Exercices associés au cours d'Analyse Numérique I^* Résolution de systèmes linéaires Méthodes directes

Références

- [1] F. CUVELIER, Analyse numérique I, résolution de systèmes linéaires, méthodes directes, résumé. fichier pdf, https://www.math.univ-paris13.fr/~cuvelier/docs/Enseignements/MACS1/AnaNumI/25-26/resume_RSLdirecte.pdf.
- [2] F. CUVELIER, Analyse numérique élémentaire (version du 29 sep. 2025), Polycopié (téléchargement), 2025.
- [3] F. CUVELIER, Analyse numérique I, rappels analyse et algèbre linéaire, résumé., 2025. fichier pdf, https://www.math.univ-paris13.fr/~cuvelier/docs/Enseignements/MACS1/AnaNumI/25-26/rappels_Algebre_Lineaire_2x1.pdf.

1 Exercices cours

Exercice 1 : Résolution système triangulaire supérieur

Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice triangulaire inversible et $\mathbf{b} \in \mathbb{C}^n$.

- Expliquer comment calculer $\mathbf{x} \in \mathbb{C}^n$, solution de $\mathbb{A}\mathbf{x} = \mathbf{b}$ et expliciter les formules permettant de calculer l'ensemble des composantes de \mathbf{x} .
- R. 1
 On veut résoudre le système linéaire

$$\mathbb{A}\boldsymbol{x} = \boldsymbol{b} \iff \begin{pmatrix} A_{1,1} & \dots & \dots & A_{1,n} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & A_{n,n} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ \vdots \\ b_n \end{pmatrix}$$

On remarque que l'on peut calculer successivement $x_n, x_{n-1}, \ldots, x_1$, car il est possible de calculer x_i si on connait x_{i+1}, \ldots, x_n : c'est la **méthode de remontée**. En effet, on a

$$\forall i \in [1, n], (\Delta \boldsymbol{x})_i = b_i,$$

et donc, par définition d'un produit matrice-vecteur,

$$\forall i \in [1, n], \quad \sum_{j=1}^{n} A_{i,j} x_j = b_i.$$

Comme A est une matrice triangulaire supérieure, on a (voir Définition B.2.24 dans [2] et [3])

$$\forall (i,j) \in [1,n]^2, i > j, A_{i,j} = 0.$$

On obtient alors

$$\forall i \in [1, n], \quad b_i = \sum_{j=1}^{i-1} \underbrace{A_{i,j}}_{=0} x_j + A_{i,i} x_i + \sum_{j=i+1}^n A_{i,j} x_j$$

$$= A_{i,i} x_i + \sum_{j=i+1}^n A_{i,j} x_j. \tag{R1.1}$$

^{*}Compilé le 2025/10/24 à 09:27:14.

R. 2

$\textbf{Algorithme 1} \, | \, \mathcal{R}_0$ Algorithme 1 $|\mathcal{R}_1|$ Résoudre $\mathbb{A}\boldsymbol{x} = \boldsymbol{b}$ en calculant 1: Pour $i \leftarrow n$ à 1 faire(pas de -1) successivement $x_n, x_{n-1}, \ldots, x_1$. calculer x_i connaissant x_{i+1}, \ldots, x_n à l'aide de l'équation (R1.1) 3: Fin Pour

Algorithme 1 $|\mathcal{R}_1|$

- 1: Pour $i \leftarrow n$ à 1 faire(pas de -1) Calculer x_i connaissant x_{i+1}, \ldots, x_n à l'aide de l'équation (R1.1)
- 3: Fin Pour

Algorithme 1 $|\mathcal{R}_2|$

- 1: Pour $i \leftarrow n$ à 1 faire(pas de -1)
- $S \leftarrow \sum_{j=i+1}^{n} A_{i,j} x_j$ $x_i \leftarrow (b_i S)/A_{i,j}$
- 4: Fin Pour

Algorithme 1 $|\mathcal{R}_2|$

1: Pour $i \leftarrow n$ à 1 faire(pas de -1)

$$S \leftarrow \sum_{j=i+1}^{n} A_{i,j} x_j$$

- $x_i \leftarrow (b_i S)/A_{i,i}$
- 4: Fin Pour

Algorithme 1 $|\mathcal{R}_3|$

1: Pour $i \leftarrow n$ à 1 faire(pas de -1)

2:
$$S \leftarrow 0$$

3: Pour $j \leftarrow i + 1$ à n faire $S \leftarrow S + A(i, j) * x(j)$
5: Fin Pour

- $x_i \leftarrow (b_i S)/A_{i.i}$
- 7: Fin Pour

On obtient alors l'algorithme final

Algorithme 1 Fonction ResTriSup permettant de résoudre le système linéaire triangulaire supérieur inversible

matrice triangulaire de $\mathcal{M}_n(\mathbb{R})$ supérieure inversible. Données:

 \boldsymbol{b} vecteur de \mathbb{R}^n . Résultat : x : vecteur de \mathbb{R}^n . 1: Fonction $x \leftarrow \text{ResTriSup}(A, b)$

- Pour $i \leftarrow n$ à 1 faire(pas de -1) 4:
 - Pour $j \leftarrow i + 1$ à n faire
- $S \leftarrow S + A(i,j) * x(j)$
- Fin Pour
- $x(i) \leftarrow (b(i) S)/A(i, i)$ 7:
- Fin Pour
- 9: Fin Fonction

EXERCICE 2: Matrice de permutation

Soit $(i,j) \in [1,n]^2$, $i \neq j$, on note $\mathbb{P}_n^{[i,j]} \in \mathcal{M}_n(\mathbb{R})$ la matrice identitée dont on a permuté les lignes i et j.

Représenter cette matrice et la définir proprement.

(R. 1)

On note, dans toute la correction, $\mathbb{P} = \mathbb{P}_n^{[i,j]}$. On peut définir cette matrice par ligne,

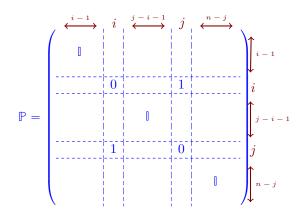
$$\begin{cases} \forall r \in \llbracket 1, n \rrbracket \backslash \{i, j\}, & P_{r,s} = \delta_{r,s}, & \forall s \in \llbracket 1, n \rrbracket, \\ P_{i,s} = \delta_{j,s}, & \forall s \in \llbracket 1, n \rrbracket, \\ P_{j,s} = \delta_{i,s}, & \forall s \in \llbracket 1, n \rrbracket. \end{cases}$$

ou par colonne

$$\begin{cases} \forall s \in \llbracket 1, n \rrbracket \backslash \{i, j\}, & P_{r,s} = \delta_{r,s}, & \forall r \in \llbracket 1, n \rrbracket, \\ P_{r,i} = \delta_{r,j}, & \forall r \in \llbracket 1, n \rrbracket, \\ P_{r,j} = \delta_{r,i}, & \forall r \in \llbracket 1, n \rrbracket. \end{cases}$$

Ne pas utiliser les indices i et j qui sont déjà fixés dans la définition de la matrice $\mathbb{P} = \mathbb{P}_n^{[i,j]}$.

On peut noter que la matrice \mathbb{P} est symétrique. Pour la représentation, on suppose i < j. On effectue une représentation bloc 5×5 avec des blocs diagonaux carrés sachant que tous les blocs non décrits sont nuls:



Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. On note $\mathbf{A}_{r,:}$ le r-ème vecteur ligne de \mathbb{A} et $\mathbf{A}_{:,s}$ le s-ème vecteur colonne de \mathbb{A} .

Q. 2

- a. Déterminer les lignes de la matrice $\mathbb{D} = \mathbb{P}_n^{[i,j]} \mathbb{A}$ en fonction des vecteurs lignes de \mathbb{A} .
- b. Déterminer les colonnes de la matrice $\mathbb{E} = \mathbb{AP}_n^{[i,j]}$ en fonction des vecteurs colonnes de \mathbb{A} .

R. 2

a. On note $\mathbb{D}=\mathbb{P}\mathbb{A}.$ Par définition du produit matriciel on a

$$D_{r,s} = \sum_{k=1}^{n} P_{r,k} A_{k,s}.$$

On obtient, $\forall s \in [1, n]$,

$$\begin{cases} D_{r,s} &= \sum_{k=1}^{n} \delta_{r,k} A_{k,s} = A_{r,s}, \quad \forall r \in [1, n] \setminus \{i, j\}, \\ D_{i,s} &= \sum_{k=1}^{n} \delta_{j,k} A_{k,s} = A_{j,s}, \\ D_{j,s} &= \sum_{k=1}^{n} \delta_{i,k} A_{k,s} = A_{i,s}. \end{cases}$$

ce qui donne

$$\left\{ \begin{array}{lcl} \boldsymbol{D}_{r,:} & = & \boldsymbol{A}_{r,:}, & \forall r \in \llbracket 1, n \rrbracket \backslash \{i, j\}, \\ \boldsymbol{D}_{i,:} & = & \boldsymbol{A}_{j,:}, \\ \boldsymbol{D}_{j,:} & = & \boldsymbol{A}_{i,:}. \end{array} \right.$$

Note: La notation $D_{i,:}$ correspond au vecteur ligne $(D_{i,1},\ldots,D_{i,n})$ et $D_{:,j}$ correspond au vecteur colonne

$$E_{r,s} = \sum_{k=1}^{n} A_{r,k} P_{k,s} = \sum_{k=1}^{n} A_{r,k} P_{s,k}.$$

Ne pas utiliser les indices i et j qui sont déjà fixés dans la définition de la matrice $\mathbb{P} = \mathbb{P}_n^{[i,j]}$.

On obtient en raisonnant par colonne, $\forall r \in [1, n]$,

$$\begin{cases} E_{r,s} &= \sum_{k=1}^{n} A_{r,k} \delta_{s,k} = A_{r,s}, \quad \forall s \in [1, n] \setminus \{i, j\}, \\ E_{r,i} &= \sum_{k=1}^{n} A_{r,k} \delta_{j,k} = A_{r,j}, \\ E_{r,j} &= \sum_{k=1}^{n} A_{r,k} \delta_{i,k} = A_{r,i}. \end{cases}$$

ce qui donne

$$\left\{ \begin{array}{lcl} \boldsymbol{E}_{:,s} & = & \boldsymbol{A}_{:,s}, & \forall s \in \llbracket 1,n \rrbracket \backslash \{i,j\}, \\ \boldsymbol{E}_{:,i} & = & \boldsymbol{A}_{:,j}, \\ \boldsymbol{E}_{:,j} & = & \boldsymbol{A}_{:,i}. \end{array} \right.$$

Q. 3

- a. Calculer le déterminant de $\mathbb{P}_n^{[i,j]}$
- b. Déterminer l'inverse de $\mathbb{P}_n^{[i,j]}$.

- a. $det(\mathbb{P}) = -1$, si $i \neq j$ et $det(\mathbb{P}) = 1$ sinon.
- b. Immédiat par calcul direct on a $\mathbb{PP} = \mathbb{I}$ et donc la matrice \mathbb{P} est inversible et $\mathbb{P}^{-1} = \mathbb{P}$.

EXERCICE 3: Matrice d'élimination

Soit $\mathbf{v} \in \mathbb{C}^n$ avec $v_1 \neq 0$. On note $\mathbb{E}^{[\mathbf{v}]} \in \mathcal{M}_n(\mathbb{C})$ la matrice triangulaire inférieure à diagonale unité définie par

$$\mathbb{E}^{[\boldsymbol{v}]} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ -v_2/v_1 & 1 & 0 & \dots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ -v_n/v_1 & 0 & \dots & 0 & 1 \end{pmatrix}$$
(3.1)

Q. 1

- a. Calculer le déterminant de $\mathbb{E}^{[v]}$.
- b. Déterminer l'inverse de $\mathbb{E}^{[v]}$.

- a. La matrice $\mathbb{E}^{[v]}$ est triangulaire : son déterminant est donc le produit de ses éléments diagonaux (Proposition B.2.8 de [2]) On a alors $\det(\mathbb{E}^{[\boldsymbol{v}]}) = 1$.
- b. Pour calculer son inverse qui existe puisque $\det(\mathbb{E}^{[v]}) \neq 0$, on écrit $\mathbb{E}^{[v]}$ sous forme bloc :

$$\mathbb{E}^{[\boldsymbol{v}]} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \boldsymbol{e} & \vdots & \vdots & \vdots \\ \end{pmatrix}$$

avec $e = (-v_2/v_1, \dots, -v_n/v_1)^{\mathsf{t}} \in \mathbb{C}^{n-1}$ On note $\mathbb{X} \in \mathcal{M}_n(\mathbb{C})$ son inverse qui s'écrit avec la même structure bloc

$$\mathbb{X} = \begin{pmatrix} a & b^* \\ c & \mathbb{D} \end{pmatrix}$$

avec $a \in \mathbb{C}$, $\boldsymbol{b} \in \mathbb{C}^{n-1}$, $\boldsymbol{c} \in \mathbb{C}^{n-1}$ et $\mathbb{D} \in \mathcal{M}_{n-1}(\mathbb{C})$.

La matrice \mathbb{X} est donc solution de $\mathbb{E}^{[v]}\mathbb{X} = \mathbb{I}$. Grace à l'écriture bloc des matrices on en déduit rapidement la matrice \mathbb{X} . En effet, en utilisant les produits blocs des matrices, on obtient

$$\mathbb{E}^{[\boldsymbol{v}]}\mathbb{X} = \begin{pmatrix} 1 & \mathbf{0}_{n-1}^{\mathsf{t}} \\ e & \mathbb{I}_{n-1} \end{pmatrix} \begin{pmatrix} a & \boldsymbol{b}^* \\ c & \mathbb{D} \end{pmatrix} = \begin{pmatrix} 1 \times a & 1 \times \boldsymbol{b}^* + \mathbf{0}_{n-1}^{\mathsf{t}} \times \mathbb{D} \\ e \times a + \mathbb{I}_{n-1} \times c & e \times \boldsymbol{b}^* + \mathbb{I}_{n-1} \times \mathbb{D} \end{pmatrix}$$
$$= \begin{pmatrix} a & \boldsymbol{b}^* \\ ae + c & eb^* + \mathbb{D} \end{pmatrix}$$

Comme \mathbb{X} est l'inverse de $\mathbb{E}^{[v]}$, on a $\mathbb{E}^{[v]}\mathbb{X} = \mathbb{I}$ et donc en écriture bloc

$$\begin{pmatrix} a & \mathbf{b}^* \\ a\mathbf{e} + \mathbf{c} & \mathbf{e}\mathbf{b}^* + \mathbb{D} \end{pmatrix} = \begin{pmatrix} 1 & \mathbf{0}_{n-1}^{\mathsf{t}} \\ \mathbf{0}_{n-1} & \mathbb{I}_{n-1} \end{pmatrix}.$$

Ceci revient à résoudre les 4 équations

$$a = 1$$
, $b^* = \mathbf{0}_{n-1}^{t}$, $ae + c = \mathbf{0}_{n-1}$ et $eb^* + \mathbb{D} = \mathbb{I}_{n-1}$

qui donnent immédiatement $a=1, b=0_{n-1}, c=-e$ et $\mathbb{D}=\mathbb{I}_{n-1}$. On obtient le résultat suivant

$$\left(egin{array}{c|ccc} 1 & 0 & \dots & 0 \ -e & & \mathbb{I}_{n-1} \end{array}
ight) \left(egin{array}{c|ccc} 1 & 0 & \dots & 0 \ e & & \mathbb{I}_{n-1} \end{array}
ight) = \mathbb{I}_n.$$

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ avec $A_{1,1} \neq 0$. On note $A_{:,j}$ le j-ème vecteur colonne de \mathbb{A} et $A_{i,:}$ son i-ème vecteur ligne. On pose $A_1 = A_{:,1}$.

- Q. 2

 a. Soit $\mathbf{v} \in \mathbb{C}^n$ avec $v_1 \neq 0$. Calculer $\tilde{\mathbb{A}} = \mathbb{E}^{[\mathbf{v}]} \mathbb{A}$ en fonction des vecteurs lignes de \mathbb{A} .
 - b. En déduire que la première colonne de $\mathbb{E}^{[\mathbf{A}_1]}\mathbb{A}$ est le vecteur $(A_{1,1},0,\ldots,0)^t$ i.e.

$$\mathbb{E}^{[\mathbf{A}_1]} \mathbb{A} \mathbf{e}_1 = A_{1,1} \mathbf{e}_1 \tag{3.2}$$

où \mathbf{e}_1 est le premier vecteur de la base canonique de \mathbb{C}^n .

(R. 2)

a. Pour simplifier les notations, on note $\mathbb{E} = \mathbb{E}^{[A_1]}$ et $\boldsymbol{v} = \boldsymbol{A}_1$. Par définition du produit de deux matrices on a

$$\tilde{A}_{i,j} = \sum_{k=1}^{n} E_{i,k} A_{k,j}, \quad \forall (i,j) \in [1,n]^2.$$

Quand i = 1, on a par construction $E_{1,k} = \delta_{1,k}$ et donc

$$\tilde{A}_{1,j} = A_{1,j}, \ \forall j \in [1, n] \iff \tilde{A}_{1,:} = A_{1,:}.$$
 (R3.2)

Pour $i \ge 2$, on a $E_{i,1} = -\frac{v_i}{v_1}$ et $E_{i,k} = \delta_{i,k}$, $\forall k \in [2, n]$. On obtient alors pour tout $j \in [1, n]$

$$\tilde{A}_{i,j} = E_{i,1}A_{1,j} + \sum_{k=2}^{n} E_{i,k}A_{k,j} = -\frac{v_i}{v_1}A_{1,j} + \sum_{k=2}^{n} \delta_{i,k}A_{k,j} = -\frac{v_i}{v_1}A_{1,j} + A_{i,j}$$

ce qui donne pour tout $i \in [2, n]$

$$\tilde{A}_{i,j} = A_{i,j} - \frac{v_i}{v_1} A_{1,j}, \ \forall j \in [1, n] \iff \tilde{A}_{i,:} = -\frac{v_i}{v_1} A_{1,:} + A_{i,:}$$
 (R3.3)

En conclusion, la matrice $\tilde{\mathbb{A}}$ s'écrit

$$\tilde{\mathbb{A}} = egin{pmatrix} m{A}_{1,:} & & & & \\ & m{A}_{2,:} - (v_2/v_1) m{A}_{1,:} & & & \\ & & \vdots & & & \\ & m{A}_{n,:} - (v_n/v_1) m{A}_{1,:} & & \end{pmatrix}$$

b. De (R3.2), on tire $\tilde{A}_{1,1} = A_{1,1}$. A partir de (R3.3) on obtient pour tout $i \in [\![2,n]\!]$, $\tilde{A}_{i,1} = A_{i,1} - \frac{v_i}{v_1}A_{1,1}$. Par construction $v_j = A_{j,1}$ pour tout $j \in [\![1,n]\!]$, ce qui donne $\tilde{A}_{i,1} = 0$. La première colonne de $\tilde{\mathbb{A}}$ est $(1,0,\ldots,0)^{t}$.

EXERCICE 4 : Méthode de Gauss, écriture algébrique

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ inversible.

 (\mathcal{P}_n)

Montrer qu'il existe une matrice $\mathbb{G} \in \mathcal{M}_n(\mathbb{C})$ telle que $|\det(\mathbb{G})| = 1$ et $\mathbb{G} \mathbb{A} \mathbf{e}_1 = \alpha \mathbf{e}_1$ avec $\alpha \neq 0$ et \mathbf{e}_1 premier vecteur de la base canonique de \mathbb{C}^n .

D'après le Lemme 3.1.1 de [2]/Lemme 2.2 de [1], si $A_{1,1} \neq 0$, le résultat est immédiat.

Dans l'énoncé rien ne vient corroborer cette hypothèse. Toutefois, comme la matrice \mathbb{A} est inversible, il existe au moins un $p \in [1, n]$ tel que $A_{p,1} \neq 0$. On peut même choisir le premier indice p tel que $|A_{p,1}| = \max_{i \in [1, n]} |A_{i,1}| > 0$ (pivot de l'algorithme de Gauss-Jordan). On note $\mathbb{P} = \mathbb{P}_n^{[1,p]}$ la matrice de permutation des lignes 1 et p (voir Lemme 3.1.2 de [2]/Lemme 2.1 de [1]). On a alors

$$|\det \mathbb{P}| = 1$$
 et $\mathbb{P}^{-1} = \mathbb{P}$.

Par construction $(\mathbb{P}\mathbb{A})_{1,1} = A_{p,1} \neq 0$, et on peut alors appliquer le Lemme 3.1.1 de [2]/Lemme 2.2 de [1] à la matrice $(\mathbb{P}\mathbb{A})$ pour obtenir l'existence d'une matrice $\mathbb{E} \in \mathcal{M}_n(\mathbb{C})$ vérifiant det $\mathbb{E} = 1$ et telle que

$$\mathbb{E}(\mathbb{P}\mathbb{A})\boldsymbol{e}_1 = A_{p,1}\boldsymbol{e}_1.$$

En posant $\mathbb{G} = \mathbb{EP}$ et $\alpha = A_{p,1}$, on obtient bien $\mathbb{GA}e_1 = \alpha e_1$. De plus, on a

$$|\det \mathbb{G}| = |\det(\mathbb{EP})| = |\det \mathbb{E} \times \det \mathbb{P}| = 1.$$

Remarque. La matrice © étant inversible, on a

$$Ax = b \iff CAx = Cb$$

ce qui correspond à la première permutation/élimination de l'algorithme de Gauss-Jordan.

- a. Montrer par récurrence sur l'ordre des matrices que pour toute matrice $\mathbb{A}_n \in \mathcal{M}_n(\mathbb{C})$ inversible, il existe une matrice $\mathbb{S}_n \in \mathcal{M}_n(\mathbb{C})$ telle que $|\det \mathbb{S}_n| = 1$ et $\mathbb{S}_n \mathbb{A}_n = \mathbb{U}_n$ avec \mathbb{U}_n matrice triangulaire supérieure inversible.
 - b. Soit $\mathbf{b} \in \mathbb{C}^n$. En supposant connue la décompostion précédente $\mathbb{S}_n \mathbb{A}_n = \mathbb{U}_n$, expliquer comment résoudre le système $\mathbb{A}_n \mathbf{x} = \mathbf{b}$.
 - a. On veut démontrer, par récurrence sur $n\geqslant 2,$ la propriété suivante
 - $\forall \mathbb{A}_n \in \mathcal{M}_n(\mathbb{C})$ inversible, $\exists \mathbb{S}_n \in \mathcal{M}_n(\mathbb{C})$, $|\det \mathbb{S}_n| = 1$, tel que la matrice $\mathbb{U}_n \stackrel{\text{def}}{=} \mathbb{S}_n \mathbb{A}$ soit une triangulaire supérieure inversible.

Initialisation: Pour n = 2. Soit $\mathbb{A}_2 \in \mathcal{M}_2(\mathbb{C})$ inversible. En utilisant la question précédente il existe $\mathbb{G}_2 \in \mathcal{M}_2(\mathbb{C})$

telle que $|\det \mathbb{G}_2| = 1$ et $\mathbb{G}_2 \mathbb{A}_2 \boldsymbol{e}_1 = \alpha \boldsymbol{e}_1$ avec $\alpha \neq 0$ et \boldsymbol{e}_1 premier vecteur de la base canonique de \mathbb{C}^2 . On note $\mathbb{U}_2 = \mathbb{G}_2 \mathbb{A}_2$. Cette matrice s'écrit donc sous la forme

$$\mathbb{U}_2 = \begin{pmatrix} \alpha & \bullet \\ 0 & \bullet \end{pmatrix}$$

et elle est triangulaire supérieure. Les matrices \mathbb{G}_2 et \mathbb{A}_2 étant inversible, leur produit \mathbb{U}_2 l'est aussi. La proposition (\mathcal{P}_2) est donc vérifiée avec $\mathbb{S}_2 = \mathbb{G}_2$.

Hérédité: Soit $n \ge 3$. On suppose que (\mathcal{P}_{n-1}) est vraie. Montrons que (\mathcal{P}_n) est vérifiée.

Soit $\mathbb{A}_n \in \mathcal{M}_n(\mathbb{C})$ inversible. En utilisant la question précédente il existe $\mathbb{G}_n \in \mathcal{M}_n(\mathbb{C})$ telle que $|\det \mathbb{G}_n| = 1$ et $\mathbb{G}_n \mathbb{A}_n \mathbf{e}_1 = \alpha_n \mathbf{e}_1$ avec $\alpha_n \neq 0$ et \mathbf{e}_1 premier vecteur de la base canonique de \mathbb{C}^n . On note $\mathbb{V}_n = \mathbb{G}_n \mathbb{A}_n$. Cette matrice s'écrit donc sous la forme

$$\mathbb{V}_n = \begin{pmatrix} \begin{array}{c|ccc} \alpha_n & \bullet & \dots & \bullet \\ \hline 0 & \bullet & \dots & \bullet \\ \vdots & \vdots & & \vdots \\ \hline 0 & \bullet & \dots & \bullet \\ \end{pmatrix} \stackrel{\text{def}}{=} \begin{pmatrix} \begin{array}{c|ccc} \alpha_n & \mathbf{c}_{n-1}^* \\ \hline 0 & & \\ \vdots & & \\ \hline 0 & & \\ \end{array} \end{pmatrix}$$

où $\mathbf{c}_{n-1} \in \mathbb{C}^{n-1}$ et $\mathbb{B}_{n-1} \in \mathcal{M}_{n-1}(\mathbb{C})$. Comme \mathbb{G}_n et \mathbb{A}_n sont inversibles, \mathbb{V}_n l'est aussi. On en déduit donc que \mathbb{B}_{n-1} est inversible car $0 \neq \det \mathbb{V}_n = \alpha_n \times \det \mathbb{B}_{n-1}$ et $\alpha_n \neq 0$.

On peut donc utiliser la propriété (\mathcal{P}_{n-1}) (hyp. de récurrence) sur la matrice \mathbb{B}_{n-1} : il existe donc $\mathbb{S}_{n-1} \in \mathcal{M}_{n-1}(\mathbb{C})$, avec $|\det \mathbb{S}_{n-1}| = 1$, tel que la matrice $\mathbb{U}_{n-1} = \mathbb{S}_{n-1}\mathbb{B}_{n-1}$ soit une triangulaire supérieure inversible. Soit $\mathbb{Q}_n \in \mathcal{M}_n(\mathbb{C})$ la matrice définie par

$$\mathbb{Q}_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \hline 0 & & & & \\ \vdots & & & \\ 0 & & & \end{pmatrix}$$

On a alors

$$\mathbb{Q}_{n}\mathbb{G}_{n}\mathbb{A}_{n} = \mathbb{Q}_{n}\mathbb{V}_{n} = \begin{pmatrix}
\frac{1}{0} & 0 & \dots & 0 \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & 0 \\
0 & & & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1}\mathbb{B}_{n-1} & 0
\end{pmatrix} = \begin{pmatrix}
\alpha_{n} & \boldsymbol{c}_{n-1}^{*} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1}\mathbb{B}_{n-1} & & \\
\vdots & & \mathbb{S}_{n-1}\mathbb{B}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
0 & & & & \\
\vdots & & \mathbb{S}_{n-1} & & \\
\vdots & \mathbb{S}_$$

La matrice \mathbb{U}_n est triangulaire supérieure inversible car \mathbb{U}_{n-1} l'est aussi et $\alpha_n \neq 0$.

On pose $\mathbb{S}_n = \mathbb{Q}_n \mathbb{G}_n$. On a donc

$$\mathbb{S}_n \mathbb{A}_n = \mathbb{U}_n$$
.

De plus, comme on a $\det \mathbb{S}_n = \det \mathbb{Q}_n \times \det \mathbb{G}_n$, et $\det \mathbb{Q}_n = \det \mathbb{S}_{n-1}$, on obtient, en utilisant $|\det \mathbb{G}_n| = 1$ et l'hypothèse de récurrence $|\det \mathbb{S}_{n-1}| = 1$, que

$$|\det \mathbb{S}_n| = 1.$$

Ceci prouve la véracité de la proposition (\mathcal{P}_n) .

b. Comme \mathbb{S}_n est inversible, on a en multipliant à gauche le système par \mathbb{S}_n

$$\mathbb{A}_n \boldsymbol{x} = \boldsymbol{b} \iff \mathbb{S}_n \mathbb{A}_n \boldsymbol{x} = \mathbb{S}_n \boldsymbol{b} \iff \mathbb{U}_n \boldsymbol{x} = \mathbb{S}_n \boldsymbol{b}$$

Pour déterminer le vecteur \boldsymbol{x} , on peut alors résoudre le dernier système par l'algorithme de remontée.

R. 3

Si \mathbb{A} est non inversible, alors dans la première question nous ne sommes pas assurés d'avoir $\alpha \neq 0$. Cependant l'existence de la matrice \mathbb{G} reste avérée.

Pour la deuxième question, le seul changement vient du fait que la matrice \mathbb{U}_n n'est plus inversible.

EXERCICE 5: Vers la factorisation LU

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice dont les sous-matrices principales d'ordre i, notées Δ_i , $i \in [1, n]$. Montrer par récurrence sur l'ordre n de la matrice \mathbb{A} qu'il existe une matrice $\mathbb{E} \in \mathcal{M}_n(\mathbb{C})$, triangulaire inférieure à diagonale unité telle que la matrice \mathbb{U} définie par

$$U = \mathbb{F}A$$

soit triangulaire supérieure avec $U_{i,i} = \det \Delta_i / (U_{1,1} \times \cdots \times U_{i-1,i-1}), \forall i \in [1,n]$.

Correction Soit $n \ge 2$, on va démontrer par récurrence sur n la proposition suivante

 (\mathcal{P}_n)

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. Si, pour tout $i \in [1, n]$, les sous-matrices principales d'ordre i de \mathbb{A} , notées Δ_i , sont inversibles, alors il existe une matrice $\mathbb{E} \in \mathcal{M}_n(\mathbb{C})$, triangulaire inférieure à diagonale unité telle que la matrice $\mathbb{U} = \mathbb{E} \mathbb{A}$ soit triangulaire supérieure avec $U_{i,i} = \det \Delta_i/(U_{1,1} \times \cdots \times U_{i-1,i-1})$, $\forall i \in [1, n]$.

Initialisation: n = 2 Soit $\mathbb{A} \in \mathcal{M}_2(\mathbb{C})$. Si $\Delta_1 = A_{1,1} \neq 0$ et $\Delta_2 = \mathbb{A}$ inversible. On va construire une matrice $\mathbb{E} \in \mathcal{M}_2(\mathbb{C})$, triangulaire inférieure à diagonale unité telle que $\mathbb{U} = \mathbb{E}\mathbb{A}$ soit triangulaire supérieure.

$$\mathbb{E}\mathbb{A} = \begin{pmatrix} 1 & 0 \\ E_{2,1} & 1 \end{pmatrix} \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} = \begin{pmatrix} U_{1,1} & U_{1,2} \\ 0 & U_{2,2} \end{pmatrix} = \mathbb{U}$$

On a donc $U_{2,1}=0=E_{2,1}A_{1,1}+A_{2,1}.$ Comme par hypothèse, $A_{1,1}\neq 0,$ on a $E_{2,1}=-A_{2,1}/A_{1,1},$ ce qui donne

$$\mathbb{E}\mathbb{A} = \begin{pmatrix} 1 & 0 \\ -\frac{A_{2,1}}{A_{1,1}} & 1 \end{pmatrix} \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} = \begin{pmatrix} A_{1,1} & A_{1,2} \\ 0 & A_{2,2} - \frac{A_{2,1}}{A_{1,1}} A_{1,2} \end{pmatrix} = \mathbb{U}.$$

On a alors

$$\begin{array}{rcl} U_{1,1} & = & A_{1,1} = \det(\Delta_1), \\ \\ U_{2,2} & = & A_{2,2} - \frac{A_{2,1}}{A_{1,1}} A_{1,2} = \frac{A_{2,2} A_{1,1} - A_{2,1} A_{1,2}}{A_{1,1}} = \frac{\det \mathbb{A}}{U_{1,1}} = \frac{\det \Delta_2}{U_{1,1}}. \end{array}$$

Hérédité: Soit $n \ge 3$, on suppose que (\mathcal{P}_{n-1}) est vérifiée. Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. dont toutes les sous-matrices principales d'ordre i de \mathbb{A} , notées Δ_i , $i \in [1, n]$ sont inversibles. On décompose la matrice \mathbb{A} sous la forme bloc

$$\mathbb{A} = \left(\begin{array}{c|c} \mathbb{A}_{n-1} & \mathbf{g} \\ \hline \mathbf{f}^* & A_{n,n} \end{array}\right)$$

avec $\mathbb{A}_{n-1} \in \mathcal{M}_{n-1}(\mathbb{C})$, $\mathbf{f} \in \mathbb{C}^{n-1}$ et $\mathbf{g} \in \mathbb{C}^{n-1}$. Comme les n-1 premières sous-matrices principales de \mathbb{A} sont les n-1 sous-matrices principales de \mathbb{A}_{n-1} , ces dernières sont, par hypothèse, inversibles. Par hypothèse de récurrence sur \mathbb{A}_{n-1} , il existe une matrice $\mathbb{E}_{n-1} \in \mathcal{M}_{n-1}(\mathbb{C})$, triangulaire inférieure à diagonale unité telle que la matrice $\mathbb{U}_{n-1} = \mathbb{E}_{n-1}\mathbb{A}_{n-1}$ soit triangulaire supérieure.

On va construire (si possible) une matrice $\mathbb{E} \in \mathcal{M}_n(\mathbb{C})$, triangulaire inférieure à diagonale unité telle que $\mathbb{U} = \mathbb{E}\mathbb{A}$ soit triangulaire supérieure. La matrice \mathbb{E} s'écrit sous forme bloc

$$\mathbb{E} = \left(\begin{array}{c|c} \mathbb{X}_{n-1} & \mathbf{0} \\ \hline \mathbf{h}^* & 1 \end{array} \right)$$

avec $\mathbb{X}_{n-1} \in \mathcal{M}_{n-1}(\mathbb{C})$ triangulaire inférieure à diagonale unité et $\mathbf{h} \in \mathbb{C}^{n-1}$.

On a alors

$$\mathbb{E}\mathbb{A} = \left(\begin{array}{c|c} \mathbb{X}_{n-1} & \mathbf{0} \\ \hline \mathbf{h}^* & 1 \end{array}\right) \left(\begin{array}{c|c} \mathbb{A}_{n-1} & \mathbf{g} \\ \hline \mathbf{f}^* & A_{n,n} \end{array}\right) = \left(\begin{array}{c|c} \mathbb{X}_{n-1}\mathbb{A}_{n-1} & \mathbb{X}_{n-1}\mathbf{g} \\ \hline \mathbf{h}^*\mathbb{A}_{n-1} + \mathbf{f}^* & \mathbf{h}^*\mathbf{g} + A_{n,n} \end{array}\right)$$

Pour que la matrice $\mathbb{E}\mathbb{A}$ soit triangulaire supérieure, il faut que $\mathbb{X}_{n-1}\mathbb{A}_{n-1}$ soit triangulaire supérieure et $\mathbf{h}^*\mathbb{A}_{n-1}+\mathbf{f}^*=0$. En choisissant $\mathbb{X}_{n-1}=\mathbb{E}_{n-1}$, on a $\mathbb{U}_{n-1}=\mathbb{X}_{n-1}\mathbb{A}_{n-1}$ triangulaire supérieure. La matrice \mathbb{A}_{n-1} étant inversible, on a $\mathbf{h}^*=-\mathbf{f}^*\mathbb{A}_{n-1}^{-1}$ On obtient donc

$$\mathbb{E}\mathbb{A} = \left(\begin{array}{c|c} \mathbb{E}_{n-1} & \mathbf{0} \\ \hline \mathbf{h}^* & 1 \end{array}\right) \left(\begin{array}{c|c} \mathbb{A}_{n-1} & \mathbf{g} \\ \hline \mathbf{f}^* & A_{n,n} \end{array}\right) = \left(\begin{array}{c|c} \mathbb{U}_{n-1} & \mathbb{E}_{n-1}\mathbf{g} \\ \hline 0 & A_{n,n} - \mathbf{h}^*\mathbf{g} \end{array}\right) = \mathbb{U}.$$

On a donc construit une matrice triangulaire inférieure à diagonale unité, \mathbb{E} , telle que $\mathbb{U}=\mathbb{E}\mathbb{A}$ soit triangulaire supérieure. Par construction, on a

$$U_{i,j} = (\mathbb{U}_{n-1})_{i,j}, \ \forall (i,j) \in [[1, n-1]]^2$$

et donc, par hypothèse de récurrence sur \mathbb{U}_{n-1} , on obtient

$$U_{i,i} = \det \Delta_i / (U_{1,1} \times \dots \times U_{i-1,i-1}), \quad \forall i \in [1, n-1].$$

De plus on a,

$$\det(\mathbb{E}\mathbb{A}) = \det(\mathbb{E}) \det(\mathbb{A})$$

$$= \det(\mathbb{A})$$

$$= \det(\Delta_n).$$

$$\operatorname{car} \mathbb{E} \text{ tri. inf. à diag. unité}$$

$$= \det(\Delta_n).$$

$$\operatorname{car} \Delta_n = \mathbb{A}.$$

et

$$\det(\mathbb{U}) = \prod_{k=1}^{n} U_{k,k}$$
 car \mathbb{U} tri. sup.
$$= U_{n,n} \prod_{k=1}^{n-1} U_{k,k}$$

Comme $\mathbb{U} = \mathbb{E}\mathbb{A}$, on en déduit que la matrice \mathbb{U} est inversible (car \mathbb{E} et \mathbb{A} le sont), que ses coefficients sont non nuls et, en prenant le déterminant:

$$\det(\Delta_n) = U_{n,n} \prod_{k=1}^{n-1} U_{k,k}$$

et donc

$$U_{n,n} = \frac{\det(\Delta_n)}{\prod_{k=1}^{n-1} U_{k,k}}.$$

La proposition (\mathcal{P}_n) est donc vraie.

Conclusion: On a démontré par récurrence que la proposition (\mathcal{P}_n) est vraie pour tout $n \geq 2$.

_

Exercice 6: factorisation LDL*

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$.

Montrer que s'il existe $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$, matrice triangulaire inférieure à diagonale unité, et, $\mathbb{D} \in \mathcal{M}_n(\mathbb{R})$, matrice diagonale à coefficients diagonaux strictement positifs, telle que $\mathbb{A} = \mathbb{LDL}^*$ alors \mathbb{A} est hermitienne définie positive.

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admettant une factorisation \mathbb{LDL}^* avec $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$, matrice triangulaire inférieure à diagonale unité, et, $\mathbb{D} \in \mathcal{M}_n(\mathbb{R})$, matrice diagonale à coeffcients diagonaux strictement positifs. La matrice \mathbb{A} est alors hermitienne car

$$\mathbb{A}^* = (\mathbb{LDL}^*)^* = (\mathbb{L}^*)^* \mathbb{D}^* \mathbb{L}^* = \mathbb{LDL}^*.$$

De plus $\forall \boldsymbol{x} \in \mathbb{C}^n \setminus \{0\}$ on a

$$\langle \mathbb{A}\boldsymbol{x}, \boldsymbol{x} \rangle = \langle \mathbb{LDL}^*\boldsymbol{x}, \boldsymbol{x} \rangle = \langle \mathbb{DL}^*\boldsymbol{x}, \mathbb{L}^*\boldsymbol{x} \rangle$$

On pose $\mathbf{y} = \mathbb{L}^* \mathbf{x} \neq 0$ car $\mathbf{x} \neq 0$ et \mathbb{L}^* inversible. On obtient alors

$$\langle \mathbb{A}\boldsymbol{x}, \boldsymbol{x} \rangle = \langle \mathbb{D}\boldsymbol{y}, \boldsymbol{y} \rangle = \sum_{i=1}^{n} D_{i,i} |y_i|^2 > 0$$

car \mathbb{D} diagonale, $D_{i,i} > 0$, $\forall i \in [1, n]$ et $\mathbf{y} \neq 0$.

La matrice hermitienne A est donc bien définie positive.

Montrer que si \mathbb{A} est hermitienne définie positive alors il existe $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$, matrice triangulaire inférieure à diagonale unité, et, $\mathbb{D} \in \mathcal{M}_n(\mathbb{R})$, matrice diagonale à coefficients diagonaux strictement positifs, telle que $\mathbb{A} = \mathbb{LDL}^*$.

R. 2

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne définie positive.

D'après le Corollaire 3.1.1 de [2]/Corollaire 2.6 de [1], la matrice A admet une unique factorisation LU.

D'après le Théorème 3.1.6 de [2]/Théorème 2.8 de [1], la matrice hermitienne \mathbb{A} peut alors s'écrire sous la forme $\mathbb{A} = \mathbb{LDL}^*$ où \mathbb{D} est diagonale à coefficients réels et \mathbb{L} triangulaire inférieure à diagonale unité.

Il reste à démontrer que $D_{i,i} > 0$, $\forall i \in [1, n]$.

Comme \mathbb{A} est définie positive, on a $\forall \boldsymbol{x} \in \mathbb{C}^n \setminus \{0\}, \langle \mathbb{A}\boldsymbol{x}, \boldsymbol{x} \rangle > 0$. Or on a

$$\langle \mathbb{A}\boldsymbol{x}, \boldsymbol{x} \rangle = \langle \mathbb{LDL}^*\boldsymbol{x}, \boldsymbol{x} \rangle = \langle \mathbb{DL}^*\boldsymbol{x}, \mathbb{L}^*\boldsymbol{x} \rangle$$

On note $\{\boldsymbol{e}_1, \dots, \boldsymbol{e}_n\}$, la base canonique de \mathbb{C}^n et on rappelle que $\forall i \in [1, n], \langle \mathbb{D}\boldsymbol{e}_i, \boldsymbol{e}_i \rangle = D_{i,i}$. Soit $i \in [1, n]$. En choisissant $\boldsymbol{x} = (\mathbb{L}^*)^{-1}\boldsymbol{e}_i \neq 0$, on obtient alors

$$\langle \mathbb{DL}^* \boldsymbol{x}, \mathbb{L}^* \boldsymbol{x} \rangle = \langle \mathbb{D} \boldsymbol{e}_i, \boldsymbol{e}_i \rangle = D_{i,i} > 0.$$

Exercice 7: factorisation de Cholesky

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$.

Montrer que si A admet une factorisation factorisation régulière de Cholesky alors A est hermitienne définie positive.

R. 1

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admettant une factorisation régulière de Cholesky $\mathbb{A} = \mathbb{BB}^*$ avec \mathbb{B} est une matrice triangulaire inférieure inversible.

La matrice \mathbb{A} est hermitienne car

$$\mathbb{A}^* = (\mathbb{BB}^*)^* = (\mathbb{B}^*)^* \mathbb{B}^* = \mathbb{BB}^* = \mathbb{A}.$$

Soit $\mathbf{x} \in \mathbb{C}^n \setminus \{0\}$, on a

$$\langle \mathbb{A}\boldsymbol{x}, \boldsymbol{x} \rangle = \langle \mathbb{B}\mathbb{B}^*\boldsymbol{x}, \boldsymbol{x} \rangle = \langle \mathbb{B}^*\boldsymbol{x}, \mathbb{B}^*\boldsymbol{x} \rangle = \|\mathbb{B}^*\boldsymbol{x}\|^2 > 0$$

car $\mathbb{B}^* \boldsymbol{x} \neq 0$ (\mathbb{B}^* inversible et $\boldsymbol{x} \neq 0$). Donc la matrice \mathbb{A} est bien hermitienne définie positive.

(Q. 2) Montrer que si A est hermitienne définie positive alors elle admet une factorisation factorisation régulière de Cholesky.

R. 2

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne définie positive.

D'après le Corollaire 3.1.2 de [2]/Corollaire 2.9 de [1], il existe alors une matrice $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure à diagonale unité et une matrice $\mathbb{D} \in \mathcal{M}_n(\mathbb{R})$ diagonale à coefficient strictement positifs telles que

$$A = LDL^*$$
.

On note $\mathbb{H} \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonale inversible vérifiant $\mathbb{H}^2 = \mathbb{D}$ (i.e. $H_{i,i} = \pm \sqrt{D_{i,i}} \neq 0, \forall i \in [\![1,n]\!]$). On a alors

$$A = LHHL^* = (LH)(LH)^*$$

En posant $\mathbb{B} = \mathbb{LH}$, la matrice \mathbb{B} est bien triangulaire inférieure inversible car produit d'une matrice triangulaire inférieure inversible par une matrice diagonale inversible et on a $\mathbb{A} = \mathbb{BB}^*$.

- $\overbrace{On\ suppose\ que\ \mathbb{A}\ est\ hermitienne\ définie\ positive.}}^{\mathbf{Q.\ 3}}$
 - a. Montrer que A admet une factorisation positive de Cholesky.
 - b. Montrer que cette factorisation est unique.

R. 3

a. En choisissant, dans la question précédente,

$$\forall i \in [1, n], \ H_{i,i} = \sqrt{D_{i,i}} > 0,$$

la matrice $\mathbb{B} = \mathbb{LH}$ triangulaire inférieure a alors pour éléments diagonaux

$$\forall i \in [1, n], B_{i,i} = H_{i,i} > 0.$$

b. Montrons qu'une factorisation positive de Cholesky est unique. On propose ici deux démonstrations.

• 1ère démonstration.

Soient \mathbb{B}_1 et \mathbb{B}_2 deux factorisations positives de la matrice \mathbb{A} , on a donc

$$\mathbb{A} = \mathbb{B}_1 \mathbb{B}_1^* = \mathbb{B}_2 \mathbb{B}_2^*.$$

En multipliant à gauche par \mathbb{B}_2^{-1} et à droite par $(\mathbb{B}_1^*)^{-1}$ cette équation on obtient

$$\mathbb{B}_{2}^{\text{--}1}\mathbb{B}_{1} = \mathbb{B}_{2}^{*}(\mathbb{B}_{1}^{*})^{\text{--}1} = \mathbb{B}_{2}^{*}(\mathbb{B}_{1}^{\text{--}1})^{*} = (\mathbb{B}_{1}^{\text{--}1}\mathbb{B}_{2})^{*}$$

En notant $\mathbb{G}\stackrel{\mbox{\tiny def}}{=}\mathbb{B}_2^{-1}\mathbb{B}_1,$ on tire de l'équation précédente

$$\mathbb{G} = (\mathbb{G}^{-1})^*. \tag{R7.4}$$

Or, on a

- Proposition B.2.8 de [2]: l'inverse d'une matrice triangulaire inférieure à coefficients diagonaux réels strictement positifs est aussi une matrice triangulaire inférieure à coefficients diagonaux réels strictement positifs.
- Proposition B.2.7 de [2]: le produit de matrices triangulaires inférieures à coefficients diagonaux réels strictement positifs reste triangulaire inférieure à coefficients diagonaux réels strictement positifs.

On en déduit que les matrices $\mathbb{G} = \mathbb{B}_2^{-1}\mathbb{B}_1$ et $\mathbb{G}^{-1} = \mathbb{B}_1^{-1}\mathbb{B}_2$ sont triangulaires inférieures à coefficients diagonaux réels strictement positifs.

De plus l'équation (R7.4) identifie la matrice triangulaire inférieure © à la matrice triangulaire supérieure $(\mathbb{G}^{-1})^*$: ce sont donc des matrices diagonales à coefficients diagonaux réels strictement positifs et on en déduit

$$\left(\mathbb{G}^{-1}\right)^{*}=\mathbb{G}^{-1}$$

et

$$\forall i \in [1, n], \quad \left(\mathbb{G}^{-1}\right)_{i,i} = \frac{1}{\mathbb{G}_{i,i}} > 0.$$

De l'équation (R7.4), on obtient alors $\mathbb{G} = \mathbb{G}^{-1}$ et donc

$$\forall i \in [1, n], \mathbb{G}_{i,i} = \frac{1}{\mathbb{G}_{i,i}} > 0.$$

On en déduit alors que $\mathbb{G} = \mathbb{I}$ et donc

$$\mathbb{B}_2^{-1}\mathbb{B}_1 = \mathbb{I}$$

c'est à dire \mathbb{B}_2^{-1} est l'inverse de \mathbb{B}_1 qui est unique, donc $\mathbb{B}_1 = \mathbb{B}_2$.

2ème demonstration.

Soient \mathbb{B} et \mathbb{C} deux factorisations positives de la matrice \mathbb{A} , on a donc

$$\mathbb{A} = \mathbb{BB}^* = \mathbb{CC}^*.$$

En multipliant à gauche par \mathbb{C}^{-1} et à droite par $(\mathbb{B}^*)^{-1}$ cette équation, on obtient

$$\mathbb{C}^{-1}\mathbb{B} = \mathbb{C}^*(\mathbb{B}^*)^{-1} = \mathbb{C}^*(\mathbb{B}^{-1})^* = (\mathbb{B}^{-1}\mathbb{C})^*$$
(R7.5)

Or, on a

- Proposition B.2.8 de [2]: Soit $\mathbb{T} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure inversible (ses coefficient diagonaux sont non nuls). Son inverse est aussi triangulaire inférieure et, $\forall i \in [\![1,n]\!], \mathbb{T}_{i,i}^{-1} = \frac{1}{\mathbb{T}_{i,i}}$. On en déduit que les matrices \mathbb{B}^{-1} et \mathbb{C}^{-1} sont triangulaires inférieures à coefficients diagonaux réels
 - strictement positifs.
- Proposition B.2.7 de [2]: Soient $\mathbb{T} \in \mathcal{M}_n(\mathbb{C})$ et $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$ triangulaires inférieures. Alors \mathbb{TL} est triangulaire inférieure et, $\forall i \in [1, n], (\mathbb{TL})_{i,i} = \mathbb{T}_{i,i} \mathbb{L}_{i,i}$.
 - On en déduit que les matrices $\mathbb{C}^{-1}\mathbb{B}$ et $\mathbb{B}^{-1}\mathbb{C}$ sont triangulaires inférieures à coefficients diagonaux réels strictement positifs.

De plus l'équation (R7.5) identifie la matrice triangulaire inférieure $\mathbb{C}^{-1}\mathbb{B}$ à la matrice triangulaire supérieure $(\mathbb{B}^{-1}\mathbb{C})^*$: ce sont donc des matrices diagonales à coefficients diagonaux réels strictement positifs. On en déduit, $\forall i \in [1, n]$,

$$\left(\mathbb{C}^{\text{-}1}\mathbb{B}\right)_{i,i} = \left(\left(\mathbb{B}^{\text{-}1}\mathbb{C}\right)^*\right)_{i,i} \ \Leftrightarrow \ \mathbb{C}_{i,i}^{\text{-}1}\mathbb{B}_{i,i} = \overline{\mathbb{B}_{i,i}^{\text{-}1}\mathbb{C}_{i,i}}$$

Comme les coefficients diagonaux sont réels, on obtient

$$\mathbb{C}_{i,i}^{-1}\mathbb{B}_{i,i} = \mathbb{B}_{i,i}^{-1}\mathbb{C}_{i,i}$$

ce qui est équivalent à

$$\mathbb{B}_{i,i}^2 = \mathbb{C}_{i,i}^2.$$

Or les coefficients diagonaux sont strictement positifs donc, on obtient

$$\forall i \in [1, n], \quad \mathbb{B}_{i,i} = \mathbb{C}_{i,i}.$$

On en déduit que les coefficients diagonaux des matrices diagonales $\mathbb{C}^{-1}\mathbb{B}$ et $(\mathbb{B}^{-1}\mathbb{C})^*$ vérifient

$$\forall i \in [1, n], \quad (\mathbb{C}^{-1}\mathbb{B})_{i,i} = ((\mathbb{B}^{-1}\mathbb{C})^*)_{i,i} = 1.$$

Elles s'identifient donc à la matrice identité et on a alors $\mathbb{B}=\mathbb{C}.$ Ce qui démontre l'unicité.

EXERCICE 8 : Propriété de la matrice élémentaire de Householder

Soit $\boldsymbol{u} \in \mathbb{C}^n$ tel que $\|\boldsymbol{u}\|_2 = 1$. On note $\mathbb{H} \in \mathcal{M}_n(\mathbb{C})$ la matrice définie par

$$\mathbb{H} = \mathbb{I} - 2uu^*.$$

- $(\mathbf{Q}.\ \mathbf{1})$ a. Montrer que \mathbb{H} est hermitienne.
 - b. Montrer que \mathbb{H} est unitaire.

a. Cette matrice est hermitienne car

$$\mathbb{H}^* = (\mathbb{I} - 2\boldsymbol{u}\boldsymbol{u}^*)^* = \mathbb{I} - 2(\boldsymbol{u}\boldsymbol{u}^*)^* = \mathbb{I} - 2\boldsymbol{u}\boldsymbol{u}^* = \mathbb{H}.$$

b. La matrice $\mathbb H$ est unitaire si $\mathbb H^*\mathbb H=\mathbb I.$ On a

$$\mathbb{H}^*\mathbb{H} = \mathbb{H}\mathbb{H} = (\mathbb{I} - 2uu^*)(\mathbb{I} - 2uu^*)$$
$$= \mathbb{I} - 4uu^* + 4uu^*uu^*.$$

Or, par hypothèse, on a $\boldsymbol{u^*u} = \|\boldsymbol{u}\|_2 = 1$ et donc

$$\mathbb{H}^*\mathbb{H} = \mathbb{I} - 4uu^* + 4u(u^*u)u^* = \mathbb{I}.$$

Soit $\boldsymbol{x} \in \mathbb{K}^n$. On note $\boldsymbol{x}_{\parallel} = \operatorname{proj}_{\boldsymbol{u}}(\boldsymbol{x}) \stackrel{\text{def}}{=} \langle \boldsymbol{u}, \boldsymbol{x} \rangle \boldsymbol{u}$ et $\boldsymbol{x}_{\perp} = \boldsymbol{x} - \boldsymbol{x}_{\parallel}$.

Montrer que

$$\mathbb{H}(\boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel}) = \boldsymbol{x}_{\perp} - \boldsymbol{x}_{\parallel}.$$

et

$$\mathbb{H} \boldsymbol{x} = \boldsymbol{x}, \quad si \langle \boldsymbol{x}, \boldsymbol{u} \rangle = 0.$$

On note que par construction $\langle \boldsymbol{u}, \boldsymbol{x}_{\perp} \rangle = 0$. En effet, on a

$$\langle \boldsymbol{u}, \boldsymbol{x}_{\perp} \rangle = \langle \boldsymbol{u}, \boldsymbol{x} - \boldsymbol{x}_{\parallel} \rangle$$

$$= \langle \boldsymbol{u}, \boldsymbol{x} \rangle - \langle \boldsymbol{u}, \boldsymbol{x}_{\parallel} \rangle$$

$$= \langle \boldsymbol{u}, \boldsymbol{x} \rangle - \langle \boldsymbol{u}, \langle \boldsymbol{u}, \boldsymbol{x} \rangle \boldsymbol{u} \rangle$$

$$= \langle \boldsymbol{u}, \boldsymbol{x} \rangle - \langle \boldsymbol{u}, \boldsymbol{x} \rangle \langle \boldsymbol{u}, \boldsymbol{u} \rangle$$

$$= 0 \operatorname{car} \langle \boldsymbol{u}, \boldsymbol{u} \rangle = \|\boldsymbol{u}\|_{2}^{2} = 1.$$

On a alors

$$\begin{split} \mathbb{H}(\boldsymbol{u})(\boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel}) &= (\mathbb{I} - 2\boldsymbol{u}\boldsymbol{u}^{*})\left(\boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel}\right) = \boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel} - 2\boldsymbol{u}\underbrace{\boldsymbol{u}^{*}\boldsymbol{x}_{\perp}}_{=0} - 2\boldsymbol{u}\boldsymbol{u}^{*}\boldsymbol{x}_{\parallel} \\ &= \boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel} - 2\boldsymbol{u}\boldsymbol{u}^{*}\left(\langle\boldsymbol{u},\boldsymbol{x}\rangle\boldsymbol{u}\right) = \boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel} - 2\langle\boldsymbol{u},\boldsymbol{x}\rangle\boldsymbol{u}\underbrace{\boldsymbol{u}^{*}\boldsymbol{u}}_{=1} \\ &= \boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel} - 2\boldsymbol{x}_{\parallel} \\ &= \boldsymbol{x}_{\perp} - \boldsymbol{x}_{\parallel}. \end{split}$$

Si $\langle \boldsymbol{x}, \boldsymbol{u} \rangle = 0$ alors $\boldsymbol{x}_{\parallel} = 0$ et $\boldsymbol{x} = \boldsymbol{x}_{\perp}$.

EXERCICE 9

Soient \boldsymbol{a} et \boldsymbol{b} deux vecteurs non nuls et non colinéaires de \mathbb{C}^n avec $\|\boldsymbol{b}\|_2 = 1$. On va chercher $\alpha \in \mathbb{C}$ et $\boldsymbol{u} \in \mathbb{C}^n$, $\|\boldsymbol{u}\|_2 = 1$, vérifiant

$$\mathbb{H}(\boldsymbol{u})\boldsymbol{a} = \alpha \boldsymbol{b}, \text{ avec } \mathbb{H}(\boldsymbol{u} \stackrel{\text{def}}{=} \mathbb{I} - 2 * \boldsymbol{u}^* \boldsymbol{u} \in \mathcal{M}_n(\mathbb{C}). \tag{9.1}$$

Montrer que si α et **u** vérifient (9.1) alors

a. on a

$$|\alpha| = \|\boldsymbol{a}\|_2 \tag{9.2}$$

b. on a

$$\boldsymbol{a} - 2\langle \boldsymbol{u}, \boldsymbol{a} \rangle \boldsymbol{u} = \alpha \boldsymbol{b} \tag{9.3}$$

c. on en déduit que

$$|\langle \boldsymbol{u}, \boldsymbol{a} \rangle|^2 = \frac{\langle \boldsymbol{a}, \boldsymbol{a} \rangle - \alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle}{2}$$
 (9.4)

Par la suite, on pose $\mathbb{H} = \mathbb{H}(\boldsymbol{u})$ pour alléger les notations.

a. On a

$$\begin{aligned} \|\boldsymbol{a}\|_2^2 &= \langle \boldsymbol{a}, \boldsymbol{a} \rangle = \langle \mathbb{H}^* \mathbb{H} \boldsymbol{a}, \boldsymbol{a} \rangle \quad \text{car } \mathbb{H} \text{ unitaire} \\ &= \langle \mathbb{H} \boldsymbol{a}, \mathbb{H} \boldsymbol{a} \rangle \quad \text{par definition du produit scalaire} \\ &= \|\mathbb{H} \boldsymbol{a}\|_2^2 = \|\alpha \boldsymbol{b}\|_2^2 = |\alpha|^2 \|\boldsymbol{b}\|_2^2 = |\alpha|^2. \end{aligned}$$

b. Pour établir (9.3), on écrit

$$\mathbb{H}(\boldsymbol{u})\boldsymbol{a} = \alpha\boldsymbol{b} \iff (\mathbb{I} - 2\boldsymbol{u}\boldsymbol{u}^*)\boldsymbol{a} = \alpha\boldsymbol{b}$$
$$\iff \boldsymbol{a} - 2\boldsymbol{u}(\boldsymbol{u}^*\boldsymbol{a}) = \alpha\boldsymbol{b}$$
$$\iff \boldsymbol{a} - 2\langle \boldsymbol{u}, \boldsymbol{a} \rangle \boldsymbol{u} = \alpha\boldsymbol{b}$$

c. En effectuant le produit scalaire (à gauche) avec \boldsymbol{a} de (9.3), on obtient

$$\langle \boldsymbol{a}, \boldsymbol{a} \rangle - 2 \langle \boldsymbol{u}, \boldsymbol{a} \rangle \langle \boldsymbol{a}, \boldsymbol{u} \rangle = \alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle$$

ce qui prouve (9.4).

Nous allons maintenant établir une condition pour que (9.4) ait un sens.

On suppose que $\arg \alpha = -\arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle) [\pi]$

a. Montrer que $\alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle \in \mathbb{R}$.

b. Montrer que $\langle \boldsymbol{a}, \boldsymbol{a} \rangle - \alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle \in \mathbb{R}^{*+}$.

R. 2

a. On a par définition de l'argument $\alpha = |\alpha|e^{i \arg \alpha}$ et $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = |\langle \boldsymbol{a}, \boldsymbol{b} \rangle|e^{i \arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle)}$ ce qui donne

$$\alpha \langle \mathbf{a}, \mathbf{b} \rangle = |\alpha| |\langle \mathbf{a}, \mathbf{b} \rangle| e^{i(\arg \alpha + \arg(\langle \mathbf{a}, \mathbf{b} \rangle))}$$
(R9.6)

et donc $\alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle$ est réel si $\arg \alpha + \arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle) = 0 [\pi].$

b. On vient de demontrer que $\alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle \in \mathbb{R}$ et donc $\langle \boldsymbol{a}, \boldsymbol{a} \rangle - \alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle \in \mathbb{R}$. Il reste donc à montrer que $\langle \boldsymbol{a}, \boldsymbol{a} \rangle - \alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle > 0$.

- Si $\arg \alpha = -\arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle) + \pi$ [2 π], alors de (R9.6) on obtient $\alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle \leqslant 0$ et donc $\langle \boldsymbol{a}, \boldsymbol{a} \rangle \alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle \geqslant \|\boldsymbol{a}\|_2 > 0$ car $\boldsymbol{a} \neq 0$.
- Si $\arg \alpha = -\arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle)$ [2 π], alors de (R9.6) on obtient $\alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle \geqslant 0$. Comme les vecteurs \boldsymbol{a} et \boldsymbol{b} ne sont pas colinéaires, on a inégalité stricte dans Cauchy-Schwarz :

$$|\langle a, b \rangle| < ||a||_2 ||b||_2 = ||a||_2$$
.

On obtient donc

$$0 \leqslant \alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle \leqslant |\alpha| |\langle \boldsymbol{a}, \boldsymbol{b} \rangle| < |\alpha| \|\boldsymbol{a}\|_2 = \|\boldsymbol{a}\|_2^2$$

Attention, dans ce cas $\langle \boldsymbol{a}, \boldsymbol{a} \rangle - \alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle$ peut-être très petit.

Q. 3

Soient α et \boldsymbol{u} vérifiant (9.1). En déduire que si $\arg \alpha = -\arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle)$ $[\pi]$ alors \boldsymbol{u} est donné par

$$\boldsymbol{u} = \frac{1}{2\langle \boldsymbol{u}, \boldsymbol{a} \rangle} (\boldsymbol{a} - \alpha \boldsymbol{b}). \tag{9.5}$$

 $et \|u\|_2 = 1.$

R. 3

On peut noter que $\langle \boldsymbol{u}, \boldsymbol{a} \rangle \neq 0$ car sinon, d'après (9.3), $\boldsymbol{a} = \alpha \boldsymbol{b}$ or par hypothèse \boldsymbol{a} et \boldsymbol{b} sont non colinéaires. On obtient alors immédiatement (9.5) à partir de (9.3)

Vérifions que $\|\boldsymbol{u}\|_2 = 1$. On a

$$\|\boldsymbol{u}\|_{2}^{2} = \langle \boldsymbol{u}, \boldsymbol{u} \rangle = \frac{1}{4|\langle \boldsymbol{u}, \boldsymbol{a} \rangle|^{2}} \langle \boldsymbol{a} - \alpha \boldsymbol{b}, \boldsymbol{a} - \alpha \boldsymbol{b} \rangle$$

En utilisant (9.4), on obtient

$$4|\langle \mathbf{u}, \mathbf{a} \rangle|^2 = 2(\langle \mathbf{a}, \mathbf{a} \rangle - \alpha \langle \mathbf{a}, \mathbf{b} \rangle)$$
$$= 2\|\mathbf{a}\|_2^2 - 2\alpha \langle \mathbf{a}, \mathbf{b} \rangle$$

De plus, on a

$$\langle \boldsymbol{a} - \alpha \boldsymbol{b}, \boldsymbol{a} - \alpha \boldsymbol{b} \rangle = \langle \boldsymbol{a}, \boldsymbol{a} \rangle - \overline{\alpha} \langle \boldsymbol{b}, \boldsymbol{a} \rangle - \alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle + |\alpha|^2 \langle \boldsymbol{b}, \boldsymbol{b} \rangle = \|\boldsymbol{a}\|_2^2 - \overline{\alpha} \langle \boldsymbol{b}, \boldsymbol{a} \rangle - \alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle + |\alpha|^2$$

$$= 2 \|\boldsymbol{a}\|_2^2 - \overline{\alpha} \langle \boldsymbol{b}, \boldsymbol{a} \rangle - \alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle$$

$$= 2 \|\boldsymbol{a}\|_2^2 - 2\alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle \quad \text{car } \alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle = \overline{(\alpha \langle \boldsymbol{a}, \boldsymbol{b} \rangle)} = \overline{\alpha} \langle \boldsymbol{b}, \boldsymbol{a} \rangle \in \mathbb{R}$$

On en déduit donc que $\|\boldsymbol{u}\|_2 = 1$.

EXERCICE 10

Soient \boldsymbol{a} et \boldsymbol{b} deux vecteurs de \mathbb{C}^n avec $\|\boldsymbol{b}\|_2 = 1$.

- a. On suppose que $\mathbf{a} = \lambda \mathbf{b}$, $\lambda \in \mathbb{C}^*$, (i.e. \mathbf{a} et \mathbf{b} colinéaires). Exprimer $\mathbf{a} \alpha \mathbf{b}$ en fonction de λ et \mathbf{b} .
- b. Que peut-on dire si a est nul?

R. 1

a. On a

et.

$$\|\boldsymbol{a}\|_2 = |\lambda| \|\boldsymbol{b}\|_2 = |\lambda|$$

$$\langle \boldsymbol{b}, \boldsymbol{a} \rangle = \langle \boldsymbol{b}, \lambda \boldsymbol{b} \rangle = \lambda \langle \boldsymbol{b}, \boldsymbol{b} \rangle = \lambda.$$

On rappelle que
$$\langle \pmb{b}, \pmb{a} \rangle = \overline{\langle \pmb{a}, \pmb{b} \rangle}$$
 et, $\forall z \in \mathbb{C}$, $\arg(z) = -\arg(\overline{z})$. On a alors
$$\arg(\alpha) = -\arg(\langle \pmb{a}, \pmb{b} \rangle) + \delta\pi$$
$$= \arg(\langle \pmb{b}, \pmb{a} \rangle) + \delta\pi$$

 $= \arg(\lambda) + \delta\pi.$

On a alors

• avec $\delta=0,$ $\alpha=|\alpha|e^{\imath\arg(\alpha)}=|\lambda|e^{\imath\arg(\lambda)}=\lambda$ ce qui donne

$$\boldsymbol{a} - \alpha \boldsymbol{b} = \mathbf{0},$$

• avec $\delta = 1$,

$$\alpha = |\alpha|e^{i\arg(\alpha)} = |\lambda|e^{i(\arg(\lambda)+\pi)} = -\lambda$$

$$\boldsymbol{a} - \alpha \boldsymbol{b} = 2\lambda \boldsymbol{b}.$$

b. Si \boldsymbol{a} est nul, on a $\alpha = 0$ et $\boldsymbol{a} - \alpha \boldsymbol{b} = \boldsymbol{0}$.

- Ecrire la fonction algorithmique Householder de paramètres $\boldsymbol{a}, \boldsymbol{b}$ et $\delta \in [0,1]$ retournant une matrice $\mathbb{S} \in \mathcal{M}_n(\mathbb{C})$ unitaire et $\alpha \in \mathbb{C}$ telles que
 - $si \ a \langle b, a \rangle b = 0$ (i.e. $a \ nul \ ou \ colinéaire \ à b$) alors S est la matrice identitée et $\alpha = 0$,
 - sinon α est le nombre complexe défini en Q. 1 (dépendant de δ) et $\mathbb S$ est la matrice élémentaire de Householder

$$\mathbb{S} = \mathbb{H}\left(\frac{\boldsymbol{a} - \alpha \boldsymbol{b}}{\|\boldsymbol{a} - \alpha \boldsymbol{b}\|_{2}}\right)$$

telle que $\mathbb{S}\boldsymbol{a} = \alpha \boldsymbol{b}$.

Des fonctions comme $dot(\boldsymbol{a},\boldsymbol{b})$ (produit scalaire de deux vecteurs), $norm(\boldsymbol{a})$ (norme 2 d'un vecteur), arg(z) (argument d'un nombre complexe), eve(n) (matrice identitée de $\mathcal{M}_n(\mathbb{C})$), $matprod(\mathbb{A},\mathbb{B})$ (produit de deux matrices), ctranspose(\mathbb{A}) (adjoint d'une matrice), ... pourront être utilisées

Algorithme 2 function $[S, \alpha] \leftarrow \text{Householder}(\boldsymbol{a}, \boldsymbol{b}, \delta)$.

Retourne une matrice $\mathbb{S} \in \mathcal{M}_n(\mathbb{C})$ unitaire et $\alpha \in \mathbb{C}$ telles que

- si $\mathbf{a} \langle \mathbf{b}, \mathbf{a} \rangle \mathbf{b} = 0$ (i.e. \mathbf{a} nul ou colinéaire à \mathbf{b}) alors \mathbb{S} est la matrice identitée et $\alpha = 0$,
- sinon α est le nombre complexe défini par

$$|\alpha| = \|\boldsymbol{a}\|_2$$
 et $\arg(\alpha) = -\arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle) + \delta\pi$,

et, S est la matrice élémentaire de Householder

$$\mathbb{S} = \mathbb{H}\left(\frac{\boldsymbol{a} - \alpha \boldsymbol{b}}{\|\boldsymbol{a} - \alpha \boldsymbol{b}\|_{2}}\right)$$

telle que $\mathbb{S}\boldsymbol{a} = \alpha \boldsymbol{b}$.

Données : a, b : deux vecteurs de \mathbb{C}^n non nuls et non colinéaires.

: 0 ou 1, permet de déterminer α .

 \mathbb{S} : matrice de Householder ou indentité dans $\mathcal{M}_n(\mathbb{C})$, Résultat :

: nombre complexe, de module $\|\boldsymbol{a}\|_2$ et d'argument $-\arg(\langle \boldsymbol{a}, \boldsymbol{b} \rangle) + \delta \pi$.

```
1: Fonction [S, \alpha] \leftarrow \text{Householder}(\boldsymbol{a}, \boldsymbol{b}, \delta)

ightharpoonup dot(\boldsymbol{b}, \boldsymbol{a}) : \boldsymbol{b^*a}
               ba \leftarrow dot(\boldsymbol{b}, \boldsymbol{a})
               \mathbf{Si} \ \operatorname{norm}(\boldsymbol{a} - \operatorname{ba} * \boldsymbol{b}) < 1e - 15 \ \mathbf{alors}
                      \mathbb{S} \leftarrow \text{eye}(n), \ \alpha \leftarrow 0
                     \alpha \leftarrow \text{norm}(\boldsymbol{a}) * exp(i * (\delta * \pi + \text{arg(ba)}))
                     \boldsymbol{u} \leftarrow \boldsymbol{a} - \alpha * \boldsymbol{b}
                     \boldsymbol{u} \leftarrow \boldsymbol{u} / \text{norm}(\boldsymbol{u})
                      \mathbb{S} \leftarrow \text{eye}(n) - 2 * \text{matprod}(\boldsymbol{u}, \text{ctranspose}(\boldsymbol{u}))
                Fin Si
11: Fin Fonction
```

Proposer un programme permettant de tester cette fonction. On pourra utiliser la fonction vecrand(n) retournant un vecteur aléatoire de \mathbb{C}^n , les parties réelles et imaginaires de chacune de ses composantes étant dans]0,1[(loi uniforme).

R. 3

```
1: n \leftarrow 100
2: \boldsymbol{a} \leftarrow \operatorname{vecrand}(n)
3: \boldsymbol{b} \leftarrow \operatorname{vecrand}(n)
4: \boldsymbol{b} \leftarrow \boldsymbol{b}/\text{norm}(\boldsymbol{b}, 2)
5: [\mathbb{H}, \alpha] \leftarrow \text{Householder}(\boldsymbol{a}, \boldsymbol{b}, 0)
6: error \leftarrow norm(\mathbb{H} * \boldsymbol{a} - \alpha * \boldsymbol{b}, 2)
```

Proposer un programme permettant de vérifier que $\delta = 1$ est le "meilleur" choix.

R. 4

Ici, l'objectif est d'illustrer le fait qu'avec **a** presque colinéaire à **b**, on a (voir **Q. 1**)

- si $\delta = 1$, alors $\boldsymbol{a} \alpha \boldsymbol{b} \approx 2 \langle \boldsymbol{b}, \boldsymbol{a} \rangle \boldsymbol{b}$
- si $\delta = 0$, alors $\mathbf{a} \alpha \mathbf{b} \approx \mathbf{0}$ et ceci est source d'ennuis numériques (précision machine) lors du calcul du vecteur

$$\frac{\boldsymbol{a} - \alpha \boldsymbol{b}}{\|\boldsymbol{a} - \alpha \boldsymbol{b}\|_2}.$$

1:
$$n \leftarrow 100$$

2: $\boldsymbol{b} \leftarrow \operatorname{vecrand}(n)$
3: $\boldsymbol{b} \leftarrow \boldsymbol{b}/\operatorname{norm}(\boldsymbol{b}, 2)$
4: $\boldsymbol{a} \leftarrow \boldsymbol{b} + \operatorname{tol} * \operatorname{vecrand}(n)$

```
5: [\mathbb{H}_1, \alpha_1] \leftarrow \text{Householder}(\boldsymbol{a}, \boldsymbol{b}, 1)

6: [\mathbb{H}_0, \alpha_0] \leftarrow \text{Householder}(\boldsymbol{a}, \boldsymbol{b}, 0)

7: \operatorname{error0} \leftarrow \operatorname{norm}(\mathbb{H}_0 * \boldsymbol{a} - \alpha_0 * \boldsymbol{b}, 2)/(1 + \operatorname{abs}(\alpha_0))

8: \operatorname{error1} \leftarrow \operatorname{norm}(\mathbb{H}_1 * \boldsymbol{a} - \alpha_1 * \boldsymbol{b}, 2)/(1 + \operatorname{abs}(\alpha_1))
```

Dans la figure qui suit, on représente en échelle logarithmique, et, en fonction de l'ordre des matrices, l'erreur obtenue avec $\delta = 1$, $\delta = 0$ et tol = 1e - 12 lors de l'utilisation de la fonction Householder avec un vecteur **a** presque colinéaire à **b**. En Figure 2, la représentation est faite avec tol = 1e - 6.

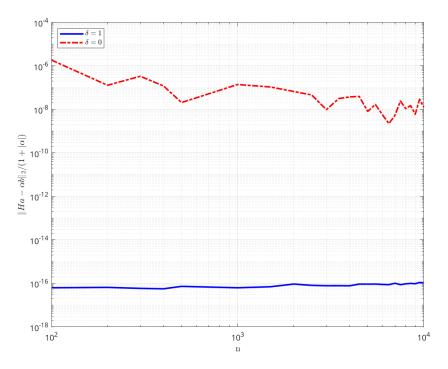


Figure 1: Choix de α dans Householder : erreur relative en norme L_2 avec tol = 1e-12

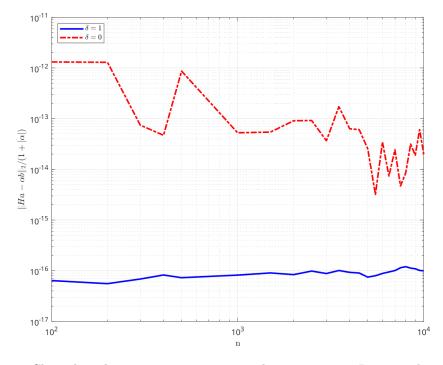


Figure 2: Choix de α dans Householder : erreur relative en norme L_2 avec tol = 1e-6

EXERCICE 11

Soit $\boldsymbol{a} \in \mathbb{C}^n$ non nul et non colinéaire à \boldsymbol{e}_1 , premier vecteur de la base canonique de \mathbb{C}^n .

$$\mathbb{H}(\boldsymbol{u})\boldsymbol{a} = -\|\boldsymbol{a}\|_{2} e^{i \arg(a_{1})} \boldsymbol{e}_{1}. \tag{11.1}$$

Correction Avec $\boldsymbol{b} = \boldsymbol{e}_1$, on est sous les conditions du théorème 3.1.8 de [2]/théorème 2.15 de [1]. On défini alors $\alpha \in \mathbb{C}$ tel que

$$|\alpha| = \|\boldsymbol{a}\|_2$$
 et $\arg \alpha = -\arg \langle \boldsymbol{a}, \boldsymbol{b} \rangle + \delta \pi$, avec $\delta \in [0, 1]$.

On a donc

$$\arg \alpha = -\arg(\overline{a_1}) + \delta \pi = \arg(a_1) + \delta \pi.$$

le choix $\delta = 1$ étant numériquement préférable (voir Exercice ...) Le théorème permet alors d'affirmer que

$$\mathbb{H}\left(\frac{\boldsymbol{a} - \alpha \boldsymbol{b}}{\|\boldsymbol{a} - \alpha \boldsymbol{b}\|_{2}}\right) \boldsymbol{a} = \alpha \boldsymbol{b}.$$

Or, on a

$$\mathbf{a} - \alpha \mathbf{b} = \mathbf{a} - |\alpha| e^{i \arg(\alpha)} \mathbf{e}_1$$

= $\mathbf{a} - |\mathbf{a}||_2 e^{i (\arg(a_1) + \delta \pi)} \mathbf{e}_1$

Avec le choix $\delta = 1$, on obtient

$$\boldsymbol{a} - \alpha \boldsymbol{b} = \boldsymbol{a} + \|\boldsymbol{a}\|_2 e^{i \arg(a_1)} \boldsymbol{e}_1.$$

On obtient alors

$$\mathbb{H}\left(\frac{\boldsymbol{a} + \|\boldsymbol{a}\|_2 \, e^{\imath \arg(a_1)} \boldsymbol{e}_1}{\|\boldsymbol{a} + \|\boldsymbol{a}\|_2 \, e^{\imath \arg(a_1)} \boldsymbol{e}_1\|_2}\right) \boldsymbol{a} = - \left\|\boldsymbol{a}\right\|_2 e^{\imath \arg(a_1)} \boldsymbol{e}_1$$

5

EXERCICE 12

Soit $n \ge 2$.

 (\mathcal{P}_n)

Soit $\mathbb{A}_n \in \mathcal{M}_n(\mathbb{C})$ une matrice. Il existe une matrice unitaire $\mathbb{U}_n \in \mathcal{M}_n(\mathbb{C})$ et une matrice triangulaire supérieure $\mathbb{R}_n \in \mathcal{M}_n(\mathbb{C})$ telles que

$$\mathbb{U}_n \mathbb{A}_n = \mathbb{R}_n. \tag{12.1}$$

Q. 1

Démontrer par récurrence que $\forall n \in \mathbb{N}, n \geq 2, (\mathcal{P}_n)$ est vraie.

R. 1

- Initialisation : on va montrer que (\mathcal{P}_2) est vraie Soit $\mathbb{A} \in \mathcal{M}_2(\mathbb{C})$. On note $\boldsymbol{a} = \mathbb{A}_{:,1}$ (première colonne de \mathbb{A}) et $\mathbb{b} = (1,0)^{t}$.
 - Si $\boldsymbol{a} \neq 0$ et si \boldsymbol{a} non colinéaire à \boldsymbol{b} , on est sous les conditions du théorème 3.1.8 de [2]/théorème 2.15 de [1]. On défini alors $\alpha \in \mathbb{C}$ $|\alpha| = \|\boldsymbol{a}\|_2$ et arg $\alpha = -\arg \langle \boldsymbol{a}, \boldsymbol{b} \rangle + \delta \pi$ (choix $\delta = 1$ préférable) Dans ce cas on a

$$\mathbb{H}\left(\frac{\boldsymbol{a}-\alpha\boldsymbol{b}}{\|\boldsymbol{a}-\alpha\boldsymbol{b}\|_{2}}\right)\boldsymbol{a}=\alpha\boldsymbol{b}.$$

On pose $\mathbb{U} = \mathbb{H}\left(\frac{\boldsymbol{a} - \alpha \boldsymbol{b}}{\|\boldsymbol{a} - \alpha \boldsymbol{b}\|_2}\right)$ qui est une matrice unitaire.

- Si $\boldsymbol{a} = 0$ ou si \boldsymbol{a} est colinéaire à \boldsymbol{b} , alors $\boldsymbol{a}_2 = \mathbb{A}_{2,1} = 0$ et on pose $\mathbb{U} = \mathbb{I}$, qui est unitaire, et $\alpha = \boldsymbol{a}_1 (= \mathbb{A}_{1,1})$.

Dans les 2 cas, on obtient

$$\mathbb{U}\mathbb{A} = \mathbb{U}\left(\begin{array}{c|c} \mathbb{A}_{:,1} & \mathbb{A}_{:,2} \end{array} \right) = \left(\begin{array}{c|c} \mathbb{U}\mathbb{A}_{:,1} & \mathbb{U}\mathbb{A}_{:,2} \end{array} \right) = \left(\begin{array}{c|c} \alpha & \mathbb{U}\mathbb{A}_{:,2} \end{array} \right) = \left(\begin{array}{c|c} \alpha & \mathbb{U}\mathbb{A}_{:,2} \end{array} \right) = \mathbb{R}$$

où R est triangulaire supérieure et la matrice U est soit l'indentité, soit une matrice élémentaire de Housholder.

• **Hérédité**: soit $n \ge 2$, on suppose que (\mathcal{P}_{n-1}) est vérifiée, on va alors montrer que (\mathcal{P}_n) est vraie. Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. On note $\mathbf{a} = \mathbb{A}_{:,1} \in \mathbb{C}^n$ (première colonne de \mathbb{A}) et $\mathbb{b} = \mathbf{e}_1$, premier vecteur de la base canonique $(\forall i \in [1, n], \mathbb{b}_i = \delta_{1,i})$. - Si $\boldsymbol{a} \neq 0$ et si \boldsymbol{a} non colinéaire à \boldsymbol{b} , on est sous les conditions du théorème 3.1.8 de [2]/théorème 2.15 de [1]. On défini alors $\alpha \in \mathbb{C}$ $|\alpha| = \|\boldsymbol{a}\|_2$ et arg $\alpha = -\arg \langle \boldsymbol{a}, \boldsymbol{b} \rangle + \delta \pi$ (choix $\delta = 1$ préférable) Dans ce cas on a

$$\mathbb{H}\left(\frac{\boldsymbol{a} - \alpha \boldsymbol{b}}{\|\boldsymbol{a} - \alpha \boldsymbol{b}\|_{2}}\right) \boldsymbol{a} = \alpha \boldsymbol{b}.$$

On pose $\mathbb{H} = \mathbb{H}\left(\frac{\boldsymbol{a} - \alpha \boldsymbol{b}}{\|\boldsymbol{a} - \alpha \boldsymbol{b}\|_2}\right)$ qui est une matrice unitaire.

- Si $\boldsymbol{a}=0$ ou si \boldsymbol{a} est colinéaire à \boldsymbol{b} , alors $\forall i \in [2,n]$, $\boldsymbol{a}_i=\mathbb{A}_{i,1}=0$. On pose $\mathbb{H}=\mathbb{I}$, qui est unitaire, et $\alpha=\boldsymbol{a}_1(=\mathbb{A}_{1,1})$.

Dans les 2 cas, on obtient

$$\begin{array}{lll} \mathbb{H}\mathbb{A} & = & \mathbb{H}\left(\begin{array}{c|c|c} \mathbb{A}_{:,1} & \mathbb{A}_{:,2} & \dots & \mathbb{A}_{:,n} \end{array} \right) = \left(\begin{array}{c|c|c} \mathbb{H}\mathbb{A}_{:,1} & \mathbb{H}\mathbb{A}_{:,2} & \dots & \mathbb{H}\mathbb{A}_{:,n} \end{array} \right) \\ & = & \left(\begin{array}{c|c|c} \alpha e_1 & \mathbb{H}\mathbb{A}_{:,2} & \dots & \mathbb{H}\mathbb{A}_{:,n} \end{array} \right) \end{array}$$

On en déduit que HA s'écrit aussi sous la forme

$$\mathbb{H}\mathbb{A} = \begin{pmatrix} \alpha & \bullet & \dots & \bullet \\ \hline 0 & & & \\ \vdots & & & \\ 0 & & & \end{pmatrix}$$

où $\mathbb{A}_{n-1} \in \mathcal{M}_{n-1}(\mathbb{C})$. On peut donc appliquer à \mathbb{A}_{n-1} l'hypothèse de récurrence: $\exists \mathbb{U}_{n-1} \in \mathcal{M}_{n-1}(\mathbb{C})$ unitaire et $\exists \mathbb{R}_{n-1} \in \mathcal{M}_{n-1}(\mathbb{C})$ triangulaire supérieure telles que

$$\mathbb{U}_{n-1}\mathbb{A}_{n-1}=\mathbb{R}_{n-1}.$$

On défini alors

$$\mathbb{U} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \hline 0 & & & \\ \vdots & & \mathbb{U}_{n-1} & \\ 0 & & & \end{pmatrix}.$$

On a

$$\mathbb{U}\mathbb{U}^* = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & \mathbb{U}_{n-1} & \\ 0 & & & \end{pmatrix} \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & \mathbb{U}_{n-1}^* & \\ 0 & & & \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & \mathbb{U}_{n-1}\mathbb{U}_{n-1}^* \\ 0 & & & \end{pmatrix}$$

Comme \mathbb{U}_{n-1} est unitaire, on en déduit que \mathbb{U} est aussi unitaire. On a alors

$$\mathbb{U}(\mathbb{HA}) = \begin{pmatrix} \frac{1}{0} & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & \mathbb{U}_{n-1} \\ 0 & & & \end{pmatrix} \begin{pmatrix} \frac{\alpha}{0} & \bullet & \dots & \bullet \\ 0 & & & \\ \vdots & & \mathbb{A}_{n-1} \\ 0 & & & \end{pmatrix} = \begin{pmatrix} \frac{\alpha}{0} & \bullet & \dots & \bullet \\ 0 & & & \\ \vdots & & \mathbb{U}_{n-1} \mathbb{A}_{n-1} \\ \vdots & & & \mathbb{U}_{n-1} \mathbb{A}_{n-1} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\alpha}{0} & \bullet & \dots & \bullet \\ 0 & & & & \\ \vdots & & & \mathbb{R}_{n-1} \\ \vdots & & & & \\ 0 & & & & \end{pmatrix} \xrightarrow{\text{def}} \mathbb{R}_n \in \mathcal{M}_n(\mathbb{C}).$$

Comme \mathbb{R}_{n-1} est triangulaire supérieure, on en déduit que \mathbb{R}_n est aussi triangulaire supérieure. On pose $\mathbb{U}_n = \mathbb{UH}$. Cette matrice est unitaire, car produit de deux matrices unitaires, et on a

$$\mathbb{U}_n \mathbb{A} = \mathbb{R}_n$$
.

La proposition (\mathcal{P}_n) est donc vérifiée.

• Conclusion : on vient de démontrer par récurrence que, $\forall n \in \mathbb{N}, n \geq 2, (\mathcal{P}_n)$ est vraie.

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. Montrer qu'il existe une matrice unitaire $\mathbb{Q} \in \mathcal{M}_n(\mathbb{C})$ et une matrice triangulaire supérieure $\mathbb{R} \in \mathcal{M}_n(\mathbb{C})$ telles que $\mathbb{A} = \mathbb{Q}\mathbb{R}.$

R. 2

D'après la proposition (\mathcal{P}_n) , Il existe une matrice unitaire $\mathbb{U} \in \mathcal{M}_n(\mathbb{C})$ et une matrice triangulaire supérieure $\mathbb{R} \in \mathcal{M}_n(\mathbb{C})$ telles que

$$\mathbb{U}\mathbb{A}=\mathbb{R}.$$

Comme \mathbb{U} est unitaire, on a $\mathbb{U}^* = \mathbb{U}^{-1}$ et donc

$$A = \mathbb{U}^*\mathbb{R}$$
.

En posant $\mathbb{Q} = \mathbb{U}^*$, qui est unitaire, on obtient le résultat demandé.

 (\mathcal{Q}_n)

Soit $A_n \in \mathcal{M}_n(\mathbb{R})$ une matrice. Il existe une matrice orthogonale $\mathbb{U}_n \in \mathcal{M}_n(\mathbb{R})$ et une matrice triangulaire supérieure $\mathbb{R}_n \in \mathcal{M}_n(\mathbb{R})$ telles que

$$\mathbb{U}_n \mathbb{A}_n = \mathbb{R}_n. \tag{12.2}$$

Q. 3

La proposition (Q_n) est-elle vérifiée pour tout $n \ge 2$? Justifier.

R. 3

La proposition (Q_n) est toujours vérifiée. En effet, en reprenant la démonstration par récurrence dans le cas complexe, on peut noter que toutes les matrices sont réelles y compris les matrices de Householder utilisées car les coefficients α sont nécessairement réels (arg $\alpha = -\arg \langle \boldsymbol{a}, \boldsymbol{b} \rangle + \delta \pi = \delta \pi$), et Les matrices unitaires réelles sont orthogonales.

Q. 4

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$.

a. Montrer qu'il existe une matrice orthogonale $\mathbb{Q} \in \mathcal{M}_n(\mathbb{R})$ et une matrice triangulaire supérieure $\mathbb{R} \in \mathcal{M}_n(\mathbb{R})$ telles que

$$\mathbb{A} = \mathbb{QR}$$
.

b. Montrer qu'il existe une matrice orthogonale $\mathbb{Q} \in \mathcal{M}_n(\mathbb{R})$ et une matrice triangulaire supérieure $\mathbb{R} \in \mathcal{M}_n(\mathbb{R})$ à coefficient diagonaux positifs ou nuls telles que

$$A = \mathbb{QR}$$
.

c. On suppose \mathbb{A} inversible. Montrer qu'il existe une unique matrice orthogonale $\mathbb{Q} \in \mathcal{M}_n(\mathbb{R})$ et une unique matrice triangulaire supérieure $\mathbb{R} \in \mathcal{M}_n(\mathbb{R})$ à coefficient diagonaux strictement positifs telles que

$$\mathbb{A} = \mathbb{QR}$$
.

(R. 4

a. D'après la proposition (Q_n) , Il existe une matrice orthogonale $\mathbb{U} \in \mathcal{M}_n(\mathbb{R})$ et une matrice triangulaire supérieure $\mathbb{R} \in \mathcal{M}_n(\mathbb{R})$ telles que

$$\mathbb{U}\mathbb{A}=\mathbb{R}.$$

Comme \mathbb{U} est orthogonale, on a $\mathbb{U}^{t} = \mathbb{U}^{-1}$ et donc

$$A = U^{t} \mathbb{R}$$

En posant $\mathbb{Q} = \mathbb{U}^{t}$, qui est orthogonale, on obtient le résultat demandé.

b. D'après la proposition (Q_n) , Il existe une matrice orthogonale $\widetilde{\mathbb{U}} \in \mathcal{M}_n(\mathbb{R})$ et une matrice triangulaire supérieure $\widetilde{\mathbb{R}} \in \mathcal{M}_n(\mathbb{R})$ telles que

$$\widetilde{\mathbb{D}}\mathbb{A} = \widetilde{\mathbb{R}}.$$

Soit S l'application telle que S(x) = -1, si x < 0 et S(x) = +1, si $x \ge 0$. Soit $\mathbb{D} \in \mathcal{M}_n(\mathbb{R})$, la matrice diagonale telle que $\forall i \in [1, n]$, $\mathbb{D}_{i,i} = S(\widetilde{\mathbb{R}}_{i,i})$. Cette matrice est orthogonale.

On a alors

$$\mathbb{D}\widetilde{\mathbb{U}}\mathbb{A}=\mathbb{D}\widetilde{\mathbb{R}}.$$

On pose $\mathbb{U}=\mathbb{D}\widetilde{\mathbb{U}}$ et $\mathbb{R}=\mathbb{D}\widetilde{\mathbb{R}}$. Comme le produit de deux matrices orthogonales est une matrice orthogonale, la matrice \mathbb{U} est orthogonale. La matrice \mathbb{R} est triangulaire supérieure car le produit d'une matrice diagonale par une matrice triangulaire supérieure est une matrice triangulaire supérieure. De plus, pour tout $i \in [1, n]$, on a

$$\mathbb{R}_{i,i} = \mathbb{D}_{i,i} \widetilde{\mathbb{R}}_{i,i} = S(\widetilde{\mathbb{R}}_{i,i}) \widetilde{\mathbb{R}}_{i,i} = |\widetilde{\mathbb{R}}_{i,i}| \geqslant 0.$$

En posant $\mathbb{Q} = \mathbb{U}^{t}$, on obtient le résultat souhaité.

c. On vient de démontrer, en \mathbf{Q} . 4 b., qu'il l'existe une matrice orthogonale $\mathbb{Q} \in \mathcal{M}_n(\mathbb{R})$ et une matrice triangulaire supérieure $\mathbb{R} \in \mathcal{M}_n(\mathbb{R})$ à coefficient diagonaux positifs ou nuls telles que $\mathbb{A} = \mathbb{Q}\mathbb{R}$. Comme \mathbb{A} inversible, on a

$$\det(\mathbb{A}) = \det(\mathbb{Q}) \det(\mathbb{R}) \neq 0.$$

On en déduit que $det(\mathbb{R}) \neq 0$. De plus, \mathbb{R} étant triangulaire supérieure, on obtient

$$\det(\mathbb{R}) = \prod_{i=1}^{n} \mathbb{R}_{i,i} \neq 0 \iff \forall i \in [1, n], \ \mathbb{R}_{i,i} \neq 0.$$

et donc, tous les coefficient diagonaux de \mathbb{R} sont strictement positifs.

Pour montrer l'unicité d'une telle factorisation, on note \mathbb{Q}_1 , \mathbb{Q}_2 , deux matrices orthogonales et \mathbb{R}_1 , \mathbb{R}_2 , deux matrices triangulaires à coefficients diagonaux strictements positifs telles que

$$A = \mathbb{Q}_1 \mathbb{R}_1 = \mathbb{Q}_2 \mathbb{R}_2.$$

On a alors

$$\mathbb{I} = \mathbb{A}\mathbb{A}^{-1} = \mathbb{Q}_1\mathbb{R}_1(\mathbb{Q}_2\mathbb{R}_2)^{-1} = \mathbb{Q}_1\mathbb{R}_1\mathbb{R}_2^{-1}\mathbb{Q}_2^{-1}$$

et donc

$$\mathbb{Q}_1^{\text{-1}}\mathbb{Q}_2 = \mathbb{R}_1\mathbb{R}_2^{\text{-1}} \stackrel{\text{\tiny def}}{=} \mathbb{T}.$$

Comme \mathbb{Q}_1 est orthogonale on a $\mathbb{T} = \mathbb{Q}_1^{\mathsf{t}} \mathbb{Q}_2$ et

$$\mathbb{T}^{\mathsf{t}}\mathbb{T} = (\mathbb{Q}_{1}^{\mathsf{t}}\mathbb{Q}_{2})^{\mathsf{t}}\mathbb{Q}_{1}^{\mathsf{t}}\mathbb{Q}_{2} = \mathbb{Q}_{2}^{\mathsf{t}}\mathbb{Q}_{1}\mathbb{Q}_{1}^{\mathsf{t}}\mathbb{Q}_{2} = \mathbb{I}.$$

La matrice \mathbb{T} est donc orthogonal. De plus $\mathbb{T} = \mathbb{R}_1 \mathbb{R}_2^{-1}$ est une matrice triangulaire supérieure à coefficients diagonaux strictement positifs puisque produit de triangulaire supérieure à coefficients diagonaux strictement positifs. La matrice \mathbb{I} étant symétrique définie positive, d'après le Théorème 3.15(factorisation positive de Cholesky) il existe une unique matrice \mathbb{L} triangulaire inférieure à coefficients diagonaux strictement positifs telle que $\mathbb{LL}^{t} = \mathbb{I}$. Cette matrice \mathbb{L} est évidemment la matrice identité. On en déduit que $\mathbb{T} = \mathbb{L}^{t} = \mathbb{I}$ et donc $\mathbb{Q}_1 = \mathbb{Q}_2$ et $\mathbb{R}_1 = \mathbb{R}_2$.

EXERCICE 13

Soit $\mathbb{A} \in \mathcal{M}_{m+n}(\mathbb{C})$ la matrice bloc

$$\mathbb{A} = \frac{m}{n} \left(\begin{array}{c|c} m & n \\ \mathbb{U} & \mathbb{F} \\ \hline \mathbb{E} & \mathbb{V} \end{array} \right).$$

On note $\boldsymbol{v} = \mathbb{V}_{:,1} \in \mathbb{C}^n$ le premier vecteur colonne de \mathbb{V} et on suppose que \boldsymbol{v} est non nul et non colinéaire à \boldsymbol{e}_1^n (premier vecteur de la base canonique de \mathbb{C}^n).

Expliciter, en fonction de \boldsymbol{v} , le vecteur $\boldsymbol{u} \in \mathbb{C}^n$, $\|\boldsymbol{u}\|_2 = 1$, tel que

$$\mathbb{H}(\boldsymbol{u})\boldsymbol{v} = \alpha \boldsymbol{e}_1^n, \quad avec \ \mathbb{H}(\boldsymbol{u}) \stackrel{\text{def}}{=} \mathbb{I} - 2\boldsymbol{u}\boldsymbol{u}^*.$$

On a

$$\boldsymbol{u} = \frac{\boldsymbol{v} - \alpha \boldsymbol{e}_1^n}{\|\boldsymbol{v} - \alpha \boldsymbol{e}_1^n\|} \text{ avec } \alpha = \|\boldsymbol{v}\|_2 e^{i(\delta \pi - \arg\langle \boldsymbol{v}, \boldsymbol{e}_1^n \rangle)}, \ \delta \in \{0, 1\}.$$

Comme $\langle \boldsymbol{v}, \boldsymbol{e}_1^n \rangle = \overline{v_1}$ et $\arg(\overline{z}) = -\arg(z)$, on obtient

$$\alpha = \|\boldsymbol{v}\|_2 e^{i(\arg(v_1) + \delta\pi)}$$

ce qui donne avec le choix $\delta = 1$

$$\alpha = -\|\boldsymbol{v}\|_2 e^{i \arg(v_1)}.$$

Soient $\mathbf{x} \in \mathbb{C}^m$ et $\mathbf{y} \in \mathbb{C}^n$. On pose $\mathbf{w} = \left(\frac{\mathbf{x}}{\mathbf{y}}\right) \in \mathbb{C}^{m+n}$. Déterminer $\mathbb{H}(\mathbf{w})$ en fonction de $\mathbb{H}(\mathbf{x})$ et de $\mathbb{H}(\mathbf{y})$.

$$\mathbb{H}(\boldsymbol{w}) = \mathbb{I}_{m+n} - 2\boldsymbol{w}\boldsymbol{w}^* \\
= \left(\frac{\mathbb{I}_m \mid \mathbb{O}_{m,n}}{\mathbb{O}_{n,m} \mid \mathbb{I}_n}\right) - 2\left(\frac{\boldsymbol{x}}{\boldsymbol{y}}\right) \left(\boldsymbol{x}^* \mid \boldsymbol{y}^*\right) \\
= \left(\frac{\mathbb{I}_m \mid \mathbb{O}_{m,n}}{\mathbb{O}_{n,m} \mid \mathbb{I}_n}\right) - 2\left(\frac{\boldsymbol{x}\boldsymbol{x}^* \mid \boldsymbol{x}\boldsymbol{y}^*}{\boldsymbol{y}\boldsymbol{x}^* \mid \boldsymbol{y}\boldsymbol{y}^*}\right) \\
= \left(\frac{\mathbb{H}(\boldsymbol{x}) \mid -2\boldsymbol{x}\boldsymbol{y}^*}{-2\boldsymbol{y}\boldsymbol{x}^* \mid \mathbb{H}(\boldsymbol{y})}\right)$$

Q. 3

On pose
$$\boldsymbol{w} = \left(\frac{\boldsymbol{0}_m}{\boldsymbol{u}} \right) \in \mathbb{C}^{m+n}$$
.

- a. Déterminer $\mathbb{H}(\boldsymbol{w})\mathbb{A}$ en fonction de $\mathbb{H}(\boldsymbol{u})$.
- b. Que peut-on dire de particulier sur le bloc (2,2) de $\mathbb{H}(\boldsymbol{w})\mathbb{A}$?

(R. 3)

a. De la question précédente, on déduit

$$\mathbb{H}(\boldsymbol{w}) = \left(\begin{array}{c|c} \mathbb{I}_{m,m} & \mathbb{O}_{m,n} \\ \hline \mathbb{O}_{n,m} & \mathbb{H}(\boldsymbol{u}). \end{array} \right)$$

On obtient alors

$$\mathbb{H}(\boldsymbol{w})\mathbb{A} = \begin{pmatrix} \mathbb{I}_{m,m} & \mathbb{O}_{m,n} \\ \mathbb{O}_{n,m} & \mathbb{H}(\boldsymbol{u}). \end{pmatrix} \begin{pmatrix} \mathbb{U} & \mathbb{F} \\ \mathbb{E} & \mathbb{V} \end{pmatrix}$$
$$= \begin{pmatrix} \mathbb{U} & \mathbb{F} \\ \mathbb{H}(\boldsymbol{u})\mathbb{E} & \mathbb{H}(\boldsymbol{u})\mathbb{V} \end{pmatrix}.$$

b. le bloc (2,2) de $\mathbb{H}(\boldsymbol{w})\mathbb{A}$ correspond à la matrice $\mathbb{H}(\boldsymbol{u})\mathbb{V}\in\mathcal{M}_n(\mathbb{C})$ dont la première colonne vaut $\alpha\boldsymbol{e}_1^n$. On a alors

$$\mathbb{H}(\boldsymbol{u})\mathbb{V} = \begin{pmatrix} \alpha & \bullet & \cdots & \bullet \\ \hline 0 & \bullet & \cdots & \bullet \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \bullet & \cdots & \bullet \end{pmatrix}.$$

EXERCICE 14

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$.

Q. 1

Expliquer comment construire une matrice $\mathbb{H} \in \mathcal{M}_n(\mathbb{C})$ unitaire, produit d'au plus n-1 matrices élémentaires de Householder, et, $\mathbb{R} \in \mathcal{M}_n(\mathbb{C})$, triangulaire supérieure telles $\mathbb{H}\mathbb{A} = \mathbb{R}$.

R. 1

Remarque. Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ et $j \in \mathcal{M}_1(n)$. On dit que la colonne j de \mathbb{A} est colonne supérieure si, $\forall i \in [j+1,n]$, $A_{i,j}=0$, c'est à dire $\mathbb{A}:, j=\operatorname{Vect}(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_j).$

En notant $\mathbb{A}^{[0]}=\mathbb{A}$, l'idée générale est la suivante:

Pour j allant successivement de 1 à n-1, on va déterminer $\mathbb{H}^{[j]} \in \mathcal{M}_n(\mathbb{C})$ unitaire, pour que la colonne j de $\mathbb{A}^{[j]} \stackrel{\text{def}}{=} \mathbb{H}^{[j]} \mathbb{A}^{[j-1]}$ soit colonne supérieure sans modifier les colonnes 1 à j de $\mathbb{A}^{[j-1]}$.

Etape 1: il faut déterminer $\mathbb{H}^{[1]} \in \mathcal{M}_n(\mathbb{C})$ unitaire, pour que la colonne 1 de $\mathbb{A}^{[1]} \stackrel{\text{def}}{=} \mathbb{H}^{[1]} \mathbb{A}^{[0]}$ soit colonne supérieure.

- Si $\mathbb{A}^{[0]}_{:,1}$ est nulle ou colinéaire à \boldsymbol{e}_1 alors on prend $\mathbb{H}^{[1]} = \mathbb{I}_n$ qui est unitaire.
- Sinon, $\mathbb{A}^{[0]}_{:,1}$ est non nulle et non colinéaire à \boldsymbol{e}_1 : on est sous les hypothèse du corollaire 3.1.3 de [2]/corollaire 2.16 de [1] avec $\boldsymbol{a} = \mathbb{A}^{[0]}_{:,1}$.

On en déduit alors qu'avec le vecteur $\boldsymbol{u}_1 \in \mathbb{C}^n$ donné par

$$\boldsymbol{u}_1 = \frac{\boldsymbol{a} - \|\boldsymbol{a}\|_2 e^{i \arg(\boldsymbol{a}_1)} \boldsymbol{e}_1}{\|\boldsymbol{a} - \|\boldsymbol{a}\|_2 e^{i \arg(\boldsymbol{a}_1)} \boldsymbol{e}_1\|_2}$$

on a

$$\mathbb{H}(\boldsymbol{u}_1)\boldsymbol{a} = -\|\boldsymbol{a}\|_2 e^{i \arg(\boldsymbol{a}_1)} \boldsymbol{e}_1.$$

En posant $\mathbb{H}_1 = \mathbb{H}(\boldsymbol{u}_1)$ et $\alpha_1 = -\|\boldsymbol{a}\|_2 e^{i \arg(\boldsymbol{a}_1)}$, on obtient

$$\mathbb{A}^{[1]} \stackrel{\mathrm{def}}{=} \mathbb{H}_1 \mathbb{A}^{[0]} = \begin{pmatrix} \begin{array}{c|c} \alpha_1 & \bullet \cdot \cdot \cdot \cdot \cdot \bullet \\ \hline 0 & \bullet \cdot \cdot \cdot \cdot \cdot \bullet \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \bullet \cdot \cdot \cdot \cdot \cdot \bullet \\ \end{array} \end{pmatrix}.$$

Etape 2: il faut déterminer $\mathbb{H}^{[2]} \in \mathcal{M}_n(\mathbb{C})$ unitaire, pour que la colonne 2 de $\mathbb{A}^{[2]} \stackrel{\text{def}}{=} \mathbb{H}^{[2]} \mathbb{A}^{[1]}$ soit colonne supérieure sans modifier la colonne 1 de $\mathbb{A}^{[1]}$. Pour celà on va utiliser le corollaire 3.1.3 de [2]/corollaire 2.16 de [1] en posant

$$\mathbb{A}^{[1]} = \frac{1}{n-1} \left(\begin{array}{c|c} 1 & n-1 \\ \hline \mathbb{U} & \mathbb{F} \\ \hline \mathbb{E} & \mathbb{V} \end{array} \right), \quad \text{avec} \quad \mathbb{U} = \alpha_1, \ \mathbb{E} = \mathbb{O}_{n-1,1}, \ \mathbb{F} = \mathbb{A}^{[1]}_{1,2:n}, \ \mathbb{V} = \mathbb{A}^{[1]}_{2:n,2:n}$$

- Si $V_{:,1} \in \mathbb{C}^{n-1}$, est nulle ou colinéaire à e_1^{n-1} , premier vecteur de la base canonique de \mathbb{C}^{n-1} , alors on pose $\mathbb{H}^{[2]} = \mathbb{I}_n$ qui est unitaire.
- Sinon, $\mathbb{V}_{:,1} \in \mathbb{C}^{n-1}$, est non nulle et non colinéaire à \boldsymbol{e}_1^{n-1} , et le corollaire peut s'appliquer. On en déduit alors qu'avec le vecteur $\boldsymbol{u}_2 \in \mathbb{C}^{n-1}$ donné par

$$\boldsymbol{u}_{2} = \frac{\mathbb{V}_{1,:} - \alpha_{2} \boldsymbol{e}_{1}^{n-1}}{\|\mathbb{V}_{1,:} - \alpha_{2} \boldsymbol{e}_{1}^{n-1}\|} \text{ avec } \alpha_{2} = -\|\mathbb{V}_{1,:}\|_{2} e^{i \arg(\mathbb{V}_{1,1})}$$

on a $\mathbb{H}(\boldsymbol{u}_2)\mathbb{V}_{1,:}=\alpha_2\boldsymbol{e}_1^{n-1}$ et donc

$$\mathbb{H}(\boldsymbol{u}_2)\mathbb{V} = \begin{pmatrix} \alpha_2 & \bullet \cdots & \bullet \\ \hline 0 & \bullet \cdots & \bullet \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \bullet \cdots & \bullet \end{pmatrix}.$$

De plus, en posant

$$\mathbf{w}_2 = \begin{pmatrix} 0 \\ \mathbf{u}_2 \end{pmatrix} \in \mathbb{C}^n \text{ et } \mathbb{H}^{[2]} = \mathbb{H}(\mathbf{w}_2) = \begin{pmatrix} 1 & 0 \cdot \cdot \cdot \cdot \cdot \cdot 0 \\ 0 & \\ \vdots & \mathbb{H}(\mathbf{u}_2) \\ 0 & \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$$

on a

$$\mathbb{A}^{[2]} \stackrel{\text{def}}{=} \mathbb{H}^{[2]} \mathbb{A}^{[1]} = \begin{pmatrix} \mathbb{U} & \mathbb{F} \\ \hline \mathbb{H}(\boldsymbol{u}_2)\mathbb{E} & \mathbb{H}(\boldsymbol{u}_2)\mathbb{V} \end{pmatrix} = \begin{pmatrix} \alpha_1 & \mathbb{F} \\ \hline 0 & \\ \vdots & \\ \vdots & \mathbb{H}(\boldsymbol{u}_2)\mathbb{V} \\ \hline 0 & \end{pmatrix}$$

En récrivant la matrice $\mathbb{A}^{[2]}$ sous forme de 2×2 blocs de dimensions 2 et n-2, on obtient

$$\mathbb{A}^{[2]} = \begin{pmatrix} & & & & & & & \\ & \alpha_1 & \bullet & \bullet & \cdots & \bullet \\ & 0 & \alpha_2 & \bullet & \cdots & \bullet \\ \hline & 0 & 0 & \bullet & \cdots & \bullet \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & n-2 \\ 0 & 0 & \bullet & \cdots & \cdots & \bullet \end{pmatrix}$$

. . .

Etape j: il faut déterminer $\mathbb{H}^{[j]} \in \mathcal{M}_n(\mathbb{C})$ unitaire, pour que la colonne j de $\mathbb{A}^{[j]} \stackrel{\text{def}}{=} \mathbb{H}^{[j]} \mathbb{A}^{[j-1]}$ soit colonne supérieure tout en ayant les (j-1) premières colonnes identiques à celles $\mathbb{A}^{[j-1]}$.

Pour celà on utilise le corollaire 3.1.3 de [2]/corollaire 2.16 de [1] en posant, p = j - 1, q = n - p et

$$\mathbb{A}^{[j-1]} = {}^p_q \left(\begin{array}{c|c} \mathbb{F} & q \\ \hline \mathbb{E} & \mathbb{V} \end{array} \right), \quad \text{avec} \quad \mathbb{U} = \left(\begin{array}{c|c} \alpha_1 & \bullet & \cdots & \cdots & \bullet \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & \alpha_{j-1} \end{array} \right), \quad \mathbb{E} = \mathbb{O}_{q,p}, \quad \mathbb{F} = \mathbb{A}^{[j-1]}_{1:p,j:n}, \quad \mathbb{V} = \mathbb{A}^{[j-1]}_{j:n,j:n}$$

- Si $\mathbb{V}_{:,1} \in \mathbb{C}^q$, est nulle ou colinéaire à \boldsymbol{e}_1^q , premier vecteur de la base canonique de \mathbb{C}^q , alors on prend $\mathbb{H}^{[j]} = \mathbb{I}_n$ qui est unitaire.
- Sinon, $\mathbb{V}_{:,1} \in \mathbb{C}^q$, est non nulle et non colinéaire à \boldsymbol{e}_1^q , et le Lemme peut s'appliquer. On en déduit alors qu'avec le vecteur $\boldsymbol{u}_i \in \mathbb{C}^q$ donné par

$$\boldsymbol{u}_{j} = \frac{\mathbb{V}_{1,:} - \alpha_{j} \boldsymbol{e}_{1}^{q}}{\|\mathbb{V}_{1,:} - \alpha_{j} \boldsymbol{e}_{1}^{q}\|} \text{ avec } \alpha_{j} = -\|\mathbb{V}_{1,:}\|_{2} e^{i \arg(\mathbb{V}_{1,1})}$$

on a $\mathbb{H}(\boldsymbol{u}_j)\mathbb{V}_{1,:}=\alpha_j\boldsymbol{e}_1^q$ et donc

$$\mathbb{H}(\boldsymbol{u}_j)\mathbb{V} = \begin{pmatrix} \alpha_j & \bullet \cdots \cdots \bullet \\ \hline 0 & \bullet \cdots \cdots \bullet \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \bullet \cdots \cdots \bullet \end{pmatrix}.$$

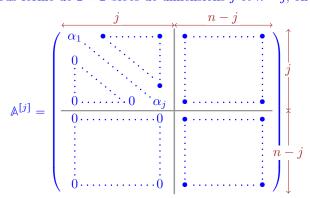
De plus, en posant

$$m{w}_j = egin{pmatrix} m{0}_p \ & & \\ \hline m{u}_j \end{pmatrix} \in \mathbb{C}^n \ \ ext{et} \ \ \mathbb{H}^{[j]} = \mathbb{H}(m{w}_j) = egin{pmatrix} \mathbb{I}_p & \mathbb{I}_{p,q} \ & \mathbb{I}_p & \mathbb{I}_{p,q} \end{pmatrix} \in \mathcal{M}_n(\mathbb{C}).$$

on a alors

$$\mathbb{A}^{[j]} \stackrel{\text{\tiny def}}{=} \mathbb{H}^{[j]} \mathbb{A}^{[j-1]} \quad = \quad \left(\begin{array}{c|c} \mathbb{U} & \mathbb{F} \\ \hline \mathbb{H}(\boldsymbol{u}_j) \mathbb{E} & \mathbb{H}(\boldsymbol{u}_j) \mathbb{V} \end{array} \right) = \left(\begin{array}{c|c} \mathbb{U} & \mathbb{F} \\ \hline \mathbb{O}_{q,p} & \mathbb{H}(\boldsymbol{u}_j) \mathbb{V} \end{array} \right).$$

En récrivant la matrice $\mathbb{A}^{[j]}$ sous forme de 2×2 blocs de dimensions j et n-j, on obtient



Etape n-1: faire l'Etape j avec j=n-1.

Au final, on a donc

$$\mathbb{H}^{[n-1]} \dots \mathbb{H}^{[1]} \mathbb{A} = \mathbb{R}$$

où \mathbb{R} est triangulaire supérieure, et, les matrices $\mathbb{H}^{[j]}$, $j \in [1, n-1]$ sont, soit la matrice identité, soit une matrice élémentaire de Householder: elles sont donc unitaires.

On note $\mathbb{H} = \mathbb{H}^{[n-1]} \dots \mathbb{H}^{[1]}$, cette matrice est donc le produit d'au plus (n-1) matrices élémentaires de Householder. Comme le produit de matrices unitaires reste une matrice unitaire, on a \mathbb{H} unitaire et

$$A = \mathbb{H}^*\mathbb{R}$$
.

On pose $\mathbb{Q} = \mathbb{H}^*$. La matrice \mathbb{Q} est alors unitaire et on a

$$\mathbb{Q} = \left(\mathbb{H}^{[1]}\right)^* \dots \left(\mathbb{H}^{[n-1]}\right)^*.$$

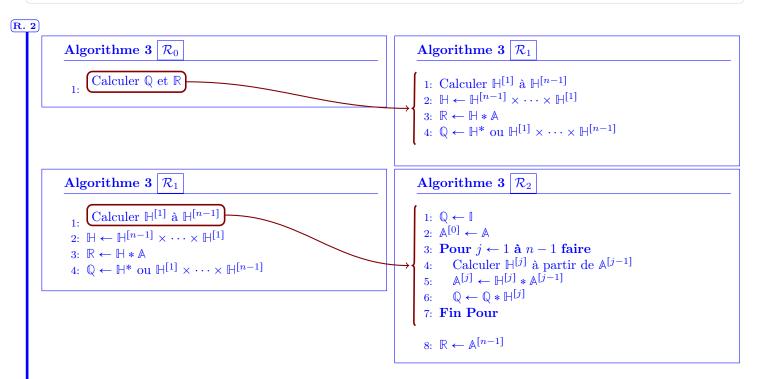
Les matrices élémentaires de Householer étant hermitiennes, on obtient

$$\mathbb{Q} = \mathbb{H}^{[1]} \dots \mathbb{H}^{[n-1]}$$

et donc $\mathbb Q$ est aussi le produit d'au plus (n-1) matrices élémentaires de Householder.

Ecrire une fonction FactQR permettant de calculer la factorisation QR d'une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$.

On pourra utiliser la fonction Householder Exercice 10 Exercice 3.1.9.



Etape j: On suppose les j-1 premières colonnes de $\mathbb{A}^{[j-1]}$ sous forme triangulaire supérieure. On pose p=j-1, q=n-p et on décompose la matrice $\mathbb{A}^{[j-1]} \in \mathcal{M}_n(\mathbb{C})$ en 2×2 blocs:

$$\mathbb{A}^{[j-1]} = \begin{pmatrix} \mathbb{V} & \mathbb{F} \\ \mathbb{E} & \mathbb{V} \end{pmatrix}_q^p$$

avec, par hypothèse, $\mathbb U$ triangulaire supérieure et $\mathbb E$ matrice nulle.

Pour calculer $\mathbb{H}^{[j-1]} \in \mathcal{M}_n(\mathbb{C})$ à partir de $\mathbb{A}^{[j-1]} \in \mathcal{M}_n(\mathbb{C})$, on défini le vecteur $\boldsymbol{v} = \mathbb{V}_{:,1} \in \mathbb{C}^q$ comme étant le premier vecteur colonne de \mathbb{V} . On note $\boldsymbol{e}_1 \in \mathbb{C}^q$, le premier vecteur de la base canonique de \mathbb{C}^q .

• Si $\mathbf{v} - \langle \mathbf{e}_1, \mathbf{v} \rangle \mathbf{e}_1 = 0$, i.e. \mathbf{v} est nul ou colinéaire à \mathbf{e}_1 , alors $\mathbb{H}^{[j-1]} = \mathbb{I}_n$. On a alors

$$\mathbb{A}^{[j]} = \mathbb{H}^{[j]} \mathbb{A}^{[j-1]} = \mathbb{A}^{[j-1]}$$

et les j premières colonnes de $\mathbb{A}^{[j]}$ sont alors sous forme triangulaire supérieure.

• Sinon, en utilisant le corollaire 3.1.3 de [2]/corollaire 2.16 de [1], on défini le vecteur $\mathbf{u} \in \mathbb{C}^q$ par

$$\boldsymbol{u} = \frac{\boldsymbol{v} - \alpha \boldsymbol{e}_1}{\|\boldsymbol{v} - \alpha \boldsymbol{e}_1\|} \text{ avec } \alpha = -\|\boldsymbol{v}\|_2 e^{i \arg(\boldsymbol{v}_1)}$$

et, la matrice élémentaire de Householder $\mathbb{H}(\boldsymbol{u})$ vérifie alors

$$\mathbb{H}(\boldsymbol{u})\boldsymbol{v} = \alpha_i \boldsymbol{e}_1.$$

En posant

$$m{w} = \left(\frac{m{0}_p}{m{u}}
ight) \in \mathbb{C}^n \ \ ext{et} \ \ \mathbb{H}^{[j]} = \mathbb{H}(m{w}) \in \mathcal{M}_n(\mathbb{C}),$$

où la matrice élémentaire de Householder $\mathbb{H}(\boldsymbol{w})$ est donnée par

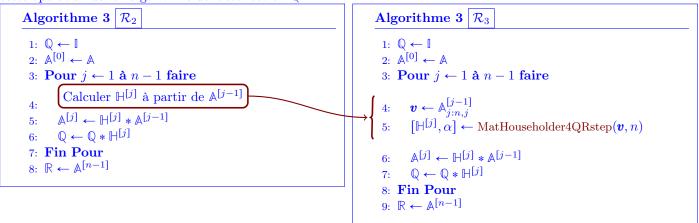
$$\mathbb{H}(oldsymbol{w}) \stackrel{ ext{def}}{=} \mathbb{I}_n - 2oldsymbol{w}oldsymbol{w}^* = egin{pmatrix} \mathbb{I}_p & \mathbb{O}_{p,q} \ \mathbb{O}_{q,p} & \mathbb{H}(oldsymbol{u}) \end{pmatrix}.$$

On a alors

$$\mathbb{A}^{[j]} = \mathbb{H}^{[j]} \mathbb{A}^{[j-1]} \quad = \quad \left(\begin{array}{c|c} \mathbb{U} & \mathbb{F} \\ \hline \mathbb{O}_{q,p} & \mathbb{H}(\boldsymbol{u}) \mathbb{V} \end{array} \right)$$

et les j premières colonnes de $\mathbb{A}^{[j]}$ sont alors sous forme triangulaire supérieure.

Pour déterminer la matrice $\mathbb{H}^{[j]} \in \mathcal{M}_n(\mathbb{C})$, il suffit donc de connaître $\boldsymbol{v} \in \mathbb{C}^q$. On va donc utiliser une fonction réalisant cette opération dans l'algorithme de factorisation $\mathbb{Q}\mathbb{R}$



La fonction MatHouseholder4QRstep étant donnée par:

Algorithme 4 function $[S, \alpha] \leftarrow \text{MatHouseholder4QRstep}(\boldsymbol{v}, n)$.

A partir d'un vecteur $\mathbf{v} \in \mathbb{C}^q$, $q \in [2, n]$, retourne une matrice $\mathbb{S} \in \mathcal{M}_n(\mathbb{C})$ unitaire et $\alpha \in \mathbb{C}$ telles que

- si $\mathbf{v} \langle \mathbf{e}_1, \mathbf{v} \rangle \mathbf{e}_1 = 0$ (i.e. \mathbf{v} nul ou colinéaire à \mathbf{e}_1) alors \mathbb{S} est la matrice identitée et $\alpha = 0$,
- sinon, en définissant $\boldsymbol{u} \in \mathbb{C}^q$ par

$$\boldsymbol{u} = \frac{\boldsymbol{v} - \alpha \boldsymbol{e}_1}{\|\boldsymbol{v} - \alpha \boldsymbol{e}_1\|} \text{ avec } \alpha = -\|\boldsymbol{v}\|_2 e^{i \arg(\boldsymbol{v}_1)}$$

on prend S comme étant la matrice élémentaire de Householder:

$$\mathbb{S} = \mathbb{H}(\boldsymbol{w}) \ \text{ avec } \boldsymbol{w} = \left(\frac{\mathbf{0}_p}{\boldsymbol{u}}\right) \in \mathbb{C}^n.$$

Données : v : vecteur de \mathbb{C}^q , $q \in [2, n]$,

n: dimension de

Résultat : \mathbb{S} : matrice de Householder ou identité dans $\mathcal{M}_n(\mathbb{C})$,

 α : nombre complexe.

- 1: **Fonction** $[S, \alpha] \leftarrow \text{MatHouseholder4QRstep}(\mathbf{v}, n)$
- 2: $\boldsymbol{e} \leftarrow \boldsymbol{0}_q, \ \boldsymbol{e}(1) \leftarrow 1$
- 3: $[\mathbb{H}, \alpha] \leftarrow \text{Householder}(\boldsymbol{v}, \boldsymbol{e}, 1)$
- 4: $\mathbb{S} \leftarrow \text{eye}(n)$
- 5: Si $\alpha \neq 0$ alors
- 6: $p \leftarrow n q$
- 7: $I \leftarrow p + 1 : n$
- 8: $\mathbb{S}(I,I) \leftarrow \mathbb{H}$
- 9: **Fin Si**
- 10: Fin Fonction

Bien évidemment, on peut simplifier/améliorer l'écriture de l'Algorithme 3 $\lfloor \mathcal{R}_3 \rfloor$ en ne stockant pas les suites de matrices:

```
Algorithme 3 \left| \mathcal{R}_{3} \right|

1: \mathbb{Q} \leftarrow \mathbb{I}

2: \mathbb{A}^{[0]} \leftarrow \mathbb{A}

3: Pour j \leftarrow 1 à n-1 faire

4: \mathbf{v} \leftarrow \mathbb{A}_{j:n,j}^{[j-1]}

5: \left[ \mathbb{H}^{[j]}, \alpha \right] \leftarrow \text{MatHouseholder4QRstep}(\mathbf{v}, n)

6: \mathbb{A}^{[j]} \leftarrow \mathbb{H}^{[j]} * \mathbb{A}^{[j-1]}

7: \mathbb{Q} \leftarrow \mathbb{Q} * \mathbb{H}^{[j]}

8: Fin Pour

9: \mathbb{R} \leftarrow \mathbb{A}^{[n-1]}
```

```
Algorithme 3 \mathbb{R}_4

1: \mathbb{Q} \leftarrow \mathbb{I}

2: \mathbb{R} \leftarrow \mathbb{A}

3: Pour j \leftarrow 1 à n-1 faire

4: \mathbf{v} \leftarrow \mathbb{R}_{j:n,j}

5: [\mathbb{H}, \alpha] \leftarrow \text{MatHouseholder4QRstep}(\mathbf{v}, n)

6: Si \alpha \neq 0 alors \Rightarrow \text{Sinon } \mathbb{H} = \mathbb{I}

7: \mathbb{R} \leftarrow \mathbb{H} * \mathbb{R}

8: \mathbb{Q} \leftarrow \mathbb{Q} * \mathbb{H}

9: Fin Si

10: Fin Pour
```

Voici (enfin) l'agorithme final:

```
Algorithme 3 Fonction FactQR
```

```
Données:
                         A
                                       matrice de \mathcal{M}_n(\mathbb{C}).
Résultat:
                                       matrice unitaire de \mathcal{M}_n(\mathbb{C}).
                          Q
                                       matrice triangulaire supérieure de \mathcal{M}_n(\mathbb{C}).
  1: Fonction [\mathbb{Q}, \mathbb{R}] \leftarrow \text{FactQR}(\mathbb{A})
           \mathbb{Q} \leftarrow \mathbb{I}
  2:
           \mathbb{R} \leftarrow \mathbb{A}
 3:
          Pour j \leftarrow 1 à n-1 faire
  4:
               \boldsymbol{v} \leftarrow \mathbb{R}(j:n,j)
                [\mathbb{H}, \alpha] \leftarrow \text{MatHouseholder4QRstep}(\boldsymbol{v}, n)
  6:
               Si \alpha \neq 0 alors

ightharpoonup Sinon \mathbb{H} = \mathbb{I}!
  7:
                    \mathbb{R} \leftarrow \mathbb{H} * \mathbb{R}
                    \mathbb{Q} \leftarrow \mathbb{Q} * \mathbb{H}
 9:
                Fin Si
10:
           Fin Pour
11:
12: Fin Fonction
```

- Ecrire un programme permettant de tester cette fonction. On dispose des fonctions:
 - MatRand(m,n) retournant une matrice aléatoire de $\mathcal{M}_{m,n}(\mathbb{C})$ chacune des parties imaginaires et réelles de ses éléments étant une variable aléatoire suivant la loi uniforme [0,1].
 - NormInf(A) retournant la norme infinie d'une matrice carrée A.

```
1: \mathbb{A} \leftarrow \text{MatRand}(50, 50)

2: [\mathbb{Q}, \mathbb{R}] \leftarrow \text{FactQR}(\mathbb{A})

3: \text{err} \leftarrow \text{NormInf}(\mathbb{A} - \mathbb{Q} * \mathbb{R})
```

ightharpoonup doit être très petit!

2 Exercices supplémentaires

Exercice 15: Factorisation LU

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admettant une factorisation $\mathbb{L}\mathbb{U}$. Montrer que cette factorisation est unique (sans citer le théorème du cours!)

R. 1

a. On a

$$\mathbb{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ L_{2,1} & 1 & 0 & 0 \\ L_{3,1} & L_{3,2} & 1 & 0 \\ L_{4,1} & L_{4,2} & L_{4,3} & 1 \end{pmatrix} \begin{pmatrix} U_{1,1} & U_{1,2} & U_{1,3} & U_{1,4} \\ 0 & U_{2,2} & U_{2,3} & U_{2,4} \\ 0 & 0 & U_{3,3} & U_{3,4} \\ 0 & 0 & 0 & U_{4,4} \end{pmatrix}$$

ullet On calcule la première ligne de $\mathbb U$ car on a

$$A_{1,j} = \sum_{k=1}^{4} L_{1,k} U_{k,j} = U_{1,j}.$$

Donc on a $U_{1,j} = A_{1,j}, \forall j \in [1,4] \text{ et } \mathbb{U}_{1,:} = (1 \ 2 \ 3 \ 4).$

 \bullet On calcule ensuite la première colonne de $\mathbb L$ car on a

$$A_{j,1} = \sum_{k=1}^{4} L_{j,1} U_{k,1} = L_{j,1} U_{1,1}.$$

Donc on a
$$L_{j,1} = A_{j,1}/U_{1,1}, \ \forall j \in [2,4] \ \text{et} \ \mathbb{L}_{:,1} = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}$$
.

On a maintenant

$$\mathbb{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & L_{3,2} & 1 & 0 \\ 4 & L_{4,2} & L_{4,3} & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & U_{2,2} & U_{2,3} & U_{2,4} \\ 0 & 0 & U_{3,3} & U_{3,4} \\ 0 & 0 & 0 & U_{4,4} \end{pmatrix}$$

ullet On calcule la deuxième ligne de $\mathbb U$ car on a

$$A_{2,j} = \sum_{k=1}^{4} L_{2,k} U_{k,j} = L_{2,1} U_{1,j} + L_{2,2} U_{2,j} = L_{2,1} U_{1,j} + U_{2,j}.$$

Donc on a $U_{2,j} = A_{1,j} - L_{2,1}U_{1,j}, \forall j \in [2,4] \text{ et } \mathbb{U}_{2,:} = (0 \ 1 \ -5 \ 2).$

 \bullet On calcule ensuite la deuxième colonne de $\mathbb L$ car on a

$$A_{j,2} = \sum_{k=1}^{4} L_{j,1} U_{k,2} = L_{j,1} U_{1,2} + L_{j,2} U_{2,2}.$$

Donc on a
$$L_{j,2} = (A_{j,2} - L_{j,1}U_{1,2})/U_{2,2}, \ \forall j \in [\![3,4]\!] \ \text{et} \ \mathbb{L}_{:,2} = \left(\begin{array}{c} 0 \\ 1 \\ -5 \\ 2 \end{array} \right).$$

On a maintenant

$$\mathbb{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -5 & 1 & 0 \\ 4 & 2 & L_{4,3} & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & U_{3,3} & U_{3,4} \\ 0 & 0 & 0 & U_{4,4} \end{pmatrix}$$

ullet On calcule la troisième ligne de $\mathbb U$ car on a

$$A_{3,j} = \sum_{k=1}^{4} L_{3,k} U_{k,j} = \sum_{k=1}^{2} L_{3,k} U_{k,j} + L_{3,3} U_{3,j} = \sum_{k=1}^{2} L_{3,k} U_{k,j} + U_{3,j}.$$

Donc on a $U_{3,j} = A_{3,j} - \sum_{k=1}^2 L_{3,k} U_{k,j}, \ \forall j \in [\![2,4]\!]$ et $\mathbb{U}_{2,:} = \begin{pmatrix} 0 & 0 & 1 & 3 \end{pmatrix}$.

 \bullet On calcule ensuite la troisième colonne de $\mathbb L$ car on a

$$A_{j,3} = \sum_{k=1}^{4} L_{j,1} U_{k,3} = L_{j,1} U_{1,3} + L_{j,2} U_{2,3} + L_{j,3} U_{3,3}.$$

Donc on a
$$L_{j,3} = (A_{j,3} - L_{j,1}U_{1,3} - L_{j,2}U_{2,3})/U_{3,3}, \ \forall j \in \llbracket 4, 4 \rrbracket \text{ et } \mathbb{L}_{:,3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 3 \end{pmatrix}.$$

On a maintenant

$$\mathbb{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -5 & 1 & 0 \\ 4 & 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & U_{4,4} \end{pmatrix}$$

 $\bullet\,$ Enfin, on calcule la quatrième ligne de $\mathbb U$ car on a

$$A_{4,4} = \sum_{k=1}^{4} L_{4,k} U_{k,4} = \sum_{k=1}^{3} L_{4,k} U_{k,4} + L_{4,4} U_{4,4} = \sum_{k=1}^{3} L_{4,k} U_{k,4} + U_{4,4}.$$

Donc on a $U_{4,4} = A_{4,4} - \sum_{k=1}^{3} L_{4,k} U_{k,4}$, et $\mathbb{U}_{3,:} = \begin{pmatrix} 0 & 0 & 0 & 16 \end{pmatrix}$.

Au final, on a

$$\mathbb{L} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -5 & 1 & 0 \\ 4 & 2 & 3 & 1 \end{pmatrix} \text{ et } \mathbb{U} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 16 \end{pmatrix}.$$

Remarque. On peut bien sûr vérifier que

$$\mathbb{A} = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{array}\right) = \mathbb{L}\mathbb{U} = \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -5 & 1 & 0 \\ 4 & 2 & 3 & 1 \end{array}\right) \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 16 \end{array}\right) = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{array}\right).$$

b. Pour démontrer l'unicité, on va supposer qu'il existe deux factorisations LU de A i.e.

$$A = \mathbb{L}_1 \mathbb{U}_1 = \mathbb{L}_2 \mathbb{U}_2$$
.

avec \mathbb{L}_1 , \mathbb{L}_2 matrices triangulaires inférieures à diagonale unité et \mathbb{U}_1 , \mathbb{U}_2 matrices triangulaires supérieures (inversibles). En multipliant l'équation $\mathbb{L}_1\mathbb{U}_1=\mathbb{L}_2\mathbb{U}_2$ à gauche par \mathbb{L}_1^{-1} et à droite par \mathbb{U}_2^{-1} on obtient

$$\mathbb{U}_1 \mathbb{U}_2^{-1} = \mathbb{L}_1^{-1} \mathbb{L}_2. \tag{R15.7}$$

La matrice $\mathbb{L}_1^{-1}\mathbb{L}_2$ est triangulaire inférieure à diagonale unité car produit de deux matrices triangulaires inférieures à diagonale unité. Elle est égale à la matrice $\mathbb{U}_1\mathbb{U}_2^{-1}$ qui elle est triangulaire supérieure (car produit de deux matrices triangulaires supérieures). Donc $\mathbb{L}_1^{-1}\mathbb{L}_2$ est à la fois une matrice triangulaire supérieure et inférieure : elle est donc diagonale. Comme elle est à diagonale unité on en déduit que $\mathbb{L}_1^{-1}\mathbb{L}_2 = \mathbb{I}$ et donc $\mathbb{L}_1 = \mathbb{L}_2$. De l'équation (R15.8), on tire alors $\mathbb{U}_1 = \mathbb{U}_2$.

c. On a

$$det(\mathbb{A}) = det(\mathbb{L}\mathbb{U}) = det(\mathbb{L}) det(\mathbb{U})$$
$$= 1 \times 16 = 16.$$

d. Résoudre $\mathbb{A}x = b$ et équivalent à résoudre $\mathbb{L}\mathbb{U}x = b$, on note $y = \mathbb{U}x$ qui est solution du système triangulaire inférieur

$$\mathbb{L}\boldsymbol{y} = \boldsymbol{b} \iff \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -5 & 1 & 0 \\ 4 & 2 & 3 & 1 \end{pmatrix} \boldsymbol{y} = \begin{pmatrix} 4 \\ 16 \\ -26 \\ 54 \end{pmatrix}$$

que l'on peut résoudre simplement par la méthode de la descente pour obtenir

$$\mathbf{y} = \begin{pmatrix} 4 \\ 8 \\ 2 \\ 16 \end{pmatrix}.$$

Ensuite, on peut déterminer \boldsymbol{x} comme solution du système triangulaire supèrieur

$$\mathbb{U}\boldsymbol{x} = \boldsymbol{y} \iff \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 16 \end{pmatrix} \boldsymbol{x} = \begin{pmatrix} 4 \\ 8 \\ 2 \\ 16 \end{pmatrix}$$

que l'on peut résoudre simplement par la méthode de la remontée pour obtenir

$$\boldsymbol{x} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}.$$

Remarque. On peut bien sûr vérifier que

$$\mathbb{A} \pmb{x} \stackrel{\text{\tiny def}}{=} \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \\ -1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 4 \\ 16 \\ -26 \\ 54 \end{array} \right) = \pmb{b} \stackrel{\text{\tiny def}}{=} \left(\begin{array}{c} 4 \\ 16 \\ -26 \\ 54 \end{array} \right).$$

On pose

$$\mathbb{A} \stackrel{\text{def}}{=} \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{array} \right) \text{ et } \boldsymbol{b} \stackrel{\text{def}}{=} \left(\begin{array}{c} 4 \\ 16 \\ -26 \\ 54 \end{array} \right).$$

- a. Déterminer L une matrice trianqulaire inférieure à diagonale unité et U une matrice trianqulaire supérieure telles $que \ \mathbb{A} = \mathbb{L}\mathbb{U}.$
- b. Calculer le déterminant de la matrice \mathbb{A} .
- c. Résoudre le système Ax = b.

Q. 2

a. On a

$$\mathbb{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ L_{2,1} & 1 & 0 & 0 \\ L_{3,1} & L_{3,2} & 1 & 0 \\ L_{4,1} & L_{4,2} & L_{4,3} & 1 \end{pmatrix} \begin{pmatrix} U_{1,1} & U_{1,2} & U_{1,3} & U_{1,4} \\ 0 & U_{2,2} & U_{2,3} & U_{2,4} \\ 0 & 0 & U_{3,3} & U_{3,4} \\ 0 & 0 & 0 & U_{4,4} \end{pmatrix}$$

• On calcule la première ligne de U car on a

$$A_{1,j} = \sum_{k=1}^{4} L_{1,k} U_{k,j} = U_{1,j}.$$

Donc on a $U_{1,j} = A_{1,j}, \forall j \in [1, 4] \text{ et } \mathbb{U}_{1,:} = (1 \ 2 \ 3 \ 4).$

• On calcule ensuite la première colonne de L car on a

$$A_{j,1} = \sum_{k=1}^{4} L_{j,1} U_{k,1} = L_{j,1} U_{1,1}.$$

Donc on a
$$L_{j,1} = A_{j,1}/U_{1,1}, \ \forall j \in [2,4]] \text{ et } \mathbb{L}_{:,1} = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}.$$

On a maintenant

$$\mathbb{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & L_{3,2} & 1 & 0 \\ 4 & L_{4,2} & L_{4,3} & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & U_{2,2} & U_{2,3} & U_{2,4} \\ 0 & 0 & U_{3,3} & U_{3,4} \\ 0 & 0 & 0 & U_{4,4} \end{pmatrix}$$

• On calcule la deuxième ligne de U car on a

$$A_{2,j} = \sum_{k=1}^4 L_{2,k} U_{k,j} = L_{2,1} U_{1,j} + L_{2,2} U_{2,j} = L_{2,1} U_{1,j} + U_{2,j}.$$

Donc on a $U_{2,j} = A_{1,j} - L_{2,1}U_{1,j}, \ \forall j \in [2,4] \ \text{et} \ \mathbb{U}_{2,:} = \begin{pmatrix} 0 & 1 & -5 & 2 \end{pmatrix}$.

• On calcule ensuite la deuxième colonne de L car on a

$$A_{j,2} = \sum_{k=1}^{4} L_{j,1} U_{k,2} = L_{j,1} U_{1,2} + L_{j,2} U_{2,2}.$$

Donc on a
$$L_{j,2} = (A_{j,2} - L_{j,1}U_{1,2})/U_{2,2}, \ \forall j \in [3,4]] \text{ et } \mathbb{L}_{:,2} = \begin{pmatrix} 0\\1\\-5\\2 \end{pmatrix}.$$

On a maintenant

$$\mathbb{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -5 & 1 & 0 \\ 4 & 2 & L_{4,3} & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & U_{3,3} & U_{3,4} \\ 0 & 0 & 0 & U_{4,4} \end{pmatrix}$$

ullet On calcule la troisième ligne de $\mathbb U$ car on a

$$A_{3,j} = \sum_{k=1}^{4} L_{3,k} U_{k,j} = \sum_{k=1}^{2} L_{3,k} U_{k,j} + L_{3,3} U_{3,j} = \sum_{k=1}^{2} L_{3,k} U_{k,j} + U_{3,j}.$$

Donc on a $U_{3,j} = A_{3,j} - \sum_{k=1}^{2} L_{3,k} U_{k,j}, \ \forall j \in [\![2,4]\!]$ et $\mathbb{U}_{2,:} = \begin{pmatrix} 0 & 0 & 1 & 3 \end{pmatrix}$.

 \bullet On calcule ensuite la troisième colonne de $\mathbb L$ car on a

$$A_{j,3} = \sum_{k=1}^{4} L_{j,1} U_{k,3} = L_{j,1} U_{1,3} + L_{j,2} U_{2,3} + L_{j,3} U_{3,3}.$$

Donc on a
$$L_{j,3} = (A_{j,3} - L_{j,1}U_{1,3} - L_{j,2}U_{2,3})/U_{3,3}, \ \forall j \in [4,4] \text{ et } \mathbb{L}_{:,3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 3 \end{pmatrix}$$
.

On a maintenant

$$\mathbb{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -5 & 1 & 0 \\ 4 & 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & U_{4,4} \end{pmatrix}$$

 \bullet Enfin, on calcule la quatrième ligne de $\mathbb U$ car on a

$$A_{4,4} = \sum_{k=1}^{4} L_{4,k} U_{k,4} = \sum_{k=1}^{3} L_{4,k} U_{k,4} + L_{4,4} U_{4,4} = \sum_{k=1}^{3} L_{4,k} U_{k,4} + U_{4,4}.$$

Donc on a $U_{4,4} = A_{4,4} - \sum_{k=1}^3 L_{4,k} U_{k,4}$, et $\mathbb{U}_{3,:} = \begin{pmatrix} 0 & 0 & 0 & 16 \end{pmatrix}$.

Au final, on a

$$\mathbb{L} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -5 & 1 & 0 \\ 4 & 2 & 3 & 1 \end{pmatrix} \text{ et } \mathbb{U} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 16 \end{pmatrix}.$$

Remarque. On peut bien sûr vérifier que

$$\mathbb{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{pmatrix} = \mathbb{L} \mathbb{U} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -5 & 1 & 0 \\ 4 & 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 16 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{pmatrix}.$$

b. Pour démontrer l'unicité, on va supposer qu'il existe deux factorisations LU de A i.e.

$$\mathbb{A} = \mathbb{L}_1 \mathbb{U}_1 = \mathbb{L}_2 \mathbb{U}_2$$
.

avec \mathbb{L}_1 , \mathbb{L}_2 matrices triangulaires inférieures à diagonale unité et \mathbb{U}_1 , \mathbb{U}_2 matrices triangulaires supérieures (inversibles). En multipliant l'équation $\mathbb{L}_1\mathbb{U}_1=\mathbb{L}_2\mathbb{U}_2$ à gauche par \mathbb{L}_1^{-1} et à droite par \mathbb{U}_2^{-1} on obtient

$$\mathbb{U}_1 \mathbb{U}_2^{-1} = \mathbb{L}_1^{-1} \mathbb{L}_2. \tag{R15.8}$$

La matrice $\mathbb{L}_1^{-1}\mathbb{L}_2$ est triangulaire inférieure à diagonale unité car produit de deux matrices triangulaires inférieures à diagonale unité. Elle est égale à la matrice $\mathbb{U}_1\mathbb{U}_2^{-1}$ qui elle est triangulaire supérieure (car produit de deux matrices triangulaires supérieures). Donc $\mathbb{L}_1^{-1}\mathbb{L}_2$ est à la fois une matrice triangulaire supérieure et inférieure : elle est donc diagonale. Comme elle est à diagonale unité on en déduit que $\mathbb{L}_1^{-1}\mathbb{L}_2 = \mathbb{I}$ et donc $\mathbb{L}_1 = \mathbb{L}_2$. De l'équation (R15.8), on tire alors $\mathbb{U}_1 = \mathbb{U}_2$.

c. On a

$$\det(\mathbb{A}) = \det(\mathbb{L}\mathbb{U}) = \det(\mathbb{L})\det(\mathbb{U})$$
$$= 1 \times 16 = 16.$$

d. Résoudre $\mathbb{A}\boldsymbol{x} = \boldsymbol{b}$ et équivalent à résoudre $\mathbb{L}\mathbb{U}\boldsymbol{x} = \boldsymbol{b}$, on note $\boldsymbol{y} = \mathbb{U}\boldsymbol{x}$ qui est solution du système triangulaire inférieur

$$\mathbb{L}\boldsymbol{y} = \boldsymbol{b} \iff \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -5 & 1 & 0 \\ 4 & 2 & 3 & 1 \end{pmatrix} \boldsymbol{y} = \begin{pmatrix} 4 \\ 16 \\ -26 \\ 54 \end{pmatrix}$$

que l'on peut résoudre simplement par la méthode de la descente pour obtenir

$$\mathbf{y} = \begin{pmatrix} 4 \\ 8 \\ 2 \\ 16 \end{pmatrix}.$$

Ensuite, on peut déterminer \boldsymbol{x} comme solution du système triangulaire supèrieur

$$\mathbb{U}\boldsymbol{x} = \boldsymbol{y} \iff \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 16 \end{pmatrix} \boldsymbol{x} = \begin{pmatrix} 4 \\ 8 \\ 2 \\ 16 \end{pmatrix}$$

que l'on peut résoudre simplement par la méthode de la remontée pour obtenir

$$\boldsymbol{x} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}.$$

Remarque. On peut bien sûr vérifier que

$$\mathbb{A}\boldsymbol{x} \stackrel{\text{\tiny def}}{=} \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \\ -1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 4 \\ 16 \\ -26 \\ 54 \end{array} \right) = \boldsymbol{b} \stackrel{\text{\tiny def}}{=} \left(\begin{array}{c} 4 \\ 16 \\ -26 \\ 54 \end{array} \right).$$

- On peut noter que la matrice $\mathbb A$ est symétrique
 - a. Montrer qu'il existe une matrice diagonale $\mathbb D$ telle que $\mathbb A=\mathbb L\mathbb D\mathbb L^t$, la matrice $\mathbb L$ étant celle de la question précédente.
 - b. Rappeler la définition d'une matrice hermitienne définie positive de $\mathcal{M}_n(\mathbb{R})$.
 - c. En déduire que la matrice A est définie positive.

$$\mathbb{D} = \operatorname{diag}(\mathbb{U}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 16 \end{pmatrix}.$$

On peut vérifier que $\mathbb{DL}^{t} = \mathbb{U}$. En effet

$$\mathbb{DL}^{\mathtt{t}} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 16 \end{array}\right) \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{array}\right) = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 16 \end{array}\right) = \mathbb{U}.$$

b. Une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ est symétrique définie positive si

 $\mathbf{sym\acute{e}trique:}\ \mathbb{A}=\mathbb{A}^{\mathtt{t}},$

définie positive : $\forall \boldsymbol{x} \in \mathbb{R}^n \setminus \{0\}, \langle \mathbb{A}\boldsymbol{x}, \boldsymbol{x} \rangle > 0.$

c. Soit $\mathbf{x} \in \mathbb{R}^4 \setminus \{0\}$ on a

$$\langle \mathbb{A}\boldsymbol{x}, \boldsymbol{x} \rangle = \langle \mathbb{LDL}^{\mathsf{t}}\boldsymbol{x}, \boldsymbol{x} \rangle = \langle \mathbb{DL}^{\mathsf{t}}\boldsymbol{x}, \mathbb{L}^{\mathsf{t}}\boldsymbol{x} \rangle$$

On pose $\mathbf{y} = \mathbb{L}^{\mathsf{t}} \mathbf{x} \neq 0$ car $\mathbf{x} \neq 0$ et \mathbb{L}^{t} inversible. On obtient alors

$$\langle \mathbb{A}\boldsymbol{x}, \boldsymbol{x} \rangle = \langle \mathbb{D}\boldsymbol{y}, \boldsymbol{y} \rangle = \sum_{i=1}^{4} D_{i,i} |y_i|^2 > 0$$

car \mathbb{D} diagonale, $D_{i,i} > 0$, $\forall i \in [1, 4]$ et $\mathbf{y} \neq 0$.

La matrice symétrique A est donc bien définie positive.

En déduire qu'il existe une matrice $\mathbb B$ triangulaire inférieure à diagonale positive telle qur $\mathbb A=\mathbb B\mathbb B^t$.

R. 4 Soit \mathbb{S} la matrice diagonale telle que $\mathbb{S}^2 = \mathbb{D}$ donnée par

$$\mathbb{S} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right).$$

Comme S est symétrique, on a

$$\mathbb{A} = \mathbb{LDL^t} = \mathbb{LSS^tL^t}.$$

On pose $\mathbb{B} = \mathbb{LS}$, c'est à dire

$$\mathbb{B} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -5 & 1 & 0 \\ 4 & 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -5 & 1 & 0 \\ 4 & 2 & 3 & 4 \end{pmatrix}.$$

Remarque. On peut bien sûr vérifier que

$$\mathbb{A} \stackrel{\text{def}}{=} \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{array} \right) = \mathbb{BB}^{t} \stackrel{\text{def}}{=} \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & -5 & 1 & 0 \\ 4 & 2 & 3 & 4 \end{array} \right) \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 4 \end{array} \right) = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 10 \\ 3 & 1 & 35 & 5 \\ 4 & 10 & 5 & 45 \end{array} \right).$$

EXERCICE 16

Définition. On dit que $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admet une factorisation \mathbb{WU} si il existe $\mathbb{W} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure inversible et $\mathbb{U} \in \mathcal{M}_n(\mathbb{C})$ triangulaire supérieure à diagonale unité telles que

$$\mathbb{A} = \mathbb{WU}.$$

On note $\mathbb{A} = (a_{i,j})_{i,j=1}^n$, $\mathbb{W} = (w_{i,j})_{i,j=1}^n$ et $\mathbb{U} = (u_{i,j})_{i,j=1}^n$ les composantes de ces matrices.

On rappelle que la sous-matrice principale d'ordre k de \mathbb{A} , $k \in [1, n]$, est la matrice $\Delta_k \in \mathcal{M}_k(\mathbb{C})$ telle que

$$(\Delta_k)_{i,j} = a_{i,j}, \ \forall (i,j) \in [1,k].$$

Q. 1

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admettant une factorisation $\mathbb{W}\mathbb{U}$.

- a. Démontrer que toutes les sous-matrices principales de A sont inversibles.
- b. Démontrer que la factorisation WU est unique.
- c. Soit $\mathbf{b} \in \mathbb{C}^n$ donné. Expliquer comment résoudre le système $\mathbb{A}\mathbf{x} = \mathbf{b}$ à l'aide de la factorisation \mathbb{WU} .
- **R.** :
- a. Soit $k \in [1, n]$. On appelle sous-matrice principale d'ordre k de \mathbb{A} , la matrice $\Delta_k \in \mathcal{M}_k(\mathbb{C})$ telle que

$$(\Delta_k)_{i,j} = \mathbb{A}_{i,j}, \ \forall (i,j) \in [1,k].$$

b. Comme la matrice \mathbb{V} est triangulaire inférieure inversible, on a $\forall i \in [1, n], w_{i,i} \neq 0$. Comme la matrice \mathbb{U} est triangulaire supérieure à diagonale unité, elle est inversible et on a $\forall i \in [1, n], u_{i,i} = 1$.

La sous-matrice principale d'ordre n de \mathbb{A} , est \mathbb{A} qui est inversible par hypothèse.

Soit $k \in [1, n-1]$. Montrons que la sous-matrice principale d'ordre k de \mathbb{A} , est inversible.

On écrit les trois matrices \mathbb{A} , \mathbb{W} et \mathbb{U} sous la forme de matrices blocs carrés 2×2 dont le premier bloc diagonal est dans $\mathcal{M}_k(\mathbb{C})$ et le second dans $\mathcal{M}_{n-k}(\mathbb{C})$. Comme \mathbb{W} est triangulaire inférieure et \mathbb{U} triangulaire supérieure, on a

$$\mathbb{A} = \left(\begin{array}{c|c} \mathbb{A}_{1,1} & \mathbb{A}_{1,2} \\ \hline \mathbb{A}_{2,1} & \mathbb{A}_{2,2} \end{array}\right), \quad \mathbb{W} = \left(\begin{array}{c|c} \mathbb{W}_{1,1} & \mathbb{O}_{k,n-k} \\ \hline \mathbb{W}_{2,1} & \mathbb{W}_{2,2} \end{array}\right) \quad \text{et} \ \mathbb{U} = \left(\begin{array}{c|c} \mathbb{U}_{1,1} & \mathbb{U}_{1,2} \\ \hline \mathbb{O}_{n-k,k} & \mathbb{U}_{2,2} \end{array}\right).$$

On a alors $\mathbb{W}_{1,1} \in \mathcal{M}_k(\mathbb{C})$ triangulaire inférieure avec tous ses éléments diagonaux non nuls puisque $(\mathbb{W}_{1,1})_{i,i} = w_{i,i} \neq . \mathbb{W}_{1,1}$ est donc inversible. De plus, $\mathbb{U}_{1,1} \in \mathcal{M}_{n-k}(\mathbb{C})$ triangulaire supérieure avec tous ses éléments diagonaux égaux à 1 et donc $\mathbb{U}_{1,1}$ est inversible. On a

$$\mathbb{A} = \mathbb{W} \mathbb{U} \quad \Leftrightarrow \quad \left(\begin{array}{c|c} \mathbb{A}_{1,1} & \mathbb{A}_{1,2} \\ \mathbb{A}_{2,1} & \mathbb{A}_{2,2} \end{array} \right) = \left(\begin{array}{c|c} \mathbb{W}_{1,1} & \mathbb{O}_{k,n-k} \\ \mathbb{W}_{2,1} & \mathbb{W}_{2,2} \end{array} \right) \left(\begin{array}{c|c} \mathbb{U}_{1,1} & \mathbb{U}_{1,2} \\ \mathbb{O}_{n-k,k} & \mathbb{U}_{2,2} \end{array} \right).$$

En effectuant le produit matricielle bloc, 1ère ligne bloc par 1ère colonne bloc, on obtient

$$\mathbb{A}_{1,1} = \mathbb{W}_{1,1} \mathbb{U}_{1,1} + \mathbb{O}_{k,n-k} \mathbb{O}_{n-k,k} = \mathbb{W}_{1,1} \mathbb{U}_{1,1}.$$

On a donc, par propriété du déterminant,

$$\det (\mathbb{A}_{1,1}) = \det (\mathbb{W}_{1,1} \mathbb{U}_{1,1}) = \det (\mathbb{W}_{1,1}) \det (\mathbb{U}_{1,1}).$$

Comme $\mathbb{W}_{1,1}$ et $\mathbb{U}_{1,1}$ sont inversibles, leurs déterminants sont non nuls. On en déduit que det $(\mathbb{A}_{1,1}) \neq 0$, c'est à dire $\mathbb{A}_{1,1}$ inversible, or par définition, $\mathbb{A}_{1,1} \in \mathcal{M}_k(\mathbb{C})$ est la sous matrice principale d'ordre k de \mathbb{A} .

c. Soient $\mathbb{W}_1\mathbb{U}_1$ et $\mathbb{W}_2\mathbb{U}_2$ deux factorisations $\mathbb{W}\mathbb{U}$ de \mathbb{A} . avec \mathbb{W}_1 , \mathbb{W}_2 triangulaires inférieures inversibles et \mathbb{U}_1 , \mathbb{U}_2 triangulaires supérieures à diagonale unité (donc inversibles). Les matrices \mathbb{W}_1^{-1} et \mathbb{W}_2^{-1} sont donc triangulaires inférieures et les matrices \mathbb{U}_1^{-1} et \mathbb{U}_2^{-1} sont donc triangulaires supérieures à diagonale unité puisque pour $k \in \{1, 2\}$, on

$$\forall i \in [1, n], (\mathbb{U}_k^{-1})_{i,i} = \frac{1}{(\mathbb{U}_k)_{i,i}} = 1.$$

On a

$$\mathbb{A} = \mathbb{W}_1 \mathbb{U}_1 = \mathbb{W}_2 \mathbb{U}_2$$

et en multipliant à droite par \mathbb{U}_2^{-1} et à gauche par \mathbb{W}_1^{-1} on obtient

$$\mathbb{U}_1 \mathbb{U}_2^{-1} = \mathbb{W}_1^{-1} \mathbb{W}_2. \tag{R16.9}$$

La matrice $\mathbb{W}_1^{-1}\mathbb{W}_2$ est triangulaire inférieure car produit de deux matrices triangulaires inférieures. La matrice $\mathbb{U}_1\mathbb{U}_2^{-1}$ est triangulaire supérieure car produit de deux matrices triangulaires supérieures. Comme ces deux matrices sont égales, on en déduit On déduit de (R16.9), que les matrices $\mathbb{W}_1^{-1}\mathbb{W}_2$ et $\mathbb{U}_1\mathbb{U}_2^{-1}$ sont diagonales. Or on a

$$\forall i \in [1, n], \ (\mathbb{U}_1 \mathbb{U}_2^{-1})_{i,i} = (\mathbb{U}_1)_{i,i} (\mathbb{U}_2^{-1})_{i,i} = 1$$

ce qui donne

$$\mathbb{U}_1 \mathbb{U}_2^{-1} = \mathbb{I} = \mathbb{W}_1^{-1} \mathbb{W}_2$$

et donc $\mathbb{U}_1 = \mathbb{U}_2$ et $\mathbb{W}_1 = \mathbb{W}_2$.

d. Comme $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admet une factorisation \mathbb{WU} , résoudre le système $\mathbb{A} \boldsymbol{x} = \boldsymbol{b}$ revient alors à résoudre

$$\mathbb{W} \mathbb{U} \boldsymbol{x} = \boldsymbol{b}$$
.

On pose $\boldsymbol{y} = \mathbb{U}\boldsymbol{x}$, et on résoud tout à bord

$$\mathbb{W} \boldsymbol{y} = \boldsymbol{b}.$$

puis, une fois le vecteur \boldsymbol{y} déterminé, on résoud

$$\mathbb{U}\boldsymbol{x}=\boldsymbol{y}$$
.

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admettant une factorisation \mathbb{WU} . Expliquer de manière détaillée une méthodologie pour calculer les coefficients des matrices \mathbb{W} et \mathbb{U} . On explicitera les formules utilisées.

R. 2

$$\mathbb{A} = \mathbb{WU} \tag{R16.10}$$

c'est à dire

$$\begin{pmatrix}
a_{1,1} & \dots & a_{1,n} \\
\vdots & \ddots & \dots \\
a_{n,1} & \dots & a_{n,n}
\end{pmatrix} = \begin{pmatrix}
w_{1,1} & 0 & \dots & 0 \\
w_{2,1} & \ddots & \ddots & \vdots \\
\vdots & & \ddots & 0 \\
w_{n,1} & \dots & w_{n,n-1} & w_{n,n}
\end{pmatrix} \begin{pmatrix}
1 & u_{1,2} & \dots & u_{n,1} \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & u_{n-1,n} \\
0 & \dots & 0 & 1
\end{pmatrix}.$$
(R16.11)

Etape 1: • La 1ère colonne de \mathbb{U} est connue, on peut alors calculer la 1ère colonne de \mathbb{W} .

• La 1ère ligne de \mathbb{W} est connue, puisque l'on vient de calculer (entre autres) $w_{1,1}$. On peut déterminer la 1ère ligne de \mathbb{U} .

Etape 2: • La 2ème colonne de U est connue, on peut alors, connaissant la 1ère colonne de W, calculer la 2ème colonne de W.

ullet La 2ème ligne de $\mathbb W$ est maintenant connue. On peut déterminer, la 2ème ligne de $\mathbb U$ puisque l'on connait sa 1ère ligne.

:

Etape i: on suppose connue les (i-1) premières colonnes de \mathbb{W} et les (i-1) premières lignes de \mathbb{U} .

• La $i^{\text{ème}}$ colonne de \mathbb{U} est connue puisque $u_{i,i} = 1$. On peut calculer la $i^{\text{ème}}$ colonne de \mathbb{W} . En effet, soit $j \in [\![i,n]\!]$, on a

$$a_{j,i} = \sum_{k=1}^{n} w_{j,k} u_{k,i} = \sum_{k=1}^{i-1} w_{j,k} u_{k,i} + w_{j,i} u_{i,i} + \sum_{k=i+1}^{n} w_{j,k} u_{k,i}.$$

Or, \mathbb{U} est triangulaire supérieure, donc $u_{k,i}=0, \forall k>i$. De plus $u_{i,i}=1$, on obtient donc

$$a_{j,i} = \sum_{k=1}^{i-1} w_{j,k} u_{k,i} + w_{j,i}.$$

Dans la somme, par hypothèse, $w_{j,k}$ et $u_{k,i}$ sont connus car $k \in [1, i-1]$. On obtient alors

$$\forall j \in [[i, n]], \ w_{j,i} = a_{j,i} - \sum_{k=1}^{i-1} w_{j,k} u_{k,i}.$$
(R16.12)

• La $i^{\text{ème}}$ ligne de \mathbb{W} est maintenant connue puisque l'on vient de calculer (entre autres) $w_{i,i}$. On peut alors calculer la $i^{\text{ème}}$ ligne de \mathbb{U} . En effet, soit $j \in [i+1,n]$, on a

$$a_{i,j} = \sum_{k=1}^{n} w_{i,k} u_{k,j} = \sum_{k=1}^{i-1} w_{i,k} u_{k,j} + w_{i,i} u_{i,j} + \sum_{k=i+1}^{n} w_{i,k} u_{k,j}.$$

Or, W est triangulaire inférieure, donc $w_{i,k} = 0$, $\forall k > i$. On obtient donc

$$a_{i,j} = \sum_{k=1}^{i-1} w_{i,k} u_{k,j} + w_{i,i} u_{i,j}.$$

Dans la somme, par hypothèse, $w_{i,k}$ et $u_{k,j}$ sont connus car $k \in [1, i-1]$. On obtient alors

$$\forall j \in [[i+1, n]], \ u_{i,j} = \frac{1}{w_{i,i}} \left(a_{i,j} - \sum_{k=1}^{i-1} w_{i,k} u_{k,j} \right).$$
 (R16.13)

et $w_{i,i} \neq 0$ car sinon la factorisation wu de \mathbb{A} ne serait pas possible.

Pour résumer, on va calculer sussessivement, pour i allant de 1 à n

• la $i^{\text{ème}}$ colonne de W:

$$\begin{cases} w_{j,i} &= 0, & \forall j \in [1, i-1], \\ w_{j,i} &= a_{j,i} - \sum_{k=1}^{i-1} w_{j,k} u_{k,i}, & \forall j \in [i, n], \end{cases}$$
(R16.14)

• la $i^{\text{ème}}$ ligne de \mathbb{U} :

$$\begin{cases}
 u_{i,j} &= 0, & \forall j \in [1, i-1], \\
 u_{i,i} &= 1, \\
 u_{i,j} &= \frac{1}{w_{i,i}} \left(a_{i,j} - \sum_{k=1}^{i-1} w_{i,k} u_{k,j} \right), & \forall j \in [i+1, n],
\end{cases}$$
(R16.15)

Q. 3[Algo] Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admettant une factorisation \mathbb{WU} .

- a. Ecrire la fonction ResTriSup retournant x, solution de $\mathbb{U}x = b$ où $\mathbb{U} \in \mathcal{M}_n(\mathbb{C})$ est une matrice triangulaire supérieure inversible et $\mathbf{b} \in \mathbb{C}^n$.
- b. Ecrire la fonction algorithmique FactWU retournant les matrices \mathbb{W} et \mathbb{U} .
- c. On suppose la fonction $\boldsymbol{x} \leftarrow \operatorname{ResTriInf}(\mathbb{L}, \boldsymbol{b})$ retournant \boldsymbol{x} , solution de $\mathbb{L}\boldsymbol{x} = \boldsymbol{b}$ avec $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure inversible et $b \in \mathbb{C}^n$, déjà écrite. Ecrire la fonction algorithmique ResWU retournant x, solution de Ax = b en utilisant sa factorisation \mathbb{WU} .

R. 3

a. Soit $\mathbb{U} \in \mathcal{M}_n(\mathbb{C})$ une matrice triangulaire inversible et $\boldsymbol{b} \in \mathbb{C}^n$. Pour résoudre le système $\mathbb{U}\boldsymbol{x} = \boldsymbol{b}$, on utilise l'algorithme de remontée: pour i allant de n à 1 (pas de -1) faire

$$x_i = (b_i - \sum_{j=i+1}^n U_{i,j} x_j) / U_{i,i}.$$

matrice triangulaire de $\mathcal{M}_n(\mathbb{C})$ supérieure inversible. Données:

> b vecteur de \mathbb{C}^n .

 \boldsymbol{x} vecteur de \mathbb{C}^n . Résultat :

- 1: Fonction $\boldsymbol{x} \leftarrow \text{ResTriSup}(\ \mathbb{U}, \boldsymbol{b}\)$
- Pour $i \leftarrow n$ à 1 faire(pas de -1)
- Pour $j \leftarrow i + 1$ à n faire 4:
- $S \leftarrow S + U(i,j) * x(j)$
- Fin Pour
- $x(i) \leftarrow (b(i) S)/U(i, i)$
- Fin Pour
- 9: Fin Fonction
 - b. Voici l'algorithme final:

```
Données:
                    \mathbb{A}: matrice de \mathcal{M}_n(\mathbb{K}) admettant une factorisation \mathbb{WU}.
Résultat:
                    U
                               matrice de \mathcal{M}_n(\mathbb{K}) triangulaire supérieure
                                avec U_{i,i} = 1, \ \forall i \in [1, n]
                                matrice de \mathcal{M}_n(\mathbb{K}) triangulaire inférieure.
  1: Fonction [\mathbb{W}, \mathbb{U}] \leftarrow \text{FactWU}(\mathbb{A})
         \mathbb{W} \leftarrow \mathbb{O}_n
 2:
                                                                                                                                              \triangleright \mathbb{O}_n matrice nulle n \times n
         \mathbb{U} \leftarrow \mathbb{I}_n

ightharpoonup \mathbb{I}_n matrice identitée n \times n
 3:
         Pour i \leftarrow 1 à n faire
 4:
            Pour j \leftarrow i à n faire

ightharpoonup Calcul de la colonne i de \mathbb{W}
 5:
                S_1 \leftarrow 0
 6:
                Pour k \leftarrow 1 à i-1 faire
 7:
 8:
                   S_1 \leftarrow S_1 + W(j,k) * U(k,i)
                Fin Pour
 9:
                W(j,i) \leftarrow A(j,i) - S_1
10:
            Fin Pour
11:
            Pour j \leftarrow i + 1 à n faire

ightharpoonup Calcul de la ligne i de \mathbb{U}
12:
13:
                S_2 \leftarrow 0
                Pour k \leftarrow 1 à i-1 faire
14:
                   S_2 \leftarrow S_2 + W(i,k) * U(k,j)
15:
                Fin Pour
16:
                U(i,j) \leftarrow (A_{i,j} - S_2)/W(i,i).
17:
18:
            Fin Pour
19:
         Fin Pour
20: Fin Fonction
```

c. On utilise la $\mathbf{Q.1}$ -d.

Voici la fonction ResWU permettant de résoudre, par une factorisation \mathbb{WU} , le système linéaire $\mathbb{A}\boldsymbol{x} = \boldsymbol{b}$

On admet le résultat suivant:

Théorème. Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. La matrice \mathbb{A} admet une factorisation \mathbb{WU} si et seulement si toutes les sous-matrices principales de \mathbb{A} sont inversibles.

- Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ hermitienne définie positive.
 - a. Rappeler la définition d'une matrice hermitienne définie positive.
 - b. Démontrer que A est inversible.
 - c. Montrer que toutes les sous-matrices principales de A sont hermitiennes définies positives.
 - d. En déduire que \mathbb{A} admet une unique factorisation \mathbb{WU} .

R. 4

a. $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ est hermitienne définie positive si

$$\mathbb{A} = \mathbb{A}^* \text{ et } \forall \boldsymbol{u} \in \mathbb{C}^n \setminus \{0\}, \langle \mathbb{A}\boldsymbol{u}, \boldsymbol{u} \rangle > 0.$$

b. \mathbb{A} inversible est équivalent $\ker \mathbb{A} = \{0\}.$

Soit $\boldsymbol{x} \in \mathbb{C}^n$, tel que $\mathbb{A}\boldsymbol{x} = 0$. Montrons que $\boldsymbol{x} = 0$.

Par l'absurde, supposons $\boldsymbol{x} \neq 0$. Comme A est hermitienne définie positive on a

$$\langle \mathbb{A}\boldsymbol{x}, \boldsymbol{x} \rangle > 0$$

ce qui n'est pas possible car $\mathbb{A}\boldsymbol{x}=0$, et $\langle \mathbb{A}\boldsymbol{x},\boldsymbol{x}\rangle=0$.

c. On écrit la matrice \mathbb{A} sous la forme de matrices blocs carrés 2×2 dont le premier bloc diagonal est dans $\mathcal{M}_k(\mathbb{C})$ et le second dans $\mathcal{M}_{n-k}(\mathbb{C})$.

$$\mathbb{A} = \left(\begin{array}{c|c} \Delta_k & \mathbb{A}_{1,2} \\ \mathbb{A}_{2,1} & \mathbb{A}_{2,2} \end{array} \right)$$

On veut démontrer que

$$\forall y \in \mathbb{C}^k \setminus \{0\}, \ \langle \Delta_k \boldsymbol{y}, \boldsymbol{y} \rangle > 0.$$

Soit $y \in \mathbb{C}^k \setminus \{0\}$. On note $\boldsymbol{x} \in \mathbb{C}^n$ le vecteur tel que $x_i = y_i$, $\forall i \in [1, k]$ et $x_i = 0$, $\forall i \in [k+1, n]$. On note que $\boldsymbol{x} \neq 0$ car $\boldsymbol{y} \neq 0$. On a

$$\mathbb{A}\boldsymbol{x} = \left(\begin{array}{c|c} \Delta_k & \mathbb{A}_{1,2} \\ \mathbb{A}_{2,1} & \mathbb{A}_{2,2} \end{array}\right) \left(\begin{array}{c} \boldsymbol{y} \\ \boldsymbol{O}_{n-k} \end{array}\right) = \left(\begin{array}{c} \Delta_k \boldsymbol{y} \\ \mathbb{A}_{2,1} \boldsymbol{y} \end{array}\right)$$

et donc

$$\left\langle \mathbb{A} \boldsymbol{x}, \boldsymbol{x} \right\rangle = \left\langle \left(-\frac{\Delta_k \boldsymbol{y}}{\mathbb{A}_{2,1} \boldsymbol{y}} \right), \left(-\frac{\boldsymbol{y}}{O_{n-k}} \right) \right\rangle = \left\langle \Delta_k \boldsymbol{y}, \boldsymbol{y} \right\rangle.$$

Comme $\mathbf{x} \in \mathbb{C}^n \setminus \{0\}$, et \mathbb{A} est hermitienne définie positive, on a $\langle \mathbb{A}\mathbf{x}, \mathbf{x} \rangle > 0$ et donc $\langle \Delta_k \mathbf{y}, \mathbf{y} \rangle > 0$.

d. Comme toutes les sous-matrices principales de \mathbb{A} sont hermitiennes définies positives, elles sont inversibles. D'après la $\mathbf{Q.4}$, \mathbb{A} admet une factorisation \mathbb{WU} et d'après la $\mathbf{Q.1}$ -c, elle est unique.