$Analyse\ Num\'erique\ I:$ Résolution de systèmes linéaires $M\'ethodes\ directes^*$

1 Conditionnement

Définition 1.1. Soit $\|.\|$ une norme matricielle subordonnée, le conditionnement d'une matrice régulière \mathbb{A} , associé à cette norme, est le nombre

$$\operatorname{cond}(\mathbb{A}) = \|\mathbb{A}\| \|\mathbb{A}^{-1}\|.$$

Nous noterons $\operatorname{cond}_p(\mathbb{A}) = \|\mathbb{A}\|_p \|\mathbb{A}^{-1}\|_p$.

Proposition 1.2. Soit A une matrice régulière. On a les propriétés suivantes

- 1. $\forall \alpha \in \mathbb{K}^*$, $\operatorname{cond}(\alpha \mathbb{A}) = \operatorname{cond}(\mathbb{A})$.
- 2. $\operatorname{cond}_p(\mathbb{A}) \ge 1, \ \forall p \in [1, +\infty].$
- 3. $\operatorname{cond}_2(\mathbb{A}) = 1$ si et seulement si $\mathbb{A} = \alpha \mathbb{Q}$ avec $\alpha \in \mathbb{K}^*$ et \mathbb{Q} matrice unitaire

Théorème 1.3. Soit \mathbb{A} une matrice inversible. Soient \mathbf{x} et $\mathbf{x} + \Delta \mathbf{x}$ les solutions respectives de

$$Ax = b$$
 et $A(x + \Delta x) = b + \Delta b$.

Supposons $b \neq 0$, alors l'inégalité

$$\frac{\|\Delta x\|}{\|x\|} \leqslant \operatorname{cond}(\mathbb{A}) \frac{\|\Delta b\|}{\|b\|}$$

est satisfaite, et c'est la meilleure possible : pour une matrice \mathbb{A} donnée, on peut trouver des vecteurs $b \neq 0$ et $\Delta b \neq 0$ tels qu'elle devienne une égalité.

Théorème 1.4. Soient \mathbb{A} et $\mathbb{A} + \Delta \mathbb{A}$ deux matrices inversibles. Soient \mathbf{x} et $\mathbf{x} + \Delta \mathbf{x}$ les solutions respectives de

$$\mathbb{A}\boldsymbol{x} = \boldsymbol{b} \ et \ (\mathbb{A} + \Delta\mathbb{A}) (\boldsymbol{x} + \Delta\boldsymbol{x}) = \boldsymbol{b}.$$

Supposons $\mathbf{b} \neq \mathbf{0}$, alors on a

$$\frac{\|\Delta x\|}{\|x+\Delta x\|} \leq \operatorname{cond}(\mathbb{A}) \frac{\|\Delta \mathbb{A}\|}{\|\mathbb{A}\|}.$$

Remarque. Une matrice est donc bien conditionnée si son conditionnement est proche de 1.

^{*}Compilé le 2025/10/24 à 07:53:46.

2 Méthodes directes

2.1 Résultats préliminaires

Lemme 2.1 (matrice de permutation 3.1.2 p.69). Soit $(i,j) \in [1,n]^2$. On note $\mathbb{P}_n^{[i,j]} \in \mathcal{M}_n(\mathbb{R})$ la matrice identitée dont on a permuté les lignes i et j. Alors la matrice $\mathbb{P}_n^{[i,j]}$ est symétrique et orthogonale. Pour toute matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$,

- 1. la matrice $\mathbb{P}_n^{[i,j]}\mathbb{A}$ est matrice \mathbb{A} dont on a permuté les **lignes** i et j,
- 2. la matrice $\mathbb{AP}_n^{[i,j]}$ est matrice \mathbb{A} dont on a permuté les **colonnes** i et j,

Lemme 2.2 (matrice d'élimination 3.1.1 p.67). Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ avec $A_{1,1} \neq 0$. Il existe une matrice $\mathbb{E} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure à diagonale unité telle que

$$\mathbb{E} A \boldsymbol{e}_1 = A_{1,1} \boldsymbol{e}_1 \tag{1}$$

où \mathbf{e}_1 est le premier vecteur de la base canonique de \mathbb{C}^n .

$$\mathbb{A} = \mathbb{U}\mathbb{T}\mathbb{U}^* \tag{2}$$

2.2 Méthode de Gauss-Jordan

Proposition 2.4. Soit A une matrice carrée, inversible ou non. Il existe (au moins) une matrice inversible G telle que GA soit triangulaire supérieure.

2.3 Factorisation LU

Théorème 2.5 (Factorisation $\mathbb{L}\mathbb{U}$ \Longrightarrow \mathbb{A} \Longrightarrow 3.1.4 p.76). Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice dont les sous-matrices principales sont inversibles alors il existe

- une unique matrice $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure (lower triangular en anglais) à diagonale unité,
- une unique matrice $\mathbb{U} \in \mathcal{M}_n(\mathbb{C})$ triangulaire supérieure (upper triangular en anglais) inversible

 $telles\ ques$

$$\mathbb{A} = \mathbb{LU}$$
.

Corollaire 2.6 (A = A = A = A). Si $A \in \mathcal{M}_n(\mathbb{C})$ est une matrice hermitienne définie positive alors elle admet une unique factorisation \mathbb{LU} .

Théorème 2.7 (Factorisation $\mathbb{L}\mathbb{U}$ avec permutations $A = A_n(\mathbb{C})$ une matrice inversible. Il existe une matrice \mathbb{P} , produit de matrices de permutation, une matrice $\mathbb{L} \in \mathcal{M}_n(\mathbb{C})$ triangulaire inférieure à diagonale unité et une matrice $\mathbb{U} \in \mathcal{M}_n(\mathbb{C})$ triangulaire supérieure inversible telles ques

$$\mathbb{P}\mathbb{A} = \mathbb{L}\mathbb{U}.\tag{3}$$

2.4 Factorisation \mathbb{LDL}^*

Théorème 2.8 (Factorisation \mathbb{LDL}^* $\stackrel{*}{\nearrow}$ $\stackrel{*}{\nearrow}$ $\stackrel{*}{\nearrow}$ $\stackrel{*}{\nearrow}$ $\stackrel{*}{\nearrow}$ 3.1.6 p.84). Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne inversible admettant une factorisation \mathbb{LU} . Alors \mathbb{A} s'écrit sous la forme

$$A = LDL^* \tag{4}$$

 $où \mathbb{D} = \operatorname{diag} \mathbb{U}$ est une matrice à coefficients réels.

Corollaire 2.9 (A = A = A). Une matrice $A \in \mathcal{M}_n(\mathbb{C})$ admet une factorisation A = A avec $A \in \mathcal{M}_n(\mathbb{C})$ matrice triangulaire inférieure à diagonale unité et A = A0 matrice diagonale à coefficients diagonaux strictement positifs A = A1 matrice A = A2 est hermitienne définie positive.

2.5 Factorisation de Cholesky

Définition 2.10 (3.1.1 p.84). Une factorisation régulière de Cholesky d'une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ est une factorisation $\mathbb{A} = \mathbb{BB}^*$ où \mathbb{B} est une matrice triangulaire inférieure inversible. Si les coefficients diagonaux de \mathbb{B} sont positifs, on parle alors d'une factorisation positive de Cholesky.

Théorème 2.11 (Factorisation de Cholesky $\bigstar \star \star \star \star \star \star \star$ 3.1.7 p.84). La matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ admet une factorisation régulière de Cholesky si et seulement si la matrice \mathbb{A} est hermitienne définie positive. Dans ce cas, elle admet une unique factorisation positive.

2.6 Factorisation \mathbb{QR}

Définition 2.12 (Matrice élémentaire de Householder 3.1.2 p.90). Soit $\mathbf{u} \in \mathbb{C}^n$ tel que $\|\mathbf{u}\|_2 = 1$. On appelle matrice élémentaire de Householder la matrice $\mathbb{H}(\mathbf{u}) \in \mathcal{M}_n(\mathbb{C})$ définie par

$$\mathbb{H}(\boldsymbol{u}) = \mathbb{I} - 2\boldsymbol{u}\boldsymbol{u}^*. \tag{5}$$

Propriété 2.13 (3.1.1 p.90). Toute matrice élémentaire de Householder est hermitienne et unitaire.

Propriété 2.14 (3.1.2 p.90). Soient $\boldsymbol{x} \in \mathbb{K}^n$ et $\boldsymbol{u} \in \mathbb{K}^n$, $\|\boldsymbol{u}\|_2 = 1$. On note $\boldsymbol{x}_{\parallel} = \operatorname{proj}_{\boldsymbol{u}}(\boldsymbol{x}) \stackrel{\text{def}}{=} \langle \boldsymbol{u}, \boldsymbol{x} \rangle \boldsymbol{u}$ et $\boldsymbol{x}_{\perp} = \boldsymbol{x} - \boldsymbol{x}_{\parallel}$. On a alors

$$\mathbb{H}(\boldsymbol{u})(\boldsymbol{x}_{\perp} + \boldsymbol{x}_{\parallel}) = \boldsymbol{x}_{\perp} - \boldsymbol{x}_{\parallel}. \tag{6}$$

et

$$\mathbb{H}(\boldsymbol{u})\boldsymbol{x} = \boldsymbol{x}, \quad si \langle \boldsymbol{x}, \boldsymbol{u} \rangle = 0. \tag{7}$$

Théorème 2.15 (3.1.8 p.90). Soient \boldsymbol{a} , \boldsymbol{b} deux vecteurs non nuls et non colinéaires de \mathbb{C}^n avec $\|\boldsymbol{b}\|_2 = 1$. Soit $\alpha \in \mathbb{C}$ tel que $|\alpha| = \|\boldsymbol{a}\|_2$ et $\arg \alpha = -\arg \langle \boldsymbol{a}, \boldsymbol{b} \rangle$ $[\pi]$. On a alors

$$\mathbb{H}\left(\frac{\boldsymbol{a} - \alpha \boldsymbol{b}}{\|\boldsymbol{a} - \alpha \boldsymbol{b}\|_{2}}\right) \boldsymbol{a} = \alpha \boldsymbol{b}.$$
 (8)

Corollaire 2.16 ($_{3.1.3 \text{ p.94}}$). Soit $\boldsymbol{a} \in \mathbb{C}^n$ non nul et non colinéaire à \boldsymbol{e}_1 , premier vecteur de la base canonique

 $de \mathbb{C}^n$. Alors, le vecteur $\mathbf{u} \in \mathbb{C}^n$ donné par

$$\boldsymbol{u} = \frac{\boldsymbol{a} + \|\boldsymbol{a}\|_2 e^{i \arg(\boldsymbol{a}_1)} \boldsymbol{e}_1}{\|\boldsymbol{a} + \|\boldsymbol{a}\|_2 e^{i \arg(\boldsymbol{a}_1)} \boldsymbol{e}_1\|_2}$$

est bien défini et on a

$$\mathbb{H}(\boldsymbol{u})\boldsymbol{a} = -\|\boldsymbol{a}\|_{2} e^{i \arg(\boldsymbol{a}_{1})} \boldsymbol{e}_{1}. \tag{9}$$

Lemme 2.17. Soit $\mathbb{A} \in \mathcal{M}_{m+n}(\mathbb{C})$ la matrice bloc

$$\mathbb{A} = \frac{m}{n} \left(\begin{array}{c|c} m & n \\ \mathbb{U} & \mathbb{F} \\ \hline \mathbb{E} & \mathbb{V} \end{array} \right)$$

où $\mathbb{V}_{:,1} \in \mathbb{C}^n$, premier vecteur colonne de \mathbb{V} , est non nul et non colinéaire à \mathbf{e}_1^n , premier vecteur de la base canonique de \mathbb{C}^n .

Alors $\mathbf{u} \in \mathbb{C}^n$ est bien défini par

$$\boldsymbol{u} = \frac{\mathbb{V}_{1,:} - \alpha \boldsymbol{e}_1^n}{\|\mathbb{V}_{1,:} - \alpha \boldsymbol{e}_1^n\|} \ \operatorname{avec} \ \alpha = -\left\|\mathbb{V}_{1,:}\right\|_2 e^{\imath \operatorname{arg}(\mathbb{V}_{1,1})}$$

et on a

$$\mathbb{H}(\boldsymbol{u})\mathbb{V}_{1,:}=\alpha\boldsymbol{e}_1^n,\quad avec\ \mathbb{H}(\boldsymbol{u})\stackrel{\text{\tiny def}}{=}\mathbb{I}-2\boldsymbol{u}\boldsymbol{u}^*.$$

De plus, en posant $\boldsymbol{w} = \begin{pmatrix} \mathbf{0}_m \\ \mathbf{u} \end{pmatrix} \in \mathbb{C}^{m+n}$, on a

$$\mathbb{H}(oldsymbol{w})\mathbb{A} = \left(egin{array}{c|c} \mathbb{U} & \mathbb{F} \ \hline \mathbb{H}(oldsymbol{u})\mathbb{E} & \mathbb{H}(oldsymbol{u})\mathbb{V} \end{array}
ight)$$

Théorème 2.18 (Factorisation \mathbb{QR} \Longrightarrow \Longrightarrow \Longrightarrow 3.1.9 p.95). Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ une matrice. Il existe une matrice unitaire $\mathbb{Q} \in \mathcal{M}_n(\mathbb{C})$ et une matrice triangulaire supérieure $\mathbb{R} \in \mathcal{M}_n(\mathbb{C})$ telles que

$$A = \mathbb{QR}. \tag{10}$$

 $Si \ \mathbb{A}$ est réelle alors \mathbb{Q} et \mathbb{R} sont aussi réelles et l'on peut choisir \mathbb{Q} de telle sorte que les coefficients diagonaux de \mathbb{R} soient positifs. De plus, si \mathbb{A} est inversible alors la factorisation est unique.