{A}_{:,s}$ le s-ème vecteur colonne de \mathbb{A} .

Q. 2

- a. Déterminer les lignes de la matrice $\mathbb{D} = \mathbb{P}_n^{[i,j]} \mathbb{A}$ en fonction des vecteurs lignes de \mathbb{A} .
- b. Déterminer les colonnes de la matrice $\mathbb{E} = \mathbb{AP}_n^{[i,j]}$ en fonction des vecteurs colonnes de \mathbb{A} .

Q. 3

- a. Calculer le déterminant de $\mathbb{P}_n^{[i,j]}$.
- b. Déterminer l'inverse de $\mathbb{P}_n^{[i,j]}$

EXERCICE 3: Matrice d'élimination

Soit $\mathbf{v} \in \mathbb{C}^n$ avec $v_1 \neq 0$. On note $\mathbb{E}^{[\mathbf{v}]} \in \mathcal{M}_n(\mathbb{C})$ la matrice triangulaire inférieure à diagonale unité définie par

$$\mathbb{E}^{[\boldsymbol{v}]} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ -v_2/v_1 & 1 & 0 & \dots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ -v_n/v_1 & 0 & \dots & 0 & 1 \end{pmatrix}$$
(3.1)

Q. 1

- a. Calculer le déterminant de $\mathbb{E}^{[v]}$.
- b. Déterminer l'inverse de $\mathbb{E}^{[v]}$.

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ avec $A_{1,1} \neq 0$. On note $A_{:,j}$ le j-ème vecteur colonne de \mathbb{A} et $A_{i,:}$ son i-ème vecteur ligne. On pose $A_1 = A_{:,1}$.

^{*}Compilé le 2025/10/24 à 09:28:29.

Q. 2

- a. Soit $\mathbf{v} \in \mathbb{C}^n$ avec $v_1 \neq 0$. Calculer $\tilde{\mathbb{A}} = \mathbb{E}^{[\mathbf{v}]} \mathbb{A}$ en fonction des vecteurs lignes de \mathbb{A} .
- b. En déduire que la première colonne de $\mathbb{E}^{[\mathbf{A}_1]}\mathbb{A}$ est le vecteur $(A_{1,1},0,\ldots,0)^t$ i.e.

$$\mathbb{E}^{[\mathbf{A}_1]} \mathbb{A} \mathbf{e}_1 = A_{1,1} \mathbf{e}_1 \tag{3.2}$$

où \mathbf{e}_1 est le premier vecteur de la base canonique de \mathbb{C}^n .

EXERCICE 4 : Méthode de Gauss, écriture algébrique

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ inversible.

Q. 1

Montrer qu'il existe une matrice $\mathbb{G} \in \mathcal{M}_n(\mathbb{C})$ telle que $|\det(\mathbb{G})| = 1$ et $\mathbb{G}\mathbb{A}\mathbf{e}_1 = \alpha\mathbf{e}_1$ avec $\alpha \neq 0$ et \mathbf{e}_1 premier vecteur de la base canonique de \mathbb{C}^n .

Q. 2

- a. Montrer par récurrence sur l'ordre des matrices que pour toute matrice $A_n \in \mathcal{M}_n(\mathbb{C})$ inversible, il existe une matrice $S_n \in \mathcal{M}_n(\mathbb{C})$ telle que $|\det S_n| = 1$ et $S_n A_n = U_n$ avec U_n matrice triangulaire supérieure inversible.
- b. Soit $\mathbf{b} \in \mathbb{C}^n$. En supposant connue la décompostion précédente $\mathbb{S}_n \mathbb{A}_n = \mathbb{U}_n$, expliquer comment résoudre le système $\mathbb{A}_n \mathbf{x} = \mathbf{b}$.

 $Que\ peut-on\ dire\ si\ \mathbb{A}\ est\ non\ inversible?$

Exercice 5 : Vers la factorisation \mathbb{LU}

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice dont les sous-matrices principales d'ordre i, notées Δ_i , $i \in [1, n]$.

Montrer par récurrence sur l'ordre n de la matrice \mathbb{A} qu'il existe une matrice $\mathbb{E} \in \mathcal{M}_n(\mathbb{C})$, triangulaire inférieure à diagonale unité telle que la matrice \mathbb{U} définie par

$$\mathbb{U} = \mathbb{E}\mathbb{A}$$

soit triangulaire supérieure avec $U_{i,i} = \det \Delta_i / (U_{1,1} \times \cdots \times U_{i-1,i-1}), \forall i \in [1, n]$.

Exercice 6 : factorisation \mathbb{LDL}^*

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$.

- Montrer que s'il existe $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$, matrice triangulaire inférieure à diagonale unité, et, $\mathbb{D} \in \mathcal{M}_n(\mathbb{R})$, matrice diagonale à coefficients diagonaux strictement positifs, telle que $\mathbb{A} = \mathbb{LDL}^*$ alors \mathbb{A} est hermitienne définie positive.
- Montrer que si \mathbb{A} est hermitienne définie positive alors il existe $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$, matrice triangulaire inférieure à diagonale unité, et, $\mathbb{D} \in \mathcal{M}_n(\mathbb{R})$, matrice diagonale à coefficients diagonaux strictement positifs, telle que $\mathbb{A} = \mathbb{LDL}^*$.

Exercice 7: factorisation de Cholesky

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$.

- Montrer que si $\mathbb A$ admet une factorisation factorisation régulière de Cholesky alors $\mathbb A$ est hermitienne définie positive.
- Montrer que si A est hermitienne définie positive alors elle admet une factorisation factorisation régulière de Cholesky.
- $On \ suppose \ que \ \mathbb{A} \ est \ hermitienne \ définie \ positive.$
 - a. Montrer que A admet une factorisation positive de Cholesky.
 - b. Montrer que cette factorisation est unique.

EXERCICE 8 : Propriété de la matrice élémentaire de Householder

Soit $\boldsymbol{u} \in \mathbb{C}^n$ tel que $\|\boldsymbol{u}\|_2 = 1$. On note $\mathbb{H} \in \mathcal{M}_n(\mathbb{C})$ la matrice définie par

$$\mathbb{H} = \mathbb{I} - 2uu^*$$
.

Q. 1

- a. Montrer que \mathbb{H} est hermitienne.
- b. Montrer que \mathbb{H} est unitaire.

Soit $\boldsymbol{x} \in \mathbb{K}^n$. On note $\boldsymbol{x}_{\parallel} = \operatorname{proj}_{\boldsymbol{u}}(\boldsymbol{x}) \stackrel{\text{def}}{=} \langle \boldsymbol{u}, \boldsymbol{x} \rangle \boldsymbol{u}$ et $\boldsymbol{x}_{\perp} = \boldsymbol{x} - \boldsymbol{x}_{\parallel}$.

Montrer que

$$\mathbb{H}(\boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel}) = \boldsymbol{x}_{\perp} - \boldsymbol{x}_{\parallel}.$$

et

$$\mathbb{H} \boldsymbol{x} = \boldsymbol{x}, \quad si \langle \boldsymbol{x}, \boldsymbol{u} \rangle = 0.$$

EXERCICE 9

Soient \boldsymbol{a} et \boldsymbol{b} deux vecteurs non nuls et non colinéaires de \mathbb{C}^n avec $\|\boldsymbol{b}\|_2 = 1$. On va chercher $\alpha \in \mathbb{C}$ et $\boldsymbol{u} \in \mathbb{C}^n$, $\|\boldsymbol{u}\|_2 = 1$, vérifiant

$$\mathbb{H}(\boldsymbol{u})\boldsymbol{a} = \alpha \boldsymbol{b}, \text{ avec } \mathbb{H}(\boldsymbol{u} \stackrel{\text{def}}{=} \mathbb{I} - 2 * \boldsymbol{u}^* \boldsymbol{u} \in \mathcal{M}_n(\mathbb{C}).$$
 (9.1)

Montrer que si α et **u** vérifient (9.1) alors

a. on a

$$|\alpha| = \|\boldsymbol{a}\|_2 \tag{9.2}$$

b. on a

$$\boldsymbol{a} - 2\langle \boldsymbol{u}, \boldsymbol{a} \rangle \boldsymbol{u} = \alpha \boldsymbol{b} \tag{9.3}$$

c. on en déduit que

$$|\langle \boldsymbol{u}, \boldsymbol{a} \rangle|^2 = \frac{\langle \boldsymbol{a}, \boldsymbol{a} \rangle - \alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle}{2}$$
 (9.4)

Nous allons maintenant établir une condition pour que (9.4) ait un sens.

On suppose que $\arg \alpha = -\arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle) [\pi]$

- a. Montrer que $\alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle \in \mathbb{R}$.
- b. Montrer que $\langle \boldsymbol{a}, \boldsymbol{a} \rangle \alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle \in \mathbb{R}^{*+}$.

Soient α et \boldsymbol{u} vérifiant (9.1). En déduire que si $\arg \alpha = -\arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle)$ $[\pi]$ alors \boldsymbol{u} est donné par

$$\boldsymbol{u} = \frac{1}{2\langle \boldsymbol{u}, \boldsymbol{a} \rangle} (\boldsymbol{a} - \alpha \boldsymbol{b}). \tag{9.5}$$

 $et \ \|u\|_2 = 1.$

EXERCICE 10

Soient \boldsymbol{a} et \boldsymbol{b} deux vecteurs de \mathbb{C}^n avec $\|\boldsymbol{b}\|_2 = 1$.

 $\overline{ \begin{array}{c} \mathbf{Q.\ 1} \\ \hline \end{array} } \overline{ Soit \ \alpha \in \mathbb{C} \ tel \ que \ |\alpha| = \left\| \boldsymbol{a} \right\|_2 \ et \ \mathrm{arg}(\alpha) = -\arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle) + \delta \pi \ avec \ \delta \in \llbracket 0, 1 \rrbracket. }$

- a. On suppose que $\mathbf{a} = \lambda \mathbf{b}$, $\lambda \in \mathbb{C}^*$, (i.e. \mathbf{a} et \mathbf{b} colinéaires). Exprimer $\mathbf{a} \alpha \mathbf{b}$ en fonction de λ et \mathbf{b} .
- b. Que peut-on dire si a est nul?

Ecrire la fonction algorithmique Householder de paramètres \boldsymbol{a} , \boldsymbol{b} et $\delta \in [0,1]$ retournant une matrice $\mathbb{S} \in \mathcal{M}_n(\mathbb{C})$ unitaire et $\alpha \in \mathbb{C}$ telles que

- $si \, \mathbf{a} \langle \mathbf{b}, \mathbf{a} \rangle \mathbf{b} = 0$ (i.e. \mathbf{a} nul ou colinéaire à \mathbf{b}) alors \mathbb{S} est la matrice identitée et $\alpha = 0$,
- sinon α est le nombre complexe défini en Q. 1 (dépendant de δ) et $\mathbb S$ est la matrice élémentaire de Householder

 $\mathbb{S} = \mathbb{H}\left(\frac{\boldsymbol{a} - \alpha \boldsymbol{b}}{\|\boldsymbol{a} - \alpha \boldsymbol{b}\|_2}\right)$

telle que $\mathbb{S}\boldsymbol{a} = \alpha \boldsymbol{b}$.

Des fonctions comme $dot(\boldsymbol{a},\boldsymbol{b})$ (produit scalaire de deux vecteurs), norm(\boldsymbol{a}) (norme 2 d'un vecteur), arg(z) (argument d'un nombre complexe), eye(n) (matrice identitée de $\mathcal{M}_n(\mathbb{C})$), matprod(\mathbb{A},\mathbb{B}) (produit de deux matrices), ctranspose(\mathbb{A}) (adjoint d'une matrice), ... pourront être utilisées

Proposer un programme permettant de tester cette fonction. On pourra utiliser la fonction vecrand(n) retournant un vecteur aléatoire de \mathbb{C}^n , les parties réelles et imaginaires de chacune de ses composantes étant dans]0,1[(loi uniforme).

Proposer un programme permettant de vérifier que $\delta = 1$ est le "meilleur" choix.

EXERCICE 11

Soit $\boldsymbol{a} \in \mathbb{C}^n$ non nul et non colinéaire à \boldsymbol{e}_1 , premier vecteur de la base canonique de \mathbb{C}^n . Montrer qu'il existe $\boldsymbol{u} \in \mathbb{C}^n$

 $\mathbb{H}(\boldsymbol{u})\boldsymbol{a} = -\|\boldsymbol{a}\|_{2} e^{i \arg(a_{1})} \boldsymbol{e}_{1}. \tag{11.1}$

EXERCICE 12

Soit $n \ge 2$.

 (\mathcal{P}_n)

Soit $\mathbb{A}_n \in \mathcal{M}_n(\mathbb{C})$ une matrice. Il existe une matrice unitaire $\mathbb{U}_n \in \mathcal{M}_n(\mathbb{C})$ et une matrice triangulaire supérieure $\mathbb{R}_n \in \mathcal{M}_n(\mathbb{C})$ telles que

$$\mathbb{U}_n \mathbb{A}_n = \mathbb{R}_n. \tag{12.1}$$

- Démontrer par récurrence que $\forall n \in \mathbb{N}, n \geq 2, (\mathcal{P}_n)$ est vraie.
- Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. Montrer qu'il existe une matrice unitaire $\mathbb{Q} \in \mathcal{M}_n(\mathbb{C})$ et une matrice triangulaire supérieure $\mathbb{R} \in \mathcal{M}_n(\mathbb{C})$ telles que $\mathbb{A} = \mathbb{Q}\mathbb{R}$.

 (\mathcal{Q}_n)

Soit $\mathbb{A}_n \in \mathcal{M}_n(\mathbb{R})$ une matrice. Il existe une matrice orthogonale $\mathbb{U}_n \in \mathcal{M}_n(\mathbb{R})$ et une matrice triangulaire supérieure $\mathbb{R}_n \in \mathcal{M}_n(\mathbb{R})$ telles que

$$\mathbb{U}_n \mathbb{A}_n = \mathbb{R}_n. \tag{12.2}$$

 (Q_n) La proposition (Q_n) est-elle vérifiée pour tout $n \ge 2$? Justifier.

- $Soit \mathbb{A} \in \mathcal{M}_n(\mathbb{R}).$
 - a. Montrer qu'il existe une matrice orthogonale $\mathbb{Q} \in \mathcal{M}_n(\mathbb{R})$ et une matrice triangulaire supérieure $\mathbb{R} \in \mathcal{M}_n(\mathbb{R})$ telles que

$$A = \mathbb{QR}$$
.

b. Montrer qu'il existe une matrice orthogonale $\mathbb{Q} \in \mathcal{M}_n(\mathbb{R})$ et une matrice triangulaire supérieure $\mathbb{R} \in \mathcal{M}_n(\mathbb{R})$ à coefficient diagonaux positifs ou nuls telles que

$$A = \mathbb{OR}$$

c. On suppose \mathbb{A} inversible. Montrer qu'il existe une unique matrice orthogonale $\mathbb{Q} \in \mathcal{M}_n(\mathbb{R})$ et une unique matrice triangulaire supérieure $\mathbb{R} \in \mathcal{M}_n(\mathbb{R})$ à coefficient diagonaux strictement positifs telles que

$$A = \mathbb{QR}$$
.

EXERCICE 13

Soit $\mathbb{A} \in \mathcal{M}_{m+n}(\mathbb{C})$ la matrice bloc

$$\mathbb{A} = \frac{m}{n} \left(\begin{array}{c|c} m & n \\ \mathbb{U} & \mathbb{F} \\ \hline \mathbb{E} & \mathbb{V} \end{array} \right).$$

On note $\boldsymbol{v} = \mathbb{V}_{:,1} \in \mathbb{C}^n$ le premier vecteur colonne de \mathbb{V} et on suppose que \boldsymbol{v} est non nul et non colinéaire à \boldsymbol{e}_1^n (premier vecteur de la base canonique de \mathbb{C}^n).

Expliciter, en fonction de \boldsymbol{v} , le vecteur $\boldsymbol{u} \in \mathbb{C}^n$, $\|\boldsymbol{u}\|_2 = 1$, tel que

$$\mathbb{H}(\boldsymbol{u})\boldsymbol{v} = \alpha \boldsymbol{e}_1^n, \quad avec \ \mathbb{H}(\boldsymbol{u}) \stackrel{\text{def}}{=} \mathbb{I} - 2\boldsymbol{u}\boldsymbol{u}^*.$$

- Soient $\mathbf{x} \in \mathbb{C}^m$ et $\mathbf{y} \in \mathbb{C}^n$. On pose $\mathbf{w} = \left(\frac{\mathbf{x}}{\mathbf{y}}\right) \in \mathbb{C}^{m+n}$. Déterminer $\mathbb{H}(\mathbf{w})$ en fonction de $\mathbb{H}(\mathbf{x})$ et de $\mathbb{H}(\mathbf{y})$.
- On pose $\boldsymbol{w} = \left(\begin{array}{c} \boldsymbol{0}_m \\ \boldsymbol{u} \end{array} \right) \in \mathbb{C}^{m+n}$.
 - a. Déterminer $\mathbb{H}(\boldsymbol{w})\mathbb{A}$ en fonction de $\mathbb{H}(\boldsymbol{u})$.
 - b. Que peut-on dire de particulier sur le bloc (2,2) de $\mathbb{H}(\boldsymbol{w})\mathbb{A}$?

EXERCICE 14

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$.

- Expliquer comment construire une matrice $\mathbb{H} \in \mathcal{M}_n(\mathbb{C})$ unitaire, produit d'au plus n-1 matrices élémentaires de Householder, et, $\mathbb{R} \in \mathcal{M}_n(\mathbb{C})$, triangulaire supérieure telles $\mathbb{H}\mathbb{A} = \mathbb{R}$.
- Ecrire une fonction FactQR permettant de calculer la factorisation \mathbb{QR} d'une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$.

 On pourra utiliser la fonction Householder Exercice 10 Exercice 3.1.9.
- Ecrire un programme permettant de tester cette fonction. On dispose des fonctions:
 - MatRand(m,n) retournant une matrice aléatoire de $\mathcal{M}_{m,n}(\mathbb{C})$ chacune des parties imaginaires et réelles de ses éléments étant une variable aléatoire suivant la loi uniforme [0,1].
 - NormInf(A) retournant la norme infinie d'une matrice carrée A.

2 Exercices supplémentaires

EXERCICE 15 : Factorisation $\mathbb{L}\mathbb{U}$

Q. 1

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admettant une factorisation \mathbb{LU} . Montrer que cette factorisation est unique (sans citer le théorème du cours!)

On pose

$$\mathbb{A} \stackrel{\text{def}}{=} \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{array} \right) \text{ et } \boldsymbol{b} \stackrel{\text{def}}{=} \left(\begin{array}{c} 4 \\ 16 \\ -26 \\ 54 \end{array} \right).$$

Q. 2

- a. Déterminer $\mathbb L$ une matrice triangulaire inférieure à diagonale unité et $\mathbb U$ une matrice triangulaire supérieure telles que $\mathbb A=\mathbb L\mathbb U$.
- b. Calculer le déterminant de la matrice A.
- c. Résoudre le système Ax = b.

 Ω

On peut noter que la matrice A est symétrique

- a. Montrer qu'il existe une matrice diagonale $\mathbb D$ telle que $\mathbb A=\mathbb L\mathbb D\mathbb L^t$, la matrice $\mathbb L$ étant celle de la question précédente.
- b. Rappeler la définition d'une matrice hermitienne définie positive de $\mathcal{M}_n(\mathbb{R})$.
- c. En déduire que la matrice A est définie positive.

Q. 4

En déduire qu'il existe une matrice \mathbb{B} triangulaire inférieure à diagonale positive telle qur $\mathbb{A} = \mathbb{BB}^t$.

EXERCICE 16

Définition. On dit que $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admet une factorisation \mathbb{WU} si il existe $\mathbb{W} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure inversible et $\mathbb{U} \in \mathcal{M}_n(\mathbb{C})$ triangulaire supérieure à diagonale unité telles que

$$\mathbb{A}=\mathbb{WU}.$$

On note $\mathbb{A} = (a_{i,j})_{i,j=1}^n$, $\mathbb{W} = (w_{i,j})_{i,j=1}^n$ et $\mathbb{U} = (u_{i,j})_{i,j=1}^n$ les composantes de ces matrices. On rappelle que la sous-matrice principale d'ordre k de \mathbb{A} , $k \in [1, n]$, est la matrice $\Delta_k \in \mathcal{M}_k(\mathbb{C})$ telle que

$$(\Delta_k)_{i,j} = a_{i,j}, \ \forall (i,j) \in [1,k].$$

Q. 1

Soit $A \in \mathcal{M}_n(\mathbb{C})$ admettant une factorisation \mathbb{WU} .

- a. Démontrer que toutes les sous-matrices principales de A sont inversibles.
- b. Démontrer que la factorisation \mathbb{WU} est unique.
- c. Soit $\boldsymbol{b} \in \mathbb{C}^n$ donné. Expliquer comment résoudre le système $\mathbb{A}\boldsymbol{x} = \boldsymbol{b}$ à l'aide de la factorisation \mathbb{WU} .

Q. 2

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admettant une factorisation $\mathbb{W}\mathbb{U}$. Expliquer de manière détaillée une méthodologie pour calculer les coefficients des matrices \mathbb{W} et \mathbb{U} . On explicitera les formules utilisées.

Q. 3[Algo] Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admettant une factorisation \mathbb{WU} .

- a. Ecrire la fonction ResTriSup retournant x, solution de $\mathbb{U}x = b$ où $\mathbb{U} \in \mathcal{M}_n(\mathbb{C})$ est une matrice triangulaire supérieure inversible et $\boldsymbol{b} \in \mathbb{C}^n$.
- b. Ecrire la fonction algorithmique FactWU retournant les matrices \mathbb{W} et \mathbb{U} .
- c. On suppose la fonction $\boldsymbol{x} \leftarrow \operatorname{ResTriInf}(\mathbb{L}, \boldsymbol{b})$ retournant \boldsymbol{x} , solution de $\mathbb{L}\boldsymbol{x} = \boldsymbol{b}$ avec $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure inversible et $b \in \mathbb{C}^n$, déjà écrite. Ecrire la fonction algorithmique ResWU retournant x, solution $de \ A\mathbf{x} = \mathbf{b} \ en \ utilisant \ sa \ factorisation \ \mathbb{WU}.$

On admet le résultat suivant:

Théorème. Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. La matrice \mathbb{A} admet une factorisation \mathbb{WU} si et seulement si toutes les sous $matrices\ principales\ de\ \mathbb{A}\ sont\ inversibles.$

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ hermitienne définie positive.

- a. Rappeler la définition d'une matrice hermitienne définie positive.
- b. Démontrer que A est inversible.
- c. Montrer que toutes les sous-matrices principales de A sont hermitiennes définies positives.
- d. En déduire que \mathbb{A} admet une unique factorisation \mathbb{WU} .