DIMENSION BOUND FOR BADLY APPROXIMABLE GRIDS

SEONHEE LIM, NICOLAS DE SAXCÉ, AND URI SHAPIRA

Abstract

We show that there exists a subset of full Lebesgue measure $V \subset \mathbb{R}^{n}$ such that for every $\epsilon>0$ there exists $\delta>0$ such that for any $v \in V$ the dimension of the set of vectors w satisfying $$
\liminf _{k \rightarrow \infty} k^{1 / n}\langle k v-w\rangle \geqslant \epsilon
$$ (where $\langle\cdot\rangle$ denotes the distance from the nearest integer), is bounded above by $n-\delta$. This result is obtained as a corollary of a discussion in homogeneous dynamics and the main tool in the proof is a relative version of the principle of uniqueness of measures with maximal entropy.

1. The main result and its applications

1.1. Geometry of numbers. A general theme in the geometry of numbers is to fix a domain $S \subset \mathbb{R}^{d}$ and study the intersection of it with sets possessing an algebraic structure such as lattices or their cosets. One is usually interested in bounding the cardinality of such an intersection and this will be the case in our discussion as well. We begin by describing the domains we will consider and which we refer to as spikes. Throughout, we fix a dimension $d \geqslant 2$ and a diagonal flow

$$
a_{t}=\operatorname{diag}\left(e^{c_{1} t}, \ldots, e^{c_{d} t}\right)
$$

where c_{i} are fixed non-zero numbers such that $\sum c_{j}=0$. Given a bounded open set $\mathcal{O} \subset \mathbb{R}^{d}$, we define the positive ${ }^{1}$ spike of \mathcal{O} with respect to a_{t} to be the set

$$
\begin{equation*}
S^{+}\left(a_{t}, \mathcal{O}\right)=S^{+}(\mathcal{O}) \stackrel{\text { def }}{=} \bigcup_{t>0} a_{t}^{-1} \mathcal{O} \tag{1.1}
\end{equation*}
$$

As a_{t} will be fixed throughout our discussion we omit it from the notation. The space of unimodular lattices (i.e. of covolume 1) in \mathbb{R}^{d} will be denoted by X. By a unimodular grid y in \mathbb{R}^{d}, we mean a coset $x+\mathbf{w}$ of a lattice $x \in X$ where $\mathbf{w} \in \mathbb{R}^{d}$. We denote by Y the space of unimodular grids in \mathbb{R}^{d}

[^0]

Figure 1. Spikes for $a_{t}=\operatorname{diag}\left(e^{t}, e^{-t}\right)$ of a ball around 0 , a half-ball around 0 , a ball around $(3,2)$
and by $\pi: Y \rightarrow X$ the natural projection. Note that for $x \in X$, the fiber $\pi^{-1}(x)$ is simply the torus \mathbb{R}^{d} / x. For $x \in X$ and an open set $\mathcal{O} \subset \mathbb{R}^{d}$, we set

$$
\begin{align*}
& F_{S^{+}(\mathcal{O})} \stackrel{\text { def }}{=}\left\{y \in Y: y \cap S^{+}(\mathcal{O}) \text { is finite }\right\} ; \\
& F_{S^{+}(\mathcal{O})}(x) \stackrel{\text { def }}{=} F_{S^{+}(\mathcal{O})} \cap \pi^{-1}(x) . \tag{1.2}
\end{align*}
$$

Our main result, Theorem 1.3 below, says that under a mild dynamical assumption on the forward a_{t}-orbit of x, the set $F_{S^{+}(\mathcal{O})}(x)$ cannot have maximal Hausdorff dimension in $\pi^{-1}(x)$. Let us introduce this dynamical assumption. The standard action of $G_{0} \stackrel{\text { def }}{=} \mathrm{SL}_{d}(\mathbb{R})$ on \mathbb{R}^{d} induces a transitive action of G_{0} on X, and since for $x_{0}=\mathbb{Z}^{d}$ we have $\operatorname{Stab} x_{0}=G_{0}(\mathbb{Z})$, we may identify $X \simeq G_{0} / G_{0}(\mathbb{Z})$. This endows X with a smooth manifold structure and with a unique G_{0}-invariant Borel probability measure, which we denote by m_{X}.

For a locally compact second countable Hausdorff space Z we will denote by $\mathscr{P}(Z)$ the space of Borel probability measures on Z and endow it with the weak* topology by identifying $\mathscr{P}(Z)$ with a subset of the unit sphere in the dual of $C_{0}(Z)$. For $\mu \in \mathscr{P}(Z)$ and $f \in C_{0}(X)$ we alternate between the notations $\mu(f)$ and $\int f d \mu$. We will denote by $\delta_{z} \in \mathscr{P}(Z)$ the Dirac probability measure at z. If a map $g: Z \rightarrow Z$ is fixed we denote for $z \in Z$ and $T \in \mathbb{Z}_{+}, \delta_{z}^{T} \stackrel{\text { def }}{=} \frac{1}{T} \sum_{i=0}^{T-1} \delta_{g^{i} z} \in \mathscr{P}(Z)$. Note that by the Banach-Alaoglu theorem $\{\alpha \mu: \alpha \in[0,1], \mu \in \mathscr{P}(Z)\}$ is compact in the weak* topology and thus for any $z \in Z$, the sequence $\delta_{z}^{T} \in \mathscr{P}(Z)$ has accumulation points of the form $\alpha \mu$ with $\alpha \in[0,1]$ and $\mu \in \mathscr{P}(Z)$. The following is concerned with the situation where δ_{z}^{T} can accumulate on a probability measure. Throughout we use the notation δ_{x}^{T} for the transformation $a=a_{1}: X \rightarrow X$.

Definition 1.1 (Heavy lattice).
(1) A lattice $x \in X$ is called heavy (for a_{t} in positive time) if

$$
\left\{\delta_{x}^{T}: T \in \mathbb{Z}_{+}\right\}^{\omega} \cap \mathscr{P}(X) \neq \varnothing
$$

where F^{ω} is the set of accumulation points of F.
(2) We fix once and for all a sequence of compactly supported functions $\psi_{i} \in C_{c}(X)$ such that $0 \leqslant \psi_{i} \leqslant 1$, and $\psi_{i}^{-1}(1)$ is an increasing sequence of compact sets that covers X. Given a sequence of nonnegative numbers $\eta_{i} \rightarrow 0$, we define

$$
\mathscr{P}\left(X,\left(\eta_{i}\right)\right) \stackrel{\text { def }}{=}\left\{\mu \in \mathscr{P}(X): \forall i, \mu\left(\psi_{i}\right) \geqslant 1-\eta_{i}\right\} .
$$

(3) Given a sequence of non-negative numbers $\eta_{i} \rightarrow 0$, we define

$$
\mathcal{H}\left(\eta_{i}\right) \stackrel{\text { def }}{=}\left\{x \in X:\left\{\delta_{x}^{T}: T \in \mathbb{Z}_{+}\right\}^{\omega} \cap \mathscr{P}\left(X,\left(\eta_{i}\right)\right) \neq \varnothing\right\}
$$

As the following lemma shows, any heavy lattice belongs to some $\mathcal{H}\left(\eta_{i}\right)$. The point in defining $\mathscr{P}\left(X,\left(\eta_{i}\right)\right)$ and $\mathcal{H}\left(\eta_{i}\right)$ is that our results about heavy lattices will be uniform on $\mathcal{H}\left(\eta_{i}\right)$.

Lemma 1.2.

(1) $\mathscr{P}(X)=\bigcup \mathscr{P}\left(X,\left(\eta_{i}\right)\right)$ where the union is taken over all sequences of non-negative numbers $\eta_{i} \rightarrow 0$.
(2) The set of heavy lattices equals $\bigcup \mathcal{H}\left(\eta_{i}\right)$ where the union is taken over all sequences of non-negative numbers $\eta_{i} \rightarrow 0$.
(3) $\mathscr{P}\left(X,\left(\eta_{i}\right)\right)$ is compact.

Proof. (1). For $\mu \in \mathscr{P}(X), \mu \in \mathscr{P}\left(X,\left(\eta_{i}\right)\right)$ for $\eta_{i} \stackrel{\text { def }}{=} 1-\mu\left(\psi_{i}\right)$. Note that $\eta_{i} \rightarrow 0$ because $\psi_{i}^{-1}(1)$ is an increasing cover of X.
(2). Let x be a heavy lattice and let $\mu \in\left\{\delta_{x}^{T}: T \in \mathbb{Z}^{+}\right\}^{\omega} \cap \mathscr{P}(X)$. By part (1) $\mu \in \mathscr{P}\left(X,\left(\eta_{i}\right)\right)$ for some sequence $\left(\eta_{i}\right)$. By definition we then have that $x \in \mathcal{H}\left(\eta_{i}\right)$.
(3). Let $\mu_{m} \in \mathscr{P}\left(X,\left(\eta_{i}\right)\right)$ be a sequence and let μ be a weak* accumulation point of it. For each i we have $\mu(X) \geqslant \mu\left(\psi_{i}\right)=\lim _{m} \mu_{m}\left(\psi_{i}\right) \geqslant 1-\eta_{i}$. Letting $i \rightarrow \infty$ we obtain $\mu(X)=1$ and $\mu\left(\psi_{i}\right) \geqslant 1-\eta_{i}$ so that $\mu \in \mathscr{P}\left(X,\left(\eta_{i}\right)\right)$ by definition.

Our main result is as follows. Here, dim_{H} denotes Hausdorff dimension with respect to the Euclidean metric on $\pi^{-1}(x) \simeq \mathbb{R}^{d} / x$.

Theorem 1.3 (Heavy lattices have few bad grids). For any bounded open set $\mathcal{O} \subset \mathbb{R}^{d}$, if x is heavy (for a_{t} in positive time), then

$$
\operatorname{dim}_{H} F_{S^{+}(\mathcal{O})}(x)<d .
$$

In fact, for a given $\eta_{i} \rightarrow 0$, there exists $\delta=\delta\left(\mathcal{O},\left(\eta_{i}\right)\right)>0$ such that for any $x \in \mathcal{H}\left(\eta_{i}\right)$,

$$
\operatorname{dim}_{H} F_{S^{+}(\mathcal{O})}(x)<d-\delta .
$$

By Lemma $1.2(2)$, results stated for lattices in $\mathcal{H}\left(\eta_{i}\right)$ for arbitrary $\left(\eta_{i}\right)$ automatically hold for heavy lattices. Thus, the second part of Theorem 1.3 implies the first and demonstrates the uniformity gained by exhausting the set of heavy lattices by the sets $\mathcal{H}\left(\eta_{i}\right)$. The following corollary shows that
this uniformity survives if one is only interested in an almost sure statement with respect to the smooth measure m_{X}.

Corollary 1.4 (Random lattices have few bad grids). For any bounded open set $\mathcal{O} \subset \mathbb{R}^{d}$, there exists $\delta>0$ such that for m_{X}-almost any lattice x, $\operatorname{dim}_{H} F_{S^{+}(\mathcal{O})}(x) \leqslant d-\delta$.

Proof. By the ergodicity of the action of a_{1} on X, for almost any $x, \delta_{x}^{T} \xrightarrow{\mathrm{w}^{*}}$ m_{X} which trivially implies $m_{X} \in\left\{\delta_{x}^{T}: T>0\right\}^{\omega}$. By Lemma 1.2(1), $m_{X} \in$ $\mathscr{P}\left(X,\left(\eta_{i}\right)\right)$ for a suitable sequence $\left(\eta_{i}\right)$. Thus by definition $x \in \mathcal{H}\left(\eta_{i}\right)$. The result then follows from Theorem 1.3.
1.2. An application to Diophantine approximation. For a vector $v \in$ \mathbb{R}^{n}, we are interested in the behaviour of the sequence

$$
\left\{k v \bmod \mathbb{Z}^{n} ; k \in \mathbb{N}\right\} \subset \mathbb{R}^{n} / \mathbb{Z}^{n}
$$

If v does not belong to a rational subspace, this sequence is dense and even equidistributed so that for any target $w \in \mathbb{R}^{n}$, we have that $\inf _{k \geqslant 1}\langle k v-w\rangle=$ 0 , where $\langle t\rangle$ denotes the distance from t to \mathbb{Z}^{n}. A more subtle question is whether $\liminf _{k \rightarrow \infty} \psi(k)\langle k v-w\rangle=0$ for some prescribed function $\psi \nearrow \infty$ on \mathbb{N}. One may visualize this as a shrinking target problem where one asks if for any $\epsilon>0$ and for arbitrarily large k, the point $k v \bmod \mathbb{Z}^{n}$ on the n-torus is inside the ball of radius $\psi(k)^{-1} \epsilon$ centered at w (which is the shrinking target). The case that we consider here is $\psi(k)=k^{1 / n}$. We call $w \epsilon$-bad for v if

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} k^{1 / n}\langle k v-w\rangle \geqslant \epsilon \tag{1.3}
\end{equation*}
$$

and denote

$$
\begin{aligned}
\mathbf{B a d}^{\epsilon}(v) & \stackrel{\text { def }}{=}\left\{w \in \mathbb{R}^{n}: w \text { is } \epsilon \text {-bad for } v\right\} \\
\operatorname{Bad}(v) & \stackrel{\text { def }}{=} \bigcup_{\epsilon>0} \mathbf{B a d}^{\epsilon}(v)
\end{aligned}
$$

Our main application is the following.
Theorem 1.5. For any $\epsilon>0$ there exists $\delta>0$ such that for Lebesgue almost every $v \in \mathbb{R}^{n}, \operatorname{dim}_{H} \mathbf{B a d}^{\epsilon}(v)<n-\delta$.

To put this in context we mention that it follows from [BHKV10] that for any $v \in \mathbb{R}^{n}, \operatorname{dim}_{H} \operatorname{Bad}(v)=n$. Later, it was shown in [ET11] that $\mathbf{B a d}(v)$ is a winning set.

Note also that the conclusion of the theorem cannot hold for every $v \in \mathbb{R}^{n}$. Indeed, if v lies in a rational subspace, then for small enough ϵ, the set $\operatorname{Bad}^{\epsilon}(v)$ has non-empty interior and thus obviously has dimension n. It is clear that when the vector v is rational, it is in particular singular, i.e. for any $\delta>0$, there exists T_{δ} such that for any $T>T_{\delta}$, there exists $k<T$ such that $T^{1 / n}\langle k v\rangle<\delta$.

On the other hand, in Section 6 we construct non-singular vectors which violate the conclusion of the theorem and satisfy $\operatorname{dim}_{H} \operatorname{Bad}^{\epsilon}(v)=n$ for a positive ϵ.

As we will see in Section 4, Theorem 1.5 holds not only for almost every v, but for any heavy vector v (although the constant δ in Theorem 1.5 might depend on v), see Definition 5.1 and Theorem 5.3. It follows from [Sha13] that for non-singular vectors $\lambda(\boldsymbol{\operatorname { B a d }}(v))=0$, where λ is the Lebesgue measure on \mathbb{R}^{n}. Thus the above theorem is an upgrade of the result in [Sha13] just mentioned under the stronger assumption of heaviness. We refer the reader to Section 4 for other examples of applications of Theorem 1.3, such as Diophantine approximation of affine subspaces of \mathbb{R}^{n}.
1.3. Outline of the proof of Theorem 1.3. We briefly describe our strategy for the proof of the first part of Theorem 1.3 which is similar in spirit to the idea given in [BM92, Remark 2.2] and which could be described in a nutshell as rigidity of measures with maximal entropy. Assuming by way of contradiction that $\operatorname{dim} F_{S^{+}(\mathcal{O})}(x)=d$ for a heavy lattice x, we construct a sequence of probability measures μ_{k} defined by taking the uniform measures ν_{k} on large finite sets $S_{k} \subset F_{S^{+}(\mathcal{O})}(x) \subset \pi^{-1}(x)$ and averaging them along the a_{1}-orbit; $\mu_{k}=n_{k}^{-1} \sum_{i=1}^{n_{k}}\left(a_{1}\right)_{*}^{i} \nu_{k}$, for a suitable n_{k} (defined in the proof of Proposition 2.3). The heaviness assumption allows us to take a weak-* limit μ of μ_{k} that is a probability measure on Y and moreover, the maximal dimension assumption translates into the maximality of the relative entropy of μ with respect to a_{1} relative to the factor X. We then prove that maximality of the relative entropy implies invariance of μ under the whole subgroup of translations in \mathbb{R}^{d}. This leads us to a contradiction because by construction, μ is supported on the accumulation points of forward a_{t}-orbits of the points in $F_{S^{+}(\mathcal{O})}$ and in particular, must be supported in the closed a_{t}-invariant set $\left\{y \in Y: 0 \in y\right.$ or $\left.\forall t \in \mathbb{R}, a_{t} \cdot y \cap \mathcal{O}=\varnothing\right\}$.
1.4. Plan of the paper. Apart from this introduction, this paper consists of five parts. In Section 2, we show that a set of large dimension in the space of grids, contained in a single fiber, can be used to construct an $a_{t^{-}}$ invariant measure on Y with large entropy with respect to the factor X. Then, in Section 3, we study a_{t}-invariant measures with maximal relative entropy with respect to X; using work of Einsiedler and Lindenstrauss, we show that they are invariant under the unstable horospherical subgroup U^{+} associated to a_{t}. In Section 4, using the two previous sections, we finish the proof of Theorem 1.3, before explaining the applications to Diophantine approximation in Section 5. We conclude the paper with Section 6, detailing the construction of some lattices with non-divergent a_{t}-orbits that do not satisfy the conclusion of Theorem 1.3.

2. Measures with large entropy

Given a heavy lattice x for a_{t} and a set $S \subset \pi^{-1}(x)$ of grids lying above x, we explain how to construct a measure μ on Y with large entropy relative to the factor X, which is supported in the closure of the forward orbit of S under the diagonal flow a_{t}.
2.1. Action on the space of grids. Just like for the space X of lattices in \mathbb{R}^{d}, one can view the space Y of unimodular grids as a homogeneous space. Indeed, the natural action on \mathbb{R}^{d} of the group $G=\mathrm{ASL}_{d}(\mathbb{R})$ of area-preserving affine transformations induces a transitive action on Y, with Stab $y_{0}=G(\mathbb{Z})$ if $y_{0}=\mathbb{Z}^{d}$, so that $Y \simeq G / G(\mathbb{Z})$ has a natural smooth manifold structure, and carries a unique G-invariant probability measure m_{Y}.

We denote by U the unipotent radical of G, which consists of all translations on \mathbb{R}^{d}. It is clear that U acts simply transitively on \mathbb{R}^{d}. One naturally identifies $G_{0}=\mathrm{SL}_{d}(\mathbb{R})$ with G / U, and then, the canonical projection $\pi: Y \rightarrow X$ intertwines the actions of G and G_{0} on Y and X, respectively, in the sense that for any $g \in G$ and $y \in Y$,

$$
\pi(g \cdot y)=\bar{g} \cdot \pi(y),
$$

where \bar{g} denotes the projection of g to $G_{0} \simeq G / U$. Clearly, if y is a grid with underlying lattice x, then

$$
\pi^{-1}(x)=U y
$$

It is sometimes convenient to view G as a subgroup of $\mathrm{SL}_{d+1}(\mathbb{R})$ by

$$
G=\left\{\left(\begin{array}{cc}
A & u \\
0 & 1
\end{array}\right) ; A \in \mathrm{SL}_{d}(\mathbb{R}), u \in \mathbb{R}^{d}\right\}
$$

in which case the unipotent radical is $U=\left\{\left(\begin{array}{cc}I_{d} & u \\ 0 & 1\end{array}\right): u \in \mathbb{R}^{d}\right\}$.
Recall that $a_{t}=\operatorname{diag}\left(e^{c_{1} t}, \ldots, e^{c_{d} t}\right)$ is a one-parameter diagonal subgroup in $G_{0}=\mathrm{SL}_{d}(\mathbb{R})$. We take a lift of this one-parameter group to $G \subset \mathrm{SL}_{d+1}(\mathbb{R})$ given by $\left(\begin{array}{cc}a_{t} & 0 \\ 0 & 1\end{array}\right)$ and by abuse of notation we denote it again by a_{t}. It will be convenient to normalize the flow a_{t} so that

$$
\begin{equation*}
\max _{1 \leqslant i \leqslant d} c_{i}=1 . \tag{2.1}
\end{equation*}
$$

We let $a \stackrel{\text { def }}{=} a_{1}$ be the time-one map for the diagonal flow and denote by G^{+} the unstable horospherical subgroup for a in G, i.e.

$$
G^{+} \stackrel{\text { def }}{=}\left\{g \in G \mid a_{t} g a_{t}^{-1} \rightarrow e \text { as } t \rightarrow-\infty\right\} .
$$

We let $U^{+} \stackrel{\text { def }}{=} U \cap G^{+}$so that if $J^{+}=\left\{i \in\{1, \ldots, d\} \mid c_{i}>0\right\}$, then we have

$$
U^{+}=\left\{\left(\begin{array}{cc}
I_{d} & u \\
0 & 1
\end{array}\right) ; u={ }^{t}\left(u_{1}, \ldots, u_{d}\right) \in \mathbb{R}^{d} \text { with } u_{i}=0 \forall i \notin J^{+}\right\}
$$

On U, we will use the Euclidean distance d_{E} inherited from \mathbb{R}^{d}. This metric induces a metric, still denoted by d_{E}, on the fiber $\pi^{-1}(x) \simeq \mathbb{R}^{d} / x$ of
all grids lying above $x \in X$. Given a grid y, we define the fiber injectivity radius at y to be the maximal number $r_{y}>0$ such that the orbit map $u \mapsto u y$ is injective on the open ball $B_{2 r_{y}}^{U, d_{E}}(0)$ of radius $2 r_{y}$ in U for the Euclidean metric d_{E}, therefore isometric on $B_{r_{y}}^{U, d_{E}}(0)$. Note that the fiber injectivity radius is constant along the fiber and is bounded away from zero on compact sets in Y.

On U^{+}, we will also make use of another metric, or rather, quasi-metric, more adapted to the action of a_{t}. We define the quasi-norm associated to a by $|u|_{a}=\max _{j \in J^{+}}\left|u_{j}\right|^{1 / c_{j}}$. The function on $U^{+} \times U^{+}$, given by $d_{a}(u, v)=$ $|u-v|_{a}$ is a quasi-metric: it is symmetric, positive definite, and satisfies, for some constant C depending on the c_{i}, for all u, v, w in U^{+},

$$
d_{a}(u, w) \leqslant C\left(d_{a}(u, v)+d_{a}(v, w)\right) .
$$

The ball $B_{\delta}^{U^{+}, d_{a}}(u)$ of radius δ around u for d_{a} is simply the set of $v \in U^{+}$ such that $d_{a}(u, v)<\delta$.
Remark 2.1. We observe two things:
(1) A ball $B_{\delta}^{U^{+}, d_{a}}$ in U^{+}is simply a box with side-lengths $2 \delta^{c_{j}}, j \in J^{+}$ with respect to d_{E}.
(2) The action of a_{t} on U^{+}is a dilation by a factor of e^{t} for the quasimetric d_{a}; that is, for all u, v in U^{+}and $t \in \mathbb{R}$, we have

$$
\begin{equation*}
d_{a}\left(a_{t} u, a_{t} v\right)=e^{t} d_{a}(u, v) \tag{2.2}
\end{equation*}
$$

We let W_{y}^{+}be the image of y under the action of $B_{r_{y}}^{U^{+}, d_{E}}$. We call W_{y}^{+} the injective unstable leaf at y in the fiber. By definition of r_{y}, the orbit map identifies $\left(B_{r_{y}}^{U^{+}, d_{E}}, d_{E}\right)$ and $\left(W_{y}^{+}, d_{E}\right)$ isometrically. Of course, the quasimetric d_{a} on U^{+}also induces a quasi-metric on W_{y}^{+}, which we again denote by d_{a}. Since we will use both distances d_{E} and d_{a} on W_{y}^{+}(which are far from being equivalent if $c_{j}<1$ for some $j \in J^{+}$), we will indicate the metric in the superscript when necessary.
2.2. Dimensions. Let X be a space endowed with a quasi-metric d. For a bounded subset $S \subset X$ we will consider its lower Minkowski dimension (or lower box dimension) $\operatorname{dim}_{d} S$ for the quasi-metric d, defined by

$$
\operatorname{dim}_{d} S \stackrel{\text { def }}{=} \liminf _{\delta \rightarrow 0} \frac{\log N_{d}(S, \delta)}{\log \frac{1}{\delta}}
$$

where $N_{d}(S, \delta)$ is the maximal cardinality of a δ-separated subset of S for the quasi-metric d. If S is unbounded, we let $\operatorname{dim}_{d} S=\sup \left\{\operatorname{dim}_{d} S \cap\right.$ $K ; K$ compact $\}$.

In particular, for a set $S \subset W_{y}^{+}$, we will consider its lower Minkowski dimensions

$$
\operatorname{dim}_{a} S \stackrel{\text { def }}{=} \underline{\operatorname{dim}}_{d_{a}} S, \quad \underline{\operatorname{dim}}_{M} S \stackrel{\text { def }}{=} \underline{\operatorname{dim}}_{d_{E}} S
$$

for the quasi-metric d_{a} and the Euclidean metric d_{E}, respectively. We will also consider the Hausdorff dimension $\operatorname{dim}_{H} S$, always defined with respect
to the Euclidean metric. We refer the reader to [Fal03] for general properties of Minkowski or Hausdorff dimensions, such as the inequality

$$
\underline{\operatorname{dim}}_{M} S \geqslant \operatorname{dim}_{H} S .
$$

We introduce $\underline{\operatorname{dim}}_{a}$ in order to relate dimension $\underline{\operatorname{dim}}_{M}$ to entropy, and further to Hausdorff dimension. The following simple observation gives a relation between $\underline{\operatorname{dim}}_{M} S$ and $\underline{\operatorname{dim}}_{a} S$. Let

$$
h_{a}=\sum_{i \in J^{+}} c_{i} .
$$

Lemma 2.2. We have $\operatorname{dim}_{a} U^{+}=h_{a}$, and moreover, for any set $S \subset U^{+}$,

$$
\underline{\operatorname{dim}}_{a} S \geqslant \underline{\operatorname{dim}}_{M} S+h_{a}-\operatorname{dim} U^{+} .
$$

Proof. A δ-ball for d_{a} is a Euclidean box with side lengths $2 \delta^{c_{i}}$, so that any bounded set in U^{+}can be covered by $O\left(\delta^{-h_{a}}\right)$ balls of radius δ for d_{a}. Conversely, for volume reasons, one needs at least $O\left(\delta^{-h_{a}}\right) \delta$-balls for d_{a} to cover any non-empty open set in U^{+}. This shows the first equality.

For the general inequality, let $u=\operatorname{dim} U^{+}$. Each d_{a}-ball of radius δ can be covered by at most $\delta^{h_{a}-u}$ boxes of side lengths 2δ which in turn can be covered by the same number of Euclidean balls (up to a multiplicative constant, say $C)$. Thus $N_{d_{a}}(S, \delta) \geqslant C \delta^{h_{a}-u} N_{d_{E}}(S, \delta)$. Taking logarithms, dividing by $\log 1 / \delta$, and taking $\delta \rightarrow 0$ gives the result.
2.3. Constructing a measure of large entropy. We refer the reader to [ELW, $\S 2.2$] for the definition of relative entropy with respect to an infinite countably generated σ-algebra; in particular, if \mathcal{P} is any countable partition of Y, then $H_{\mu}(\mathcal{P} \mid X)$ will denote the relative entropy of \mathcal{P} with respect to the σ-algebra $\pi^{-1}\left(\mathcal{B}_{X}\right)$, i.e. the inverse image under π of the Borel σ-algebra \mathcal{B}_{X} on X. Finally, $h_{\mu}(a \mid X)$ denotes the relative entropy of the transformation $a=a_{1}: Y \rightarrow Y$ for the measure μ (relative to X), i.e.

$$
h_{\mu}(a \mid X) \stackrel{\text { def }}{=} \sup _{\mathcal{P}} \inf _{q \in \mathbb{Z}^{+}} \frac{1}{q} H_{\mu}\left(\mathcal{P}^{(q)} \mid X\right),
$$

where the supremum runs over countable partitions \mathcal{P} with $H_{\mu}(\mathcal{P} \mid X)<\infty$, and $\mathcal{P}^{(q)}=\bigvee_{i=0}^{q-1} a^{-i} \mathcal{P}$ denotes the join of the preimages $a^{-i} \mathcal{P}$. We can now state the main result of this section. The reader might benefit from reviewing Definition 1.1 first.

Proposition 2.3 (Lower bound on the entropy). Let x be a lattice in $\mathcal{H}\left(\eta_{i}\right)$ for some sequence $\eta_{i} \rightarrow 0$ and let $y \in \pi^{-1}(x)$. Furthermore, let

$$
\mu^{0} \in\left\{\delta_{x}^{T}: T \in \mathbb{Z}_{+}\right\}^{\omega} \cap \mathscr{P}\left(X,\left(\eta_{i}\right)\right) .
$$

For any $S \subset W_{y}^{+}$, where $W_{y}^{+} \subset \pi^{-1}(x)$ is the injective unstable leaf at y in the fiber, there exists an a-invariant $\mu \in \mathscr{P}(Y)$ satisfying:
(1) $\pi_{*} \mu=\mu^{0}$,
(2) $\operatorname{Supp} \mu \subset \bigcap_{s \in \mathbb{Z}^{+}} \bigcup_{t \geqslant s} a_{t} S$,
(3) $h_{\mu}(a \mid X) \geqslant \operatorname{dim}_{a} S \geqslant \operatorname{dim}_{M} S+h_{a}-\operatorname{dim} U^{+}$.

Furthermore, if \mathcal{P} is any finite partition of Y satisfying:

- \mathcal{P} contains an atom P_{∞} of the form $\pi^{-1}\left(P_{\infty}^{0}\right)$, where $X \backslash P_{\infty}^{0}$ has compact closure and $\left.\psi_{i}\right|_{P_{\infty}^{0}} \equiv 0$ for some i (ψ_{i} is as in Definition 1.1).
- $\forall P \in \mathcal{P} \backslash\left\{P_{\infty}\right\}$, diam $P<r$, with $r \in\left(0, \frac{1}{2}\right)$ such that any d_{a}-ball of radius $3 r$ has Euclidean diameter smaller than the fiber injectivity radius on $Y \backslash P_{\infty}$,
- $\forall P \in \mathcal{P}, \mu(\partial P)=0$,
then, for all $q \geqslant 1, \frac{1}{q} H_{\mu}\left(\mathcal{P}^{(q)} \mid X\right) \geqslant \operatorname{dim}_{a} S-D \eta_{i}$, where D is a constant depending only on the c_{i} 's and the dimension d.

The proof of Proposition 2.3 will follow the strategy used to derive the variational principle for the topological entropy, as in [ELW, §5.3.3], but there is a slight complication here, because the space Y of grids is not compact. To solve this problem, we will need Lemma 2.4 below, which is inspired by [ELMV12, Lemma 4.5].
Lemma 2.4. Let $P_{\infty}^{0} \subset X$ be such that $X \backslash P_{\infty}^{0}$ has compact closure. Set $P_{\infty}=\pi^{-1}\left(P_{\infty}^{0}\right)$ and fix $0<r<1$ such that any d_{a}-ball of radius $3 r$ has Euclidean diameter smaller than the fiber injectivity radius on $Y \backslash P_{\infty}$. Let $y \in Y \backslash P_{\infty}$ and set $I=\left\{t \in \mathbb{Z}^{+} \mid a_{t} y \in P_{\infty}\right\}$. For any non-negative integer T, let

$$
E_{y, T}=\left\{z \in W_{y}^{+} \mid \forall t \in\{1, \ldots, T\} \backslash I, d_{E}\left(a_{t} y, a_{t} z\right) \leqslant r\right\} .
$$

Then one can cover $E_{y, T}$ by $C e^{D|I \cap\{1, \ldots, T\}|} d_{a}$-balls of radius $\delta_{T}=r e^{-T}$, where C is a constant depending on y, r and a, and D is a constant depending on a and the dimension d. In particular, they are independent of T.

Proof. Before we start the proof, we make the following observation: for $y^{\prime}, z^{\prime} \notin P_{\infty}$ in the same fiber, the intersection $B_{r}^{U y^{\prime}, d_{E}}\left(y^{\prime}\right) \cap W_{z^{\prime}}^{+}$is contained in $B_{r}^{W_{z^{\prime}}^{+}, d_{E}}\left(z^{\prime \prime}\right)$ for some $z^{\prime \prime} \in W_{z^{\prime}}^{+}$since the Euclidean distance d_{E} on the fiber $U y^{\prime}=\pi^{-1}\left(\pi\left(y^{\prime}\right)\right)$ restricts to a Euclidean distance on the injective unstable leaf at z^{\prime}. Moreover, since $r<1$ and by (2.1), Euclidean r-balls are contained in d_{a}-balls and so we conclude that

$$
\begin{equation*}
B_{r}^{U y^{\prime}, d_{E}}\left(y^{\prime}\right) \cap W_{z^{\prime}}^{+} \subset B_{r}^{W_{z^{\prime}}^{+}, d_{a}}\left(z^{\prime \prime}\right) \tag{2.3}
\end{equation*}
$$

We prove the lemma by induction on T.
$T=0$: By (1) of Remark 2.1, the number of balls of radius $\delta_{0}=r$ for the metric d_{a} needed to cover W_{y}^{+}is bounded by a integer constant C depending on a, r and y, so that the lemma holds in this case.
$T-1 \rightarrow T$: Choose D such that any d_{a}-ball of radius δ on U^{+}can be covered by $e^{D} d_{a}$-balls of radius δ / e. Assume for clarity that e^{D} is an integer. By the induction hypothesis, $E_{y, T-1}$ can be covered by $N_{T-1} \stackrel{\text { def }}{=} C e^{D|I \cap\{1, \ldots, T-1\}|}$ d_{a}-balls of radius $\delta_{T-1}=r e^{-T+1}$.

If $T \in I$, we simply cover each δ_{T-1}-ball in W_{y}^{+}by e^{D} balls of radius $\delta_{T}=r e^{-T}$ for d_{a}, and get a cover $E_{y, T}$ with cardinality $N_{T}=e^{D} N_{T-1}$ by d_{a}-balls.

If $T \notin I$, we need to cover $E_{y, T}$ by $N_{T}=N_{T-1} d_{a}$-balls of radius δ_{T}. Denote the above cover of $E_{y, T-1}$ by $\left\{B_{\delta_{T-1}}^{W_{y}^{+}, d_{a}}\left(z_{i}\right) ; i=1, \ldots, N_{T-1}\right\}$. As $E_{y, T} \subset E_{y, T-1}$, the set $\left\{E_{y, T} \cap B_{\delta_{T-1}}^{W_{y}^{+}, d_{a}}\left(z_{i}\right) ; i=1, \ldots, N_{T-1}\right\}$ covers $E_{y, T}$. We claim that for each z_{i}, there exists some p_{i} with

$$
E_{y, T} \cap B_{\delta_{T-1}}^{W_{y}^{+}, d_{a}}\left(z_{i}\right) \subset B_{\delta_{T}}^{W_{z}^{+}, d_{a}}\left(p_{i}\right),
$$

so that $E_{y, T}$ is actually covered by $\left\{B_{\delta_{T}}^{W_{z}^{+}, d_{a}}\left(p_{i}\right)\right\}$ i.e. by $N_{T}=N_{T-1} d_{a}$-balls of radius δ_{T}. Observe that

$$
E_{y, T} \cap B_{\delta_{T-1}}^{W_{z}^{+}, d_{a}}(z) \subset a_{T}^{-1}\left(B_{r}^{U a_{T} y, d_{E}}\left(a_{T} y\right) \cap a_{T} B_{\delta_{T-1}}^{W_{z}^{+}, d_{a}}(z)\right)
$$

By our choice of r, the fact that $a_{T} y \notin P_{\infty}$ (and hence $a_{T} z \notin P_{\infty}$) and (2.2), the map a_{T} scales d_{a} by a factor of e^{T} and we conclude that

$$
\begin{equation*}
a_{T} B_{\delta_{T-1}}^{W_{z}^{+}, d_{a}}(z) \cap B_{r}^{U a_{T} y, d_{E}}\left(a_{T} y\right)=B_{e r}^{W_{T}^{+}, d_{a}}\left(a_{T} z\right) \cap B_{r}^{U a_{T} y, d_{E}}\left(a_{T} y\right) \tag{2.4}
\end{equation*}
$$

which is contained in a single d_{a}-ball of radius r by the observation (2.3) (with $z^{\prime}=a_{T} z, y^{\prime}=a_{T} y$). Thus $E_{y, T} \cap B_{\delta_{T-1}}^{W_{z}^{+}, d_{a}}(z)$ is contained in a single d_{a}-ball of radius $r e^{-T}$. This concludes the inductive step.

Now we can prove Proposition 2.3.
Proof of Proposition 2.3. The assumption that $\mu^{0} \in\left\{\delta_{x}^{T}: T \in \mathbb{Z}_{+}\right\}^{\omega} \cap \mathscr{P}\left(X,\left(\eta_{i}\right)\right)$ means that we may fix an increasing sequence of integers $\left(n_{k}\right)$ such that

$$
\mu_{k}^{0} \stackrel{\text { def }}{=} \frac{1}{n_{k}} \sum_{n=0}^{n_{k}-1} \delta_{a^{n} x} \xrightarrow{\mathrm{w}^{*}} \mu^{0} \in \mathscr{P}\left(X,\left(\eta_{i}\right)\right) .
$$

Then, for each $k \geqslant 1$, let S_{k} be a maximal ρ_{k}-separated subset of S, for the metric d_{a}, where $\rho_{k} \stackrel{\text { def }}{=} e^{-n_{k}}$. Let $\nu_{k} \stackrel{\text { def }}{=} \frac{1}{\left|S_{k}\right|} \sum_{y \in S_{k}} \delta_{y}$ be the normalized counting measure on S_{k} and

$$
\mu_{k} \stackrel{\text { def }}{=} \frac{1}{n_{k}} \sum_{n=0}^{n_{k}-1} a_{*}^{n} \nu_{k}
$$

Since $\pi: Y \rightarrow X$ is proper, and the measures $\pi_{*} \mu_{k}=\mu_{k}^{0}$ converge to a probability measure μ^{0} on X, we conclude that the sequence of measures $\left(\mu_{k}\right)$ is tight, i.e. that any weak-* converging subsequence of it converges to a probability measure. Extracting a subsequence if necessary, we may assume without loss of generality that $\left(\mu_{k}\right)$ converges weak-* to some probability measure, which we denote by μ. By continuity of π_{*} we obtain

$$
\pi_{*} \mu=\pi_{*} \lim _{k} \mu_{k}=\lim _{k} \mu_{k}^{0}=\mu^{0}
$$

which is the item (1) in the proposition.
By construction, $\operatorname{Supp} \mu$ is contained in the set of accumulation points of the forward orbit of S under (a_{t}) which establishes item (2) in the proposition.

The right inequality in item (3) follows directly from Lemma 2.2. For simplicity of notation, let $\beta \stackrel{\text { def }}{=} \underline{\operatorname{dim}}_{a} S$, so that

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{\log \left|S_{k}\right|}{n_{k}} \geqslant \beta \tag{2.5}
\end{equation*}
$$

To prove that μ also satisfies the the left inequality in item (3) of the proposition saying that $h_{\mu}(a \mid X) \geqslant \beta$ we proceed as follows. Given i we construct a partition \mathcal{P} of Y for which

$$
\begin{equation*}
\frac{1}{q} H_{\mu}\left(\mathcal{P}^{(q)} \mid X\right) \geqslant \beta-D \eta_{i}, \tag{2.6}
\end{equation*}
$$

where D is as in Lemma 2.4. This implies that

$$
h_{\mu}(a \mid X) \geqslant h_{\mu}(a, \mathcal{P} \mid X)=\lim _{q} \frac{1}{q} H_{\mu}\left(\mathcal{P}^{(q)} \mid X\right) \geqslant \beta-D \eta_{i},
$$

and letting $i \rightarrow \infty$ we obtain the desired inequality $h_{\mu}(a \mid X) \geqslant \beta$.
To this end fix i_{0} and consider $\eta=\eta_{i_{0}}$. Choose a set $P_{\infty}^{0} \subset X$ such that $X \backslash P_{\infty}^{0}$ is compact, $\mu^{0}\left(\partial P_{\infty}^{0}\right)=0$, and such that $\left.\psi_{i_{0}}\right|_{P_{0}^{\infty}} \equiv 0$. Since $\mu^{0} \in \mathscr{P}\left(X,\left(\eta_{i}\right)\right)$ it follows that $\mu^{0}\left(P_{\infty}^{0}\right) \leqslant \eta_{i_{0}}=\eta$ and in turn, $P_{\infty}=\pi^{-1}\left(P_{\infty}^{0}\right)$ satisfies $\mu\left(P_{\infty}\right) \leqslant \eta$ and $\mu\left(\partial P_{\infty}\right)=0$. Since $\left(\mu_{k}\right)$ converges to μ, we have for any $y \in \pi^{-1}(x)$, with $I=\left\{t \in \mathbb{Z}^{+} \mid a_{t} y \in P_{\infty}\right\}$ (note that I depends only on $x)$,

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{1}{n_{k}}\left|I \cap\left\{1, \ldots, n_{k}\right\}\right| \leqslant \eta . \tag{2.7}
\end{equation*}
$$

Then, let $r \in\left(0, \frac{1}{2}\right)$ be as in Lemma 2.4 and complement P_{∞} to a finite partition $\mathcal{P}=\left\{P_{\infty}, P_{1}, \ldots, P_{\ell}\right\}$ of Y such that for every atom $P_{i} \neq P_{\infty}$ and every $x \in X$, the Euclidean diameter of $P_{i} \cap \pi^{-1}(x)$ is at most r, and such that for each $P \in \mathcal{P}, \mu(\partial P)=0$, where ∂P denotes the boundary of P. To build such \mathcal{P}, observe that around each point z in $Y \backslash P_{\infty}$, there exists a ball B_{z} around z in Y such that $\mu\left(\partial B_{z}\right)=0$, and

$$
\begin{equation*}
\forall x \in X, \operatorname{diam}_{E}\left(B_{z} \cap \pi^{-1}(x)\right)<r . \tag{2.8}
\end{equation*}
$$

A finite cover of $Y \backslash P_{\infty}$ by such balls generates the desired partition by a simple disjointification procedure.

For $q \geqslant 1$, let $\mathcal{P}^{(q)}=\bigvee_{p=0}^{q-1} a^{-p} \mathcal{P}$. For n_{k} large, write the Euclidean division of $n_{k}-1$ by q

$$
n_{k}-1=q n^{\prime}+s, \text { with } s \in\{0, \ldots, q-1\} .
$$

By subadditivity of the entropy with respect to the partition, for each $p \in$ $\{0, \ldots, q-1\}$,

$$
\begin{aligned}
H_{\nu_{k}}\left(\mathcal{P}^{\left(n_{k}\right)} \mid X\right) \leqslant H_{a^{p} \nu_{k}} & \left(\mathcal{P}^{(q)} \mid X\right)+H_{a^{p+q} \nu_{k}}\left(\mathcal{P}^{(q)} \mid X\right)+\ldots \\
& +H_{a^{p+q n^{\prime}} \nu_{k}}\left(\mathcal{P}^{(q)} \mid X\right)+2 q \log |\mathcal{P}| .
\end{aligned}
$$

Summing those inequalities for $p=0, \ldots, q-1$, and using the fact that entropy is a concave function of the measure, we obtain

$$
\begin{aligned}
q H_{\nu_{k}}\left(\mathcal{P}^{\left(n_{k}\right)} \mid X\right) & \leqslant \sum_{n=0}^{n_{k}-1} H_{a^{n} \nu_{k}}\left(\mathcal{P}^{(q)} \mid X\right)+2 q^{2} \log |\mathcal{P}| \\
& \leqslant n_{k} H_{\mu_{k}}\left(\mathcal{P}^{(q)} \mid X\right)+2 q^{2} \log |\mathcal{P}|
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\frac{1}{q} H_{\mu_{k}}\left(\mathcal{P}^{(q)} \mid X\right) \geqslant \frac{1}{n_{k}} H_{\nu_{k}}\left(\mathcal{P}^{\left(n_{k}\right)} \mid X\right)-\frac{2 q \log |\mathcal{P}|}{n_{k}} . \tag{2.9}
\end{equation*}
$$

Now since ν_{k} is supported on a single atom of the σ-algebra $\pi^{-1}\left(\mathcal{B}_{X}\right)$, we have $H_{\nu_{k}}\left(\mathcal{P}^{\left(n_{k}\right)} \mid X\right)=H_{\nu_{k}}\left(\mathcal{P}^{\left(n_{k}\right)}\right)$. Moreover, we claim that

$$
\begin{equation*}
H_{\nu_{k}}\left(\mathcal{P}^{\left(n_{k}\right)}\right) \geqslant \log \left|S_{k}\right|-D\left|I \cap\left\{1, \ldots, n_{k}\right\}\right|-D-\log C, \tag{2.10}
\end{equation*}
$$

where C, D are the constants given by Lemma 2.4. To see this, it suffices to show that an atom of $\mathcal{P}^{\left(n_{k}\right)}$ contains at most $C e^{D\left(\left|I \cap\left\{1, \ldots, n_{k}\right\}\right|+1\right)}$ points of $S_{k}=\operatorname{Supp} \nu_{k}$. This follows from Lemma 2.4. Indeed, Equation (2.8) implies that if P is any non-empty atom of $\mathcal{P}^{\left(n_{k}\right)}$, fixing any $y \in P$,

$$
S_{k} \cap P=S_{k} \cap[y]_{\mathcal{P}^{\left(n_{k}\right)}} \subset E_{y, n_{k}-1}
$$

$$
\operatorname{card}\left(S_{k} \cap[y]_{\mathcal{P}^{\left(n_{k}\right)}}\right) \leqslant C e^{D\left(\left|I \cap\left\{1, \ldots, n_{k}\right\}\right|+1\right)}
$$

Going back to (2.9), we find
$\frac{1}{q} H_{\mu_{k}}\left(\mathcal{P}^{(q)} \mid X\right) \geqslant \frac{1}{n_{k}}\left(\log \left|S_{k}\right|-D\left|I \cap\left\{1, \ldots, n_{k}\right\}\right|-D-\log C-2 q^{2} \log |\mathcal{P}|\right)$.
Now the atoms of \mathcal{P} - and hence of $\mathcal{P}^{(q)}$ - satisfy $\mu(\partial P)=0$, so we may let k go to infinity to obtain equation (2.6) using (2.5) and (2.7).

Finally the second part of the proposition regarding partitions satisfying the bullet-requirements follows by reviewing the proof of (2.6) and noting that the only properties of the constructed partition \mathcal{P} we used are those in the bullet list.

3. Maximal Entropy and invariance

In this section we recall some concepts and results from [EL10] and explain how they imply the following proposition, which is essential for the proof of Theorem 1.3.

Proposition 3.1 (Maximal entropy implies U-invariance). Let μ be an a invariant probability measure on Y. Then

$$
h_{\mu}(a \mid X) \leqslant h_{a}
$$

with equality if and only if μ is U-invariant.
To prove Proposition 3.1 we relate the "dynamical" relative entropy $h_{\mu}(a \mid X)$ to some relative "static" entropy $H_{\mu}\left(\mathcal{A}_{1} \mid \mathcal{A}_{2}\right)$ where the \mathcal{A}_{i} are countably generated σ-algebras that encode the dynamics. For definitions and elementary properties of relative entropies of σ-algebras we refer the reader to [ELW, Chapter 2].

Definition 3.2 (7.25. of [EL10]). Let $G^{-} \stackrel{\text { def }}{=}\left\{g \in G \mid a_{t} g a_{t}^{-1} \rightarrow e\right.$ as $\left.t \rightarrow \infty\right\}$ be the stable horospherical subgroup associated to a and let $U^{-}=U \cap G^{-}$. Let μ be an a-invariant measure on Y and $U<G^{-}$a closed a-normalized subgroup.
(1) We say that a countably generated σ-algebra \mathcal{A} is subordinate to U $(\bmod \mu)$ if for μ-a.e. y, there exists $\delta>0$ such that

$$
B_{\delta}^{U} \cdot y \subset[y]_{\mathcal{A}} \subset B_{\delta^{-1}}^{U} \cdot y .
$$

(2) We say that \mathcal{A} is a-descending if $a^{-1} \mathcal{A} \subset \mathcal{A}$.

Theorem 3.3 (Einsiedler-Lindenstrauss). Let μ be an a-invariant probability measure on Y. If \mathcal{A} is a countably generated sub- σ-algebra of the Borel σ-algebra which is a-descending and U^{-}-subordinate then $H_{\mu}\left(\mathcal{A} \mid a^{-1} \mathcal{A}\right) \leqslant h_{a}$ with equality if and only if μ is U^{-}-invariant.

Proof. By considering the ergodic decomposition one sees that it is enough to prove the theorem in the case μ is ergodic. Under the ergodicity assumption the statement follows directly from combining [EL10, Proposition 7.34] and [EL10, Theorem 7.9].

The following lemma furnishes the link between the relative dynamical entropy $h_{\mu}(a \mid X)$ and the relative entropy $H_{\mu}\left(\mathcal{A}_{1} \mid \mathcal{A}_{2}\right)$ for suitable \mathcal{A}_{i}. If \mathcal{P} is a partition of Y, we write for any integer m,

$$
\mathcal{P}_{m}^{\infty}=\bigvee_{k=m}^{\infty} a^{-k} \mathcal{P}
$$

Recall also that a partition \mathcal{P} is said to be a two-sided generator for a with respect to an a-invariant probability measure if the Borel σ-algebra is generated up to null sets by the union of all partitions $\bigvee_{-m}^{m} a^{-k} \mathcal{P}, m \geqslant 1$.

Lemma 3.4. Assume that μ is an a-invariant probability measure on Y and \mathcal{P} is a countable partition that is a two-sided generator for a with respect to μ. Let \mathcal{A} be the σ-algebra generated by $\mathcal{P}_{0}^{\infty} \vee \pi^{-1}\left(\mathcal{B}_{X}\right)$. Then

$$
h_{\mu}(a \mid X)=H_{\mu}\left(\mathcal{A} \mid a^{-1} \mathcal{A}\right) .
$$

Proof. Let \mathcal{P} be a countable partition that is a two-sided generator for a. By [ELW, Proposition 2.19 and Theorem 2.20], writing \mathcal{C} for $\pi^{-1}\left(\mathcal{B}_{X}\right)$, we have

$$
h_{\mu}(a \mid X)=H_{\mu}\left(\mathcal{P} \mid \mathcal{P}_{1}^{\infty} \vee \mathcal{C}\right)=H_{\mu}\left(\mathcal{P}_{0}^{\infty} \vee \mathcal{C} \mid \mathcal{P}_{1}^{\infty} \vee \mathcal{C}\right) .
$$

Since \mathcal{C} is a-invariant, we indeed find

$$
h_{\mu}(a \mid X)=H_{\mu}\left(\mathcal{A} \mid a^{-1} \mathcal{A}\right) .
$$

We now prove Proposition 3.1 by constructing (almost by citation) a twosided generator \mathcal{P} for a modulo μ with the property that $\mathcal{P}_{0}^{\infty} \vee \pi^{-1}\left(\mathcal{B}_{X}\right)$ is U^{-}-subordinate, and then the statement follows by combining Theorem 3.3 with Lemma 3.4.

Proof of Proposition 3.1. Writing the ergodic decomposition $\mu=\int \mu_{y}^{\mathcal{E}} \mathrm{d} \mu(y)$, we have

$$
h_{\mu}(a \mid X)=\int h_{\mu_{y}^{\varepsilon}}(a \mid X) \mathrm{d} \mu(y),
$$

so it is enough to prove the proposition for μ ergodic.
We can then use [EL10, Proposition 7.44] to obtain a countable partition \mathcal{P} that is a generator for $a \bmod \mu$, and such that \mathcal{P}_{0}^{∞} is a-descending and subordinate to G^{-}. Let

$$
\mathcal{C} \stackrel{\text { def }}{=} \pi^{-1}\left(\mathcal{B}_{X}\right) \quad \text { and } \quad \mathcal{A} \stackrel{\text { def }}{=} \mathcal{C} \vee \mathcal{P}_{0}^{\infty} .
$$

Then \mathcal{A} is clearly countably generated and a-descending, and we claim that it is also U^{-}-subordinate. Indeed, since $[y]_{\mathcal{C}}=\pi^{-1}(\pi(\{y\}))$ is equal to the orbit of y under the unipotent radical U, we get $[y]_{\mathcal{A}}=U \cdot y \cap[y]_{\mathcal{P}_{0}^{\infty}}$. But \mathcal{P}_{0}^{∞} is subordinate to G^{-}, and for $\delta>0$,

$$
\begin{equation*}
B_{\delta_{1}}^{U^{-}} \cdot y \subset B_{\delta}^{G^{-}} \cdot y \cap U \cdot y \quad \text { and } \quad B_{\delta^{-1}}^{G^{-}} \cdot y \cap U \cdot y \subset B_{\delta_{1}^{-1}}^{U^{-}} \cdot y \tag{3.1}
\end{equation*}
$$

for some constant δ_{1} depending on δ and y, because $G^{-} y \cap U y=U^{-} y$. This shows that, for almost every y, for some $\delta>0$,

$$
B_{\delta}^{U^{-}} \cdot y \subset[y]_{\mathcal{A}} \subset B_{\delta^{-1}}^{U^{-}} \cdot y,
$$

i.e. that \mathcal{A} is subordinate to U^{-}.

By Lemma 3.4 we have $h_{\mu}(a \mid X)=H_{\mu}\left(\mathcal{A} \mid a^{-1} \mathcal{A}\right)$, and so Theorem 3.3 shows that $h_{\mu}(a \mid X) \leqslant h_{a}$ with equality if and only if μ is U^{-}-invariant. Moreover, if $h_{\mu}(a \mid X)=h_{a}$ then

$$
h_{\mu}\left(a^{-1} \mid X\right)=h_{\mu}(a \mid X)=h_{a}=h_{a^{-1}}
$$

where the last equality follows from the fact that $\sum_{j=1}^{d} c_{j}=0$. We then apply the same reasoning to a^{-1} and find that μ is also U^{+}-invariant. This completes the proof since U is generated by U^{+}and U^{-}, because we assume that for any $1 \leqslant j \leqslant d, c_{j} \neq 0$.

4. Proof of the main theorem

Using the results of the preceding two sections, we now state and prove Theorem 4.2, which is the main result of this article. We deduce Theorem 1.3 as a corollary.
4.1. \mathcal{O}-avoiding grids. Before we can state the more precise version of Theorem 1.3 that we will derive here, we need to set up some notation.

For a bounded open set $\mathcal{O} \subset \mathbb{R}^{d}$ and a heavy lattice x, our goal is to bound the dimension of the set

$$
F_{S^{+}(\mathcal{O})}(x)=\left\{y \in \pi^{-1}(x): y \cap\left(\cup_{t \geqslant 0} a_{-t} \mathcal{O}\right) \text { is finite }\right\} .
$$

For an interval $I \subset \mathbb{R}$, let

$$
E_{I}^{\mathcal{O}}=\left\{y \in Y: y \cap\left(\cup_{t \in I} a_{-t} \mathcal{O}\right)=\varnothing\right\}=\left\{y \in Y: \forall t \in I, a_{t} y \cap \mathcal{O}=\varnothing\right\}
$$

and

$$
E_{I}^{\mathcal{O}}(x)=E_{I}^{\mathcal{O}} \cap \pi^{-1}(x)
$$

It is more natural from the dynamical point of view to work with $E_{\mathbb{R}}^{\mathcal{O}}$ than with $F_{S^{+}(\mathcal{O})}$ because it is a_{t}-invariant and closed. However, we insist on working with finite intersections instead of empty intersection to obtain liminf statements in our applications rather than inf. Note that for a vector $v \in \mathbb{R}^{d}$, either $a_{t} v \rightarrow \infty$ or $v_{i}=0$ for all $i \in J^{+}$in which case $a_{t} v \rightarrow 0$. Since all c_{j} are non-zero and \mathcal{O} is bounded, we deduce that

$$
\begin{equation*}
F_{S^{+}(\mathcal{O})}(x) \subset \bigcup_{r \geqslant 0} E_{[r, \infty)}^{\mathcal{O}}(x) \cup\left\{y \in \pi^{-1}(x): \exists v \in y, \forall i \in J^{+}, v_{i}=0\right\} \tag{4.1}
\end{equation*}
$$

Since

$$
\begin{equation*}
\operatorname{dim}_{H}\left\{y \in \pi^{-1}(x): \exists v \in y, \forall i \in J^{+}, v_{i}=0\right\}=d-\left|J^{+}\right| \leqslant d-1 \tag{4.2}
\end{equation*}
$$

we will focus on bounding the dimension of each $E_{[r, \infty)}^{\mathcal{O}}(x)$. Finally, a nice feature of the set $E_{[r, \infty)}^{\mathcal{O}}$ is the following simple observation which can be verified by the reader.

Lemma 4.1. Let $y \in E_{[r, \infty)}^{\mathcal{O}}$ and suppose z is an accumulation point of the forward orbit $\left\{a_{t} y\right\}_{t>0}$. Then $z \in E_{\mathbb{R}}^{\mathcal{O}}$. In particular, any measure μ obtained by averaging along the forward trajectory of y is supported in $E_{\mathbb{R}}^{\mathcal{O}}$.

We are now in a position to state and prove our main results.

Theorem 4.2 (Heavy lattices have few bad grids). Fix a sequence $\eta_{i} \rightarrow 0$, and a bounded open set \mathcal{O} in \mathbb{R}^{d}. Then, there exists $\delta>0$ such that for any $r>0$ and any $x \in \mathcal{H}\left(\eta_{i}\right)$,

$$
\underline{\operatorname{dim}}_{M} E_{[r, \infty)}^{\mathcal{O}}(x) \leqslant d-\delta
$$

Proof of Theorem 1.3. Using (4.1) and (4.2), the theorem follows at once from Theorem 4.2, because $E_{[r, \infty)}^{\mathcal{O}}$ is increasing in r. Note that as opposed to $\underline{\operatorname{dim}}_{M}$, the Hausdorff dimension of a countable union of sets is bounded above by any bound on the individual dimensions, hence our passage to Hausdorff dimension (see also Remark 4.3 below).
Remark 4.3. The set $F_{S^{+}(\mathcal{O})}(x)$ is dense is $\pi^{-1}(x)$, so that $\underline{\operatorname{dim}}_{M} F_{S^{+}(\mathcal{O})}(x)=$ d. But its Hausdorff dimension is strictly less than d.

Proof of Theorem 4.2. Fix $\epsilon>0$. We argue by contradiction and assume the following:

$$
\begin{equation*}
\forall m \geqslant 1, \exists r_{m}>0, \exists x_{m} \in \mathcal{H}\left(\eta_{i}\right): \underline{\operatorname{dim}}_{M} E_{\left[r_{m}, \infty\right)}^{\mathcal{O}}\left(x_{m}\right) \geqslant d-\frac{1}{m} \tag{4.3}
\end{equation*}
$$

We may further assume that $r_{m} \rightarrow \infty$ as $m \rightarrow \infty$. Fix a smaller open set \mathcal{O}^{\prime} whose closure is in \mathcal{O}. Set $u=\operatorname{dim} U^{+}$.
Claim 1. For any large enough m, there exists a grid $y_{m} \in \pi^{-1}\left(x_{m}\right)$ such that the injective unstable leaf $W_{y_{m}}^{+}$satisfies

$$
\underline{\operatorname{dim}}_{M}\left(W_{y_{m}}^{+} \cap E_{\left[r_{m}, \infty\right)}^{\mathcal{U}^{\prime}}\right) \geqslant u-\frac{1}{m}
$$

Recall that $U^{-}=U \cap G^{-}=U \cap\left\{g \in G \mid a_{t} g a_{t}^{-1} \rightarrow e\right.$ as $\left.t \rightarrow \infty\right\}$. For any grid $y \in Y$, any $v \in U^{-}$of norm $\leqslant 1$ and $t>0$, the two grids $a_{t} y$ and $a_{t} v y$ differ by a translation in the direction of U^{-}which is of norm $\leqslant e^{-\alpha t}$, where $\alpha=\min \left\{\left|c_{i}\right|: i \in J^{-}\right\}>0$. We deduce that if $a_{t} y \cap \mathcal{O}=\varnothing$ and t is large enough, then $a_{t} v y \cap \mathcal{O}^{\prime}=\varnothing$. In particular, for large enough m and and all $v \in U^{-}$of norm $\leqslant 1$, we have $v E_{\left[r_{m}, \infty\right)}^{\mathcal{O}} \subset E_{\left[r_{m}, \infty\right)}^{\mathcal{O}^{\prime}}$. For such m and for any $y_{m} \in E_{\left[r_{m}, \infty\right)}^{\mathcal{O}}$,

$$
\underline{\operatorname{dim}}_{M}\left(W_{y_{m}}^{+} \cap E_{\left[r_{m}, \infty\right)}^{\mathcal{O}^{\prime}}\right)+\operatorname{dim} U^{-} \geqslant d-\frac{1}{m} .
$$

Since $c_{i} \neq 0$ for all $i, d-\operatorname{dim} U^{-}=u$ and Claim 1 follows.
The first part of Proposition 2.3 yields an a-invariant probability measure μ_{m} with
(1) $\pi_{*} \mu_{m} \in \mathscr{P}\left(X,\left(\eta_{i}\right)\right)$.
(2) Supp $\mu_{m} \subset E_{\mathbb{R}}^{\mathcal{Q}^{\prime}}$ (by Proposition 2.3 and Lemma 4.1)
(3) $h_{\mu_{m}}(a \mid X) \geqslant h_{a}-\frac{1}{m}$.

Lemma $1.2(3)$ says that $\mathscr{P}\left(X,\left(\eta_{i}\right)\right)$ is compact. Together with the fact that $\pi: Y \rightarrow X$ is proper, after taking a subsequence of μ_{m}, we may assume that μ_{m} converges to some a-invariant probability measure μ such
that $\pi_{*} \mu \in \mathscr{P}\left(X,\left(\eta_{i}\right)\right)$. Since $\operatorname{Supp} \mu_{m} \subset E_{\mathbb{R}}^{\mathcal{O}^{\prime}}$ and $E_{\mathbb{R}}^{\mathcal{O}^{\prime}}$ is closed, we conclude that μ is supported in $E_{\mathbb{R}}^{\mathcal{Q}^{\prime}}$. Our next goal is to show the following.
Claim 2. The measure μ is U-invariant.
To prove Claim 2 we apply the second part of Proposition 2.3 to the measures μ_{m} simultaneously in the following manner. Fix i_{0} and let $\eta=\eta_{i_{0}}$. Let \mathcal{P} be a finite partition of Y satisfying:

- \mathcal{P} contains a single unbounded atom P_{∞} and it is of the form $\pi^{-1}\left(P_{\infty}^{0}\right)$, where $\left.\psi_{i_{0}}\right|_{P_{\infty}^{0}} \equiv 0\left(\psi_{i}\right.$ is as in Definition 1.1).
- $\forall P \in \mathcal{P} \backslash\left\{P_{\infty}\right\}$, $\operatorname{diam} P<r$, with $r \in\left(0, \frac{1}{2}\right)$ such that any d_{a}-ball of radius $3 r$ has Euclidean diameter smaller than the fiber injectivity radius on $Y \backslash P_{\infty}$,
- $\forall P \in \mathcal{P}, \nu(\partial P)=0$ for $\nu \in\left\{\mu, \mu_{m}: m \in \mathbb{N}\right\}$.

A similar partition was built in the proof of Proposition 2.3. The only difference here is that in the third bullet here we demand that the boundaries of the atoms of \mathcal{P} will be simultaneous null sets for more than one measure. Since we are only requiring this for a countable collection of measures this is easily achieved.

From the second part of Proposition 2.3 we deduce that for any m, for all $q \geqslant 1$,

$$
\begin{equation*}
\frac{1}{q} H_{\mu_{m}}\left(\mathcal{P}^{(q)} \mid X\right) \geqslant h_{a}-\frac{1}{m}-D \eta_{i_{0}} \tag{4.4}
\end{equation*}
$$

Since the boundary of the atoms of $\mathcal{P}^{(q)}$ are μ-null, we can pass to the limit as $m \rightarrow \infty$ in (4.4) and deduce that for any $q, \frac{1}{q} H_{\mu}\left(\mathcal{P}^{(q)} \mid X\right) \geqslant h_{a}-D \eta_{i_{0}}$. Taking $q \rightarrow \infty$ and $i_{0} \rightarrow \infty$ we deduce that

$$
h_{\mu}(a \mid X) \geqslant \lim \frac{1}{q} H_{\mu}\left(\mathcal{P}^{(q)} \mid X\right) \geqslant h_{a}
$$

By Proposition 3.1 we deduce that equality holds and that μ is U-invariant, as claimed.

We arrive at the desired contradiction because μ is supported in $E_{\mathbb{R}}^{\mathcal{O}^{\prime}}$, which cannot contain a full fiber: given a lattice x, the grids of x which contain points in \mathcal{O}^{\prime} cannot be in $E_{\mathbb{R}}^{\mathcal{O}^{\prime}}$.

5. DIOPHANTINE APPROXIMATION

In this section we prove Theorem 1.5 , which, in fact, will follow from a sharper result in the spirit of Theorem 4.2. We also reformulate and generalize the result in terms of approximation of affine subspaces of \mathbb{R}^{n} by integer points.
5.1. Inhomogeneous Diophantine approximation of vectors in \mathbb{R}^{n}.

Fix a dimension $n \geqslant 1$ and let $d \stackrel{\text { def }}{=} n+1$. For clarity of exposition, we start with the diagonal flow $a_{t}=\operatorname{diag}\left(e^{t}, \ldots, e^{t}, e^{-n t}\right)$. Recall that given a vector
$v \in \mathbb{R}^{n}$, we let

$$
\operatorname{Bad}^{\epsilon}(v)=\left\{w \in \mathbb{R}^{n}: \liminf _{k \rightarrow \infty} k^{1 / n}\langle k v-w\rangle \geqslant \epsilon\right\} .
$$

Given a vector $v \in \mathbb{R}^{n}$ we let $x_{v} \stackrel{\text { def }}{=}\left(\begin{array}{cc}I_{n} & v \\ 0 & 1\end{array}\right) x_{0} \in X$, where x_{0} denotes the identity coset, which represents the standard lattice \mathbb{Z}^{d}. The Diophantine properties of the vector v are usually captured by the dynamics of the lattice x_{v}. For example, singularity of v is equivalent to the divergence of the orbit $\left(a_{t} x_{v}\right)_{t>0}$. In analogy with Definition 1.1 we make the following.
Definition 5.1. A vector $v \in \mathbb{R}^{n}$ is said to be heavy if the lattice x_{v} is heavy according to Definition 1.1.

A nice exercise is the following characterization of heaviness of a number $\alpha \in \mathbb{R}$ in terms of the continued fraction expansion of α.
Exercise 5.2. Show that a number $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ is heavy if and only if

$$
\forall \delta>0 \exists \epsilon>0 \text { such that } \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} \max \left\{\log \epsilon a_{k}, 0\right\} \leqslant \delta .
$$

We prove the following result, which will easily imply Theorem 1.5.
Theorem 5.3 (Heavy vectors have few badly approximable points). If $v \in \mathbb{R}^{n}$ is heavy then for any $\epsilon>0, \operatorname{dim}_{H}\left(\mathbf{B a d}^{\epsilon}(v)\right)<n$. In fact, if $\eta_{i} \rightarrow 0$ is a sequence of non-negative numbers, then for any $\epsilon>0$ there exists $\delta=\delta\left(\epsilon,\left(\eta_{i}\right)\right)>0$ such that for any $v \in \mathbb{R}^{n}$ for which $x_{v} \in \mathcal{H}\left(\eta_{i}\right)$, $\operatorname{dim}_{H}\left(\mathbf{B a d}^{\epsilon}(v)\right) \leqslant n-\delta$.

Proof. We write vectors in $\mathbb{R}^{d}=\mathbb{R}^{n} \times \mathbb{R}$ as $w_{s} \stackrel{\text { def }}{=}\binom{w}{s}$ with $w \in \mathbb{R}^{n}, s \in \mathbb{R}$. Let $\left(\eta_{i}\right)$ be as in the statement and let $v \in \mathbb{R}^{n}$ be such that $x_{v} \in \mathcal{H}\left(\eta_{i}\right)$. Let $\epsilon>0$ and let $\mathcal{O} \stackrel{\text { def }}{=}\left\{w_{s} \in \mathbb{R}^{d}: s \in(0,1),\|w\|<\frac{\epsilon}{2}\right\}$. Note that

$$
\begin{equation*}
S^{+}(\mathcal{O})=\left\{w_{s}: s \geqslant 1, s^{1 / n}\|w\|<\frac{\epsilon}{2}\right\} \cup \mathcal{O} . \tag{5.1}
\end{equation*}
$$

We know by Theorem 1.3 that there exists $\delta=\delta\left(\epsilon,\left(\eta_{i}\right)\right)>0$ such that $\operatorname{dim}_{H} F_{S^{+}(\mathcal{O})}\left(x_{v}\right) \leqslant d-\delta$. We will show that for any $w \in \mathbf{B a d}^{\epsilon}(v)$ and for any $s \in[0,1]$, the grid $x_{v}-w_{s}$ belongs to $F_{S^{+}(\mathcal{O})}\left(x_{v}\right)$. This will finish the proof.

To this end, let $w \in \operatorname{Bad}^{\epsilon}(v)$ and $s \in[0,1]$. Note that

$$
x_{v}-w_{s}=\bigcup_{k \in \mathbb{Z}}\left\{\binom{\vec{m}+k v-w}{k-s}: \vec{m} \in \mathbb{Z}^{n}\right\} .
$$

We call k the layer parameter of $\left\{\binom{\vec{m}+k v-w}{k-s}: \vec{m} \in \mathbb{Z}^{n}\right\}$. Note that the set of vectors in each layer is discrete. Therefore if we suppose that $x_{v}-w_{s}$ intersects $S^{+}(\mathcal{O})$ in infinitely many points, then we conclude that $S^{+}(\mathcal{O})$ must contain points in arbitrarily high layers (i.e. with k arbitrarily large).

In particular, the description of $S_{+}(\mathcal{O})$ given in (5.1) implies that there exist arbitrarily large $k>0$ and vectors $\vec{m} \in \mathbb{Z}^{n}$ such that

$$
(k-s)^{1 / n}\|\vec{m}+k v-w\| \leqslant \frac{\epsilon}{2} .
$$

In particular, $\liminf _{k \rightarrow \infty} k^{1 / n}\langle k v-w\rangle<\epsilon$ and so $w \notin \operatorname{Bad}^{\epsilon}(v)$ contradicting our assumption. We deduce that $\#\left\{x_{v}-w_{s} \cap S^{+}(\mathcal{O})\right\}<\infty$, i.e. $x_{v}-w_{s} \in$ $F_{S^{+}(\mathcal{O})}\left(x_{v}\right)$ as claimed.

As a corollary, we now derive Theorem 1.5 from the introduction, which we recall here for convenience.

Corollary 5.4. For any $\epsilon>0$, there exists $\delta>0$ such that for almost every $v \in \mathbb{R}^{n}, \operatorname{dim}_{H} \mathbf{B a d}^{\epsilon}(v)<n-\delta$.

Proof. The proof is similar to the proof of Corollary 1.4. It is well known that

$$
\Omega=\left\{v \in \mathbb{R}^{n}: \delta_{x_{v}}^{T} \xrightarrow{\mathrm{w}^{*}} m_{X}\right\}
$$

has full Lebesgue measure (see for example [KSW16] which covers also the weighted case). Using Lemma $1.2(1)$ we choose $\left(\eta_{i}\right)$ so that $m_{X} \in$ $\mathscr{P}\left(X,\left(\eta_{i}\right)\right)$. We then have by definition that $\left\{x_{v}: v \in \Omega\right\} \subset \mathcal{H}\left(\eta_{i}\right)$. The theorem thus follows from Theorem 5.3.

Theorem 5.3 can be generalized in several ways, using Theorem 4.2 for more general flows $\left(a_{t}\right)$. For example, if $\left(i_{1}, \ldots, i_{n}\right)$ is an n-tuple of real numbers such that

$$
\forall \ell, i_{\ell} \in(0,1) \quad \text { and } \quad \sum_{\ell=1}^{n} i_{\ell}=1,
$$

we can define, for any vector $v=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right) \in \mathbb{R}^{n}$,

$$
\operatorname{Bad}_{\left(i_{1}, \ldots, i_{n}\right)}^{\epsilon}(v) \stackrel{\text { def }}{=}\left\{w=\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right) \in \mathbb{R}^{n}: \forall \ell, \liminf _{k \rightarrow \infty} k^{i_{\ell}}\left\langle k v_{\ell}-w_{\ell}\right\rangle \geqslant \epsilon\right\}
$$

and

$$
\operatorname{Bad}_{\left(i_{1}, \ldots, i_{n}\right)}(v)=\bigcup_{\epsilon>0} \operatorname{Bad}_{\left(i_{1}, \ldots, i_{n}\right)}^{\epsilon}(v) .
$$

It is known (see for example [PV02, KTV06, KW10]) that for any $v \in$ $\mathbb{R}^{n}, \operatorname{dim}_{H} \operatorname{Bad}_{\left(i_{1}, \ldots, i_{n}\right)}(v)=n$. Theorem 4.2 applied with the flow $a_{t}=$ $\operatorname{diag}\left(e^{i_{1} t}, \ldots, e^{i_{n} t}, e^{-t}\right)$ yields the following.
Theorem 5.5 (Heavy vectors for weighted approximation). Let $v \in \mathbb{R}^{n}$ be heavy for $a_{t}=\operatorname{diag}\left(e^{i_{1} t}, \ldots, e^{i_{n} t}, e^{-t}\right)$. Then, for all $\epsilon>0$,

$$
\operatorname{dim}_{H} \operatorname{Bad}_{\left(i_{1}, \ldots, i_{n}\right)}^{\epsilon}(v)<n .
$$

Moreover, for any $\epsilon>0$, there exists $\delta>0$ such that for a.e. $v \in \mathbb{R}^{n}$,

$$
\operatorname{dim}_{H} \mathbf{B a d}_{\left(i_{1}, \ldots, i_{n}\right)}^{\epsilon}(v)<n-\delta .
$$

Being very similar to that of Theorem 5.3, the proof of Theorem 5.5 is left to the reader.
5.2. Approximation of affine subspaces. We obtain another natural generalization of Theorem 5.3 by replacing the vector v with a matrix. We choose to present this generalization in a projective manner, i.e. in the context of Diophantine approximation of affine subspaces of \mathbb{R}^{d} by points in \mathbb{Z}^{d}, which is not common but which we find very natural. The case of Theorem 5.3 corresponding to the subspace being a line (see Remark 5.6).

Let $\operatorname{Grass}(\ell, d)$ be the Grassmannian of ℓ-dimensional linear subspaces of \mathbb{R}^{d}. Recall that by Minkowski's first theorem on convex bodies, for every $W_{0} \in \operatorname{Grass}(\ell, d)$, the inequality

$$
d\left(\mathbf{k}, W_{0}\right) \leqslant 2^{d} \cdot\|\mathbf{k}\|^{\frac{-\ell}{d-\ell}}
$$

has infinitely many solutions $\mathbf{k} \in \mathbb{Z}^{d}$, where $\|\mathbf{k}\|$ denotes the Euclidean norm of \mathbf{k}. It is therefore natural to say that an affine subspace W of dimension ℓ in \mathbb{R}^{d} is ϵ-badly approximable if it satisfies

$$
\underset{\substack{\mathbf{k} \rightarrow \infty \\ \mathbf{k} \in \mathbb{Z}^{d}}}{\liminf }\|\mathbf{k}\|^{\frac{\ell}{d-\ell}} d(\mathbf{k}, W) \geqslant \epsilon .
$$

Let $\operatorname{Grass}_{A}(\ell, d)$ denote the Grassmannian of ℓ-dimensional affine subspaces of \mathbb{R}^{d} and $\pi: \operatorname{Grass}_{A}(\ell, d) \rightarrow \operatorname{Grass}(\ell, d)$ the natural projection, mapping an affine subspace to its linear part. For a linear subspace $W_{0} \in$ $\operatorname{Grass}(\ell, d)$ of \mathbb{R}^{d}, we want to study the set

$$
\mathbf{B a d}_{\ell, d}^{\epsilon}\left(W_{0}\right) \stackrel{\text { def }}{=}\left\{W \in \pi^{-1}\left(W_{0}\right) \left\lvert\, \underset{\substack{\mathbf{k} \rightarrow \infty \\ \mathbf{k} \in \mathbb{Z}^{d}}}{\liminf }\|\mathbf{k}\|^{\frac{\ell}{d-\ell}} d(\mathbf{k}, W) \geqslant \epsilon\right.\right\}
$$

of ϵ-badly approximable affine subspaces $W \leqslant \mathbb{R}^{d}$ with linear part W_{0}. It is known that [ET11]

$$
\operatorname{dim}_{H}\left(\operatorname{Bad}_{\ell, d}\left(W_{0}\right)\right)=d-\ell
$$

where $\operatorname{Bad}_{\ell, d}\left(W_{0}\right) \stackrel{\text { def }}{=} \bigcup_{\epsilon>0} \operatorname{Bad}_{\ell, d}^{\epsilon}\left(W_{0}\right)$.
Remark 5.6. Let $n=d-1$. For $v \in \mathbb{R}^{n}$, consider the line $W_{0} \in \mathbb{R}^{d}$ spanned by the vector $\tilde{v}=\binom{1}{v} \in \mathbb{R}^{d}$. Then a vector $w \in \mathbb{R}^{n}$ is in $\operatorname{Bad}(v)$ if and only if $\tilde{w}+W_{0}$ is a badly approximable line in \mathbb{R}^{d}, so that the setting of the previous subsection corresponds to Diophantine approximation of lines in \mathbb{R}^{d}.

Theorem 5.7 (Approximation of affine subspaces). For all $\epsilon>0$, there exists $\delta>0$ such that for almost every $W_{0} \in \operatorname{Grass}(\ell, d)$,

$$
\operatorname{dim}_{H} \mathbf{B a d}_{\ell, d}^{\epsilon}\left(W_{0}\right) \leqslant d-\ell-\delta
$$

Proof. Since the proof is very similar to that of Theorem 5.3, we keep it terse. We apply Theorem 4.2 with flow

$$
a_{t}=\operatorname{diag}\left(e^{t}, \ldots, e^{t}, e^{-\frac{\ell t}{d-\ell}}, \ldots, e^{-\frac{\ell t}{d-\ell}}\right) .
$$

Let $W_{0} \in \operatorname{Grass}(\ell, d)$, and choose $g_{W_{0}} \in G_{0}=\mathrm{SL}_{d}(\mathbb{R})$ such that $g_{W_{0}} \cdot W_{0}=$ $\operatorname{Span}\left(e_{1}, \ldots, e_{\ell}\right)$. For almost every W_{0}, the orbit $\left(a_{t} g_{W_{0}} \mathbb{Z}^{d}\right)_{t>0}$ equidistributes in X [KSW16] (note that this property does not depend on our choice of $g_{W_{0}}$). Taking $\mathcal{O}=B_{\frac{\epsilon}{2}}$ to be the open ball of radius $\epsilon / 2$ in \mathbb{R}^{d}, Theorem 4.2 shows that there exists $\delta>0$ such that for almost every W_{0},

$$
\operatorname{dim}_{H} F_{S^{+}\left(B_{\frac{\epsilon}{2}}\right)}\left(g_{W_{0}} \mathbb{Z}^{d}\right) \leqslant d-\delta
$$

Assume now that W is an affine subspace with linear part W_{0}, and choose $g_{W} \in G=\operatorname{ASL}_{d}(\mathbb{R})$ such that $g_{W} \cdot W=\operatorname{Span}\left(e_{1}, \ldots, e_{\ell}\right)$ (as an affine subspace). It is a simple computation to check that if $W \in \mathbf{B a d}_{\ell, d}^{\epsilon}\left(W_{0}\right)$, then the grid $g_{W} \mathbb{Z}^{d}$ lies in $F_{S^{+}\left(B_{\frac{\epsilon}{2}}\right)}\left(g_{W_{0}} \mathbb{Z}^{d}\right)$, independently of our choice of g_{W}. The above bound on the Hausdorff dimension of $F_{S^{+}\left(B_{\frac{\varepsilon}{2}}\right)}\left(g_{W_{0}} \mathbb{Z}^{d}\right)$ therefore implies

$$
\operatorname{dim}_{H} \mathbf{B a d}_{\ell, d}^{\epsilon}\left(W_{0}\right) \leqslant d-\ell-\delta .
$$

6. Examples

In this section, to justify the necessity of some non-escape-of-mass assumption on x in Theorem 4.2, we construct non-singular lattices in \mathbb{R}^{2} with lots of bad grids: x with non-divergent orbits but for which there exists $\epsilon>0$ such that $F_{S^{+}(\mathcal{O})}(x)$ has full Hausdorff dimension in $\pi^{-1}(x)$ for a suitable choice of \mathcal{O}.

Proposition 6.1 (Lattices with lots of bad grids). There exists a nonsingular unimodular lattice x and an open bounded set \mathcal{O} such that

$$
\operatorname{dim}_{H} F_{S^{+}(\mathcal{O})}(x)=2
$$

Fix a lattice x in \mathbb{R}^{2}, assume $\lambda_{1}(x) \geqslant \frac{1}{10}$, where $\lambda_{1}(x)$ denotes the shortest non-zero vector in x with respect to the supremum norm, which we denote by $\|\cdot\|$, and let $E=\left\{t>0 \left\lvert\, \lambda_{1}\left(a_{t} x\right) \geqslant \frac{1}{10}\right.\right\}$. Assume that E can be written as a disjoint union of closed intervals

$$
E=\left[s_{1}, t_{1}\right] \cup\left[s_{2}, t_{2}\right] \cup \ldots
$$

where the reals s_{1}, s_{2}, \ldots and t_{1}, t_{2}, \ldots are defined inductively by $s_{1}=0$, and, for $i \geqslant 1$,
$t_{i}=\inf \left\{t>s_{i} \left\lvert\, \lambda_{1}\left(a_{t} x\right) \leqslant \frac{1}{10}\right.\right\}, \quad$ and $\quad s_{i+1}=\inf \left\{s>t_{i} \left\lvert\, \lambda_{1}\left(a_{t} x\right) \geqslant \frac{1}{10}\right.\right\}$.
Now, for each i, choose a non-zero vector $v=\binom{v_{1}}{v_{2}}$ in x such that $\lambda_{1}\left(a_{t_{i}} x\right)=\left\|a_{t_{i}} v\right\|$. One readily checks the following

Figure 2. $a_{t} v$, for $t \in\left(t_{i}, s_{i+1}\right)$
(1) $\forall t \in\left(t_{i}, s_{i+1}\right), \lambda_{1}\left(a_{t} x\right)=\left\|a_{t} v\right\|$
(2) $e^{t_{i}}\left|v_{1}\right|=e^{-s_{i+1}}\left|v_{2}\right| \leqslant \frac{1}{10}$ and $e^{-t_{i}}\left|v_{2}\right|=e^{s_{i+1}}\left|v_{1}\right|=\frac{1}{10}$,
using the fact that in dimension 2, if $\left\|a_{t} v\right\|<1$ (and v is primitive), then $\lambda_{1}\left(a_{t} x\right)=\left\|a_{t} v\right\|$ (see Figure 2).

From the fact that $a_{t_{i}} v$ has norm $\frac{1}{10}$ and makes an angle of at least $\frac{\pi}{4}$ with the first coordinate axis, we see that the translates of the line $\mathbb{R} a_{t_{i}} v$ by vectors of $a_{t_{i}} x$ intersect the horizontal axis in a discrete subgroup $\ell_{i} \mathbb{Z}$, with $\ell_{i} \in[5,50]$. Let

$$
B_{i}=\left\{\gamma \in \mathbb{R} \mid d\left(\gamma, e^{-t_{i}} \ell_{i} \mathbb{Z}\right)>2 e^{-t_{i}}\right\} .
$$

For a grid y, we let $\sigma(y) \stackrel{\text { def }}{=} \min \{\|v\| ; v \in y\}$ denote the norm of the shortest vector in y. We claim that

$$
\begin{equation*}
\forall \gamma \in B_{i}, \forall t \in\left[t_{i}, s_{i+1}\right], \sigma\left(a_{t}\left(x+\binom{\gamma}{0}\right)\right) \geqslant 1 . \tag{6.1}
\end{equation*}
$$

To see this, observe that if $\gamma \in B_{i}$, then the box

$$
\binom{e^{t_{i}} \gamma}{0}+[-1,1] \times\left[-e^{-2 t_{i}} \frac{v_{2}}{v_{1}}, e^{-2 t_{i}} \frac{v_{2}}{v_{1}}\right]
$$

around $a_{t_{i}}\binom{\gamma}{0}$ does not intersect $a_{t_{i}} x$ (see Figure 3).
Therefore, if $t \in\left[t_{i}, s_{i+1}\right]$, then the box around the origin

$$
\begin{aligned}
{\left[-e^{t-t_{i}}, e^{t-t_{i}}\right] \times\left[-e^{-t_{i}-t} \frac{v_{2}}{v_{1}}, e^{-t_{i}-t} \frac{v_{2}}{v_{1}}\right] } & \supset[-1,1] \times\left[-e^{-t_{i}-s_{i+1}} \frac{v_{2}}{v_{1}}, e^{-t_{i}-s_{i+1}} \frac{v_{2}}{v_{1}}\right] \\
& =[-1,1] \times[-1,1] .
\end{aligned}
$$

This proves our claim.
To prove Proposition 6.1, we use the following elementary Hausdorff dimension estimate.

Lemma 6.2. With the above notation, suppose $\lim _{i \rightarrow \infty} \frac{t_{i}}{i}=\infty$. Then

$$
\operatorname{dim}_{H} \bigcap_{i \geqslant 1} B_{i}=1
$$

Figure 3. Translates of $\mathbb{R} a_{t_{i}} v, e^{t_{i}} B_{i}$, and the box around $e^{t_{i}} \gamma$

Proof. By the mass distribution principle [Fal03, $\S 4.2$ page 60], it suffices to construct on $B=\bigcap B_{i}$, for $\epsilon>0$ arbitrarily small, a probability measure μ satisfying, for all x and all $r>0$ sufficiently small,

$$
\mu(B(x, r)) \leqslant r^{1-\epsilon} .
$$

For this, we define μ_{1} to be the Lebesgue measure on each interval of B_{1} included in $[0,1]$, normalized to be a probability measure. Let N_{1} be the number of intervals of B_{1} included in $[0,1]$. Within bounded multiplicative constants, we have

$$
N_{1}=\frac{e^{t_{1}}}{\ell_{1}}=e^{t_{1}} .
$$

Then, we let μ_{2} be the probability measure compatible with μ_{1} (in the sense that the μ_{2}-mass of a B_{1}-interval is equal to its μ_{1}-mass) and equal to the appropriately normalized Lebesgue measure on each B_{2}-interval. The number of B_{2}-intervals inside a B_{1} interval is

$$
N_{2}=\frac{e^{-t_{1}} \ell_{1}}{e^{-t_{2}} \ell_{2}}=e^{t_{2}-t_{1}} .
$$

Iterating this procedure, we obtain a sequence of probability measures μ_{n} supported on $\bigcap_{i=1}^{n} B_{i}$; then, we let μ be a weak-* limit of the sequence $\left(\mu_{n}\right)$. Note that, by our construction, if I is a B_{i}-interval then for all $n \geqslant i$, $\mu(I)=\mu_{n}(I)$.

For $r>0$ sufficiently small, find i such that $e^{-t_{i-1}} \ell_{i-1}>r \geqslant e^{-t_{i}} \ell_{i}$. Since B_{i}-intervals are separated by a distance $e^{-t_{i}} \ell_{i}$, the number of B_{i}-intervals intersecting $B(x, r)$ is at most $\frac{r}{e^{t_{i} \ell_{i}}}=r e^{t_{i}}$, and the μ-mass of a B_{i}-interval is $=\left(N_{1} \ldots N_{i}\right)^{-1} \leqslant C^{i} e^{-t_{i}}$, where C is some positive constant independent of i, so that

$$
\mu(B(x, r)) \leqslant r e^{t_{i}} C^{i} e^{-t_{i}} \leqslant r C^{i} .
$$

Using that $r \ll e^{-t_{i-1}}$ and that $\lim \frac{i}{t_{i-1}}=0$, we find that, given any $\epsilon>0$, for i large enough (i.e. r small enough), $C^{i}=e^{t_{i-1} \frac{i \log C}{t_{i-1}}} \leqslant r^{-\epsilon}$. Thus, for sufficiently small $r>0$ (depending on ϵ)

$$
\mu(B(x, r)) \leqslant r^{1-\epsilon} .
$$

We can now derive Proposition 6.1.
Proof of Proposition 6.1. Let $\alpha \in[0,1]$ be an irrational number with continued fraction expansion $\alpha=\left[n_{1}, n_{2}, \ldots\right]$ such that $\lim n_{i}=\infty$, and set

$$
x=\left(\begin{array}{cc}
1 & \alpha \\
0 & 1
\end{array}\right) \mathbb{Z}^{2}
$$

The set $E=\left\{t \geqslant 0 \left\lvert\, \lambda_{1}\left(a_{t} x\right) \geqslant \frac{1}{10}\right.\right\}$ can be written as a union of disjoint intervals

$$
E=\left[s_{1}, t_{1}\right] \cup\left[s_{2}, t_{2}\right] \cup \ldots
$$

and for some constant C, for all $i, t_{i}-s_{i} \leqslant C$, and $\lim \frac{t_{i}}{i}=\infty$. By Lemma 6.2, the set $B=\bigcap_{i \geqslant 1} B_{i}$ has Hausdorff dimension 1. Moreover, by (6.1), for any $\gamma \in B$, for all t not in any interval $\left[s_{i}, t_{i}\right]$,

$$
\sigma\left(a_{t}\left(x+\binom{\gamma}{0}\right)\right) \geqslant 1 .
$$

Since the intervals $\left[s_{i}, t_{i}\right]$ are disjoint and have length at most C, we find that for all $\gamma \in B$ and all $t \geqslant 0$,

$$
\sigma\left(a_{t}\left(x+\binom{\gamma}{0}\right)\right) \geqslant e^{-C}
$$

This shows that for \mathcal{O} being the $\frac{1}{2} e^{-C}$-ball around the origin with respect to the sup-norm, we have that the image of the set $B \times[-1,1]$ in the torus \mathbb{R}^{2} / x is contained in $F_{S^{+}(\mathcal{O})}(x)$ (note that translating in the stable direction does not affect the asymptotic properties of the a_{t}-orbit), which implies in particular that

$$
\operatorname{dim}_{H} F_{S^{+}(\mathcal{O})}(x)=2 .
$$

Acknowledgments. We would like to thank Manfred Einsiedler and Elon Lindenstrauss for valuable discussions. Seonhee Lim acknowledges the support of the Samsung Science and Technology Foundation under Project No. SSTF-BA1601-03. Nicolas de Saxcé acknowledges the warm hospitality of the mathematics department at the Technion. Uri Shapira acknowledges the support of ISF grant 357/13.

References

[BM92] Daniel Berend and William Moran, The inhomogeneous minimum of binary quadratic forms, Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 1, 7-19. MR 1162928
[BHKV10] Yann Bugeaud, Stephen Harrap, Simon Kristensen, and Sanju Velani, On shrinking targets for \mathbb{Z}^{m} actions on tori, Mathematika 56 (2010), 193-202.
[EL10] Manfred Einsiedler and Elon Lindenstrauss, Diagonal actions on locally homogeneous spaces, Homogeneous flows, moduli spaces and arithmetic, Clay Math. Proc., vol. 10, Amer. Math. Soc., Providence, RI, 2010, pp. 155-241. MR 2648695
[ELMV12] Manfred Einsiedler, Elon Lindenstrauss, Philippe Michel, and Akshay Venkatesh, The distribution of closed geodesics on the modular surface, and Duke's theorem, Enseign. Math. (2) 58 (2012), no. 3-4, 249-313. MR 3058601
[ELW] Manfred Einsiedler, Elon Lindenstrauss, and Thomas Ward, Entropy in ergodic theory and homogeneous dynamics, To appear. Preprint available at http://www.personal.leeds.ac.uk/~mattbw/entropy.
[ET11] Manfred Einsiedler and Jimmy Tseng, Badly approximable systems of affine forms, fractals, and Schmidt games, J. Reine Angew. Math. 660 (2011), 83-97. MR 2855820
[Fal03] Kenneth Falconer, Fractal geometry, second ed., John Wiley \& Sons, Inc., Hoboken, NJ, 2003, Mathematical foundations and applications. MR 2118797
[KSW16] Dmitry Kleinbock, Ronggang Shi and Barak Weiss, Pointwise equidistribution with an error rate and with respect to unbounded functions, Math. Ann. (2016) 1-23.
[KW10] Dmitry Kleinbock and Barak Weiss, Modified Schmidt games and Diophantine approximation with weights, Adv. Math. 223 (2010), no. 4, 1276-1298. MR 2581371
[KTV06] Simon Kristensen, Rebecca Thorn, and Sanju Velani, Diophantine approximation and badly approximable sets, Adv. Math. 203 (2006), no. 1, 132-169. MR 2231044
[PV02] Andrew Pollington and Sanju Velani, On simultaneously badly approximable numbers, J. Lond. Math. Soc. (2) 66 (2002), no. 1, 29-40. MR 1911218
[Sha13] Uri Shapira, Grids with dense values, Comment. Math. Helv. 88 (2013), no. 2, 485-506. MR 3048195
S. Lim. Department of Mathematical Sciences, Seoul National University slim@snu.ac.kr
N. de Saxcé. C.N.R.S. - Laboratoire Analyse, Géométrie et Applications, Université Paris 13, Villetaneuse desaxce@math.univ-paris13.fr
U. Shapira. Department of Mathematics, Technion, Haifa, Israel ushapira@tx.technion.ac.il

[^0]: 2000 Mathematics Subject Classification. Primary 28A33; Secondary 37C85, 22E40.
 ${ }^{1}$ One could work with two-sided spikes taking the union over $t \in \mathbb{R}$ in (1.1) but our results are stronger as the domain decreases so we will concentrate on the one-sided case.

