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Abstract

Let G be a connected perfect real Lie group G. We show that there
exists α < dimG and p ∈ N∗ such that if µ is a compactly supported
α-Frostman Borel measure on G, then the p-th convolution power µ∗p

is absolutely continuous with respect to the Haar measure on G, with
arbitrarily smooth density. As an application, we obtain that if A ⊂ G is
a Borel set with Hausdorff dimension at least α, then the p-fold product
set Ap contains a non-empty open set.

1 Introduction
The original motivation for this article was to study the Hausdorff dimension of
product sets in perfect Lie groups. Recall that a group G is called perfect if it
is equal to its commutator group, i.e. G = [G,G]. Given a Borel subset A of G,
we want to obtain non-trivial lower bounds on the Hausdorff dimension of the
product set Ap of all elements that can be written as products of p elements of
A. We prove the following.

Theorem 1.1 (Hausdorff dimension of product sets). Let G be a connected
real perfect Lie group of dimension d. Then there exists α < d such that if A
is any Borel subset of G of Hausdorff dimension at least α, then the product
set Ap contains a non-empty open subset of G. In particular, G has no proper
measurable dense subgroup of Hausdorff dimension larger than α.

It was proved in [6] that in a connected simple Lie group of dimension d,
there is no measurable dense subgroup of Hausdorff dimension strictly between 0
and d. The above result allows to conclude that in fact, any proper measurable
dense subgroup of a simple Lie group must have Hausdorff dimension zero.
This comes in contrast with what happens in nilpotent Lie groups, where it was
shown by the second author in [5] that there always exist proper measurable
dense subgroups of arbitrary Hausdorff dimension in [0,dimG].

It turns out that the techniques used for the proof of Theorem 1.1 also have
interesting implications about regularity of convolution products of compactly
supported measures on a connected perfect Lie group G. We say that a Borel
measure µ on a Lie group G is α-Frostman if there exists C ≥ 0 such that for
any ball Br of radius r in G, µ(Br) ≤ Crα. Our main result is as follows.

Theorem 1.2 (Convolution of Frostman measures). Let G be a connected per-
fect Lie group. Given a positive integer k, there exists κ > 0 and p ∈ N∗ such
that if µ1, . . . , µp are compactly supported (d−κ)-Frostman measure on G, then
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the k-fold convolution µp ∗ · · · ∗ µ1 is absolutely continuous with respect to Haar
measure, with density k times differentiable.

It is worth noting that this result already has a non-trivial consequence about
convolution of compactly supported continuous functions on a perfect Lie group.

Corollary 1.3 (Convolution of continuous functions). Let G be a connected
perfect Lie group and for k ∈ N, denote by Ckc (G) the space of compactly sup-
ported Ck functions on G. Given a positive integer k, there exists p ∈ N∗ such
that

C0
c (G)∗p ⊂ Ckc (G).

The main ingredient in the proof of Theorem 1.2 above originates in the work
of Bourgain and his coauthors in [1, 2, 3], very recently developed in a more
general context by Boutonnet, Ioana and Salehi-Golsefidi [4]. This ingredient is
a bound on the coefficients of the regular representation of a connected perfect
Lie group G. This bound will imply a convolution inequality for Frostman
measures, which is the subject of Section 2. Then, we need to iterate this
convolution inequality. For that, the main idea is to identify G locally with a
torus of equal dimension, so as to be able to use Fourier analysis in this setting.
This is done in Section 3. Finally, in Section 4, we derive Theorems 1.2 and 1.1.

2 A local convolution inequality for perfect groups

2.1 Bounds on coefficients of the regular representation
Let G be a Lie group of dimension d and denote by g the Lie algebra of G. We
fix a Euclidean structure on g and consider a left-invariant Riemannian metric
on G. We will assume that the exponential map induces a diffeomorphism from
Bg(0, 1) to a neighborhood Ω of the identity in G; this can always be ensured
by changing the norm on g by a multiplicative constant.

Fix a function ϕ ∈ C∞c (g) supported on Bg(0, 1). For 1 > δ > 0, and x ∈ G
we let

Pδ(x) =

{
cδϕ( log x

δ ) if x ∈ Ω
0 if x 6∈ Ω,

where cδ is chosen so that
∫
G
Pδ = 1.

We denote by Tg : L2(G) → L2(G) the left regular representation of G,
defined by TgF (x) = F (g−1x).

The next theorem is essentially due to Boutonnet, Ioana and Salehi-Golsefidi
[4], generalizing work of Bourgain and Gamburd [2] in the case G = SU(d) .
We will explain in this paragraph the minor modifications needed to get the
version stated here. Recall that a group is G is called perfect if it is equal to its
commutator subgroup, i.e. G = [G,G].

Theorem 2.1. [4, Formula (∗), page 35]. Let G be a connected perfect Lie
group and B a compact subset of G. There exists positive constants a, b, κ such
that for every F1, F2 ∈ L2(B), for all δ ∈ (0, 1),∫

G

|〈TgF1, F2〉|2 dg ≤ a‖Pδ ∗ F1‖22‖Pδ ∗ F2‖22 + bδκ‖F1‖22‖F2‖22.
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Remark 1. For the application presented in this article, we will only need the
bound on the L1-norm of the coefficient∫

G

|〈TgF1, F2〉|dg ≤ a‖Pδ ∗ F1‖2‖Pδ ∗ F2‖2 + bδκ‖F1‖2‖F2‖2,

but the proof yields the stronger inequality on the L2-norm of the coefficient,
and we do not know of an easier proof of this slightly weaker inequality.

In the proof described in [4], the assumption that G is simple is only used
through the fact that there exists a one-dimensional compact subgroup H with
Lie algebra h such that the ideal generated by h in g = LieG is equal to g. We
show now that this property is still valid as long as the Lie algebra g is perfect.
More precisely, we have the following.

Proposition 2.2 (Existence of a spanning torus). Let g be a perfect real Lie
algebra and X ∈ g with non-zero projection in all the simple factors of g. Then
the ideal I generated by X is equal to g.

The proof will use the following lemma.

Lemma 2.3. Let g be a perfect real Lie algebra, then g decomposes as a semi-
direct product g = s⊕ u, where s is a semisimple subalgebra and u is a nilpotent
ideal in g.

Proof. By Lévi’s theorem [7, Corollary 1, page 49] we know that g is the semi-
direct product of its solvable radical r and a semisimple Lie algebra s. All we
need to check is that r is in fact nilpotent. We will show that for all X ∈ r,
adX is nilpotent; by Engel’s theorem, this will prove the lemma.

By Lie’s theorem applied to ad r, the set of X ∈ r such that adX is nilpotent
is an ideal of r. So we only need to check that r is spanned by ad-nilpotent
elements. Since g is perfect, we must have

r = [g, r],

and r is spanned by all subspaces [H, r], H ∈ g. Now for any H ∈ g, the Lie
algebra CH ⊕ r is solvable and therefore, by Lie’s theorem again, any element
in [H, r] is ad-nilpotent. This is what we wanted.

Proof of Proposition 2.2. By the above lemma, the Lie algebra g is the semi-
direct product of a nilpotent ideal u with a semisimple algebra s. Let I be
the ideal generated by X. Since the projection of X on any simple factor is
non-zero, we must have g = I + u. Let J = I ∩ u. Since g = [g, g], we have

u = [I, u] + [u, u] = J + [u, u].

By induction on the nilpotency step of u, this readily implies that J = u, and
thus, I = g.

With Proposition 2.2 at hand, the rest of the proof of Theorem 2.1 will follow
the lines of [4, Section 5].
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Proof of Theorem 2.1. Let G be a connected perfect real Lie group. By Propo-
sition 2.2, we may fix a compact torus H in G with Lie algebra h such that the
smallest ideal containing h is equal to g. For some integer n, consider the map

π(n) : (G×H ×H)n −→ G
(g1, t1, s1, . . . , gn, tn, sn) 7−→

∏n
i=1 tigit

−1
i sig

−1
i s−1i

By the above assumption on h, we may find an integer n and elements g1, . . . , gn
in G such that g =

⊕n
i=1(Ad gi)h. Fixing such a choice of gi, the tangent map

at the identity of (t1, s1, . . . , tn, sn) 7→ π(n)(g1, t1, s1, . . . , gn, tn, sn) is onto. This
implies that there exists a point at which the tangent map of π(n) has maximal
rank dimG, and since π(n) is analytic, this must hold in fact for almost every
point in (G×H×H)n. We can then reproduce the proof of [4, (∗), page 35] and
find that for some integer k (k = 8d) and some τ > 0, if B is a fixed compact
subset of G, then, for all F1, F2 ∈ L2(B) and all δ > 0,∫

G

|〈F1, TgF2〉|2 dg � ‖F1‖22(δτ‖F2‖22 + ‖F2‖
2− 1

k
2 ‖Pδ ∗ F2‖

1
k
2 )

where the implied constant in the� notation depends only on B. In particular,
if ‖P√δ ∗ F2‖2 �

√
δ‖F2‖2, then the above applied at scale

√
δ yields∫

G

|〈F1, TgF2〉|2 dg � δ
τ
2 ‖F1‖22‖F2‖22 (1)

provided τ ≤ 1
k . By symmetry, (1) also holds if ‖P√δ ∗ F1‖2 �

√
δ‖F1‖2.

Now write Fi = Pδ ∗ Fi +Gi, i = 1, 2.
It is easy to check that

‖P√δ − P√δ ∗ Pδ‖1 �
√
δ, (2)

so that for each i, ‖P√δ ∗Gi‖2 �
√
δ‖Fi‖2. Moreover,

|〈F1, TgF2〉|2 � |〈G1, TgG2〉|2 + |〈Pδ ∗ F1, TgG2〉|2 + |〈G1, TgPδ ∗ F2〉|2

+|〈Pδ ∗ F1, TgPδ ∗ F2〉|2

Applying (1) to the three first terms, and bounding trivially the last one, we
obtain what we wanted to show:∫

G

|〈F1, TgF2〉|2 dg � ‖Pδ ∗ F1‖22‖Pδ ∗ F2‖22 + δκ‖F1‖22‖F2‖22,

with κ = τ
2 .

2.2 Application to Frostman measures
It was observed by Bourgain in [1] that bounds of the type of Theorem 2.1 above
imply a convolution inequality for Frostman measures on G. Recall that given
α ∈ [0, d], a Borel measure µ on G is called α-Frostman if there exists C such
that for all r > 0 and all x in G, µ(B(x, r)) ≤ Crα. In our context, we obtain
the following, which is a refined version of the mixing inequality proved in [4,
Proposition 5.6].
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Corollary 2.4 (Convolution inequality). Let G be a connected perfect Lie group.
There exist a neighborhood U of the identity in G and κ′ > 0 such that if µ is
any (d−κ′)-Frostman probability measure supported on V and F ∈ L2(U), then,
for all δ > 0,

‖µ ∗ F‖2 � ‖Pδ ∗ F‖2 + δκ
′
‖F‖2,

where the implied constant in � depends only on µ.

Proof. Throughout the proof, C will denote a large constant, depending only
on µ, and whose value may increase from one line to the other.

Let µ̃ ∈ P(G) be the pushforward of the measure µ⊗ µ on G×G under the
map (x, y) 7→ xy−1. Of course µ̃ is (d−κ′)-Frostman. Without loss of generality,
we may assume ‖F‖2 = 1. We use the Paley-Littlewood decomposition of F , as
introduced in [2], F =

∑
i≥0 ∆iF , where

∆0F = P 1
2
∗ F and ∀i ≥ 1, ∆iF = P2−i−1 ∗ F − P2−i ∗ F.

We refer to [4, Theorem 5.1] for a nice exposition of the basic properties of this
decomposition. In addition, we note that there exists an absolute constant C
such that for all integer i, the function ∆iF is C2i-Lipschitz.

We assume for simplicity that δ = 2−i0 for some i0 ≥ 1. We have

µ ∗ F = µ ∗ Pδ ∗ F +
∑
i≥i0

µ ∗∆iF

Since µ is a probability measure, the first term is bounded in L2-norm by

‖µ ∗ Pδ ∗ F‖2 ≤ ‖Pδ ∗ F‖2.

On the other hand, for i ≥ i0, we write

‖µ ∗∆iF‖22 =

∫
G

〈Tg∆iF,∆iF 〉dµ̃(g)

≤
∫
G

|〈Tg∆iF,∆iF 〉|dµ̃(g)

Since ∆iF is C2i-Lipschitz, so is the map g 7→ |〈Tg∆iF,∆iF 〉| – adjusting
possibly the value of the constant C – so we have, for all g ∈ G,

|〈Tg∆iF,∆iF 〉| ≤ C2−i +
1

|B(g, 2−2i)|

∫
B(g,2−2i)

|〈Tg∆iF,∆iF 〉|dg.

Therefore∫
G

|〈Tg∆iF,∆iF 〉| dµ̃(g) ≤ C2−i +

∫
G

|〈Tg∆iF,∆iF 〉|d(µ̃ ∗ P2−2i)(g)

Since µ̃ is (d− κ′)-Frostman the function µ̃ ∗ P2−2i is bounded in L∞-norm by
C22κ

′i, so that∫
G

|〈Tg∆iF,∆iF 〉| dµ̃(g)� 2−i + 22κ
′i

∫
G

|〈Tg∆iF,∆iF 〉|dg

Thus, by Theorem 2.1 applied to ∆iF at scale 2−i/2,

‖µ ∗∆iF‖22 � 2−i + 22κ
′i(‖P2−i/2 ∗∆iF‖22 + 2−

iκ
2 ).
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To conclude, note that (2) implies that ‖P2−i/2 ∗∆iF‖2 ≤ C2−i/4, so that

‖µ ∗∆iF‖22 � 2−i + 2(2κ
′− 1

2 )i + 2(2κ
′−κ2 )i.

Assuming κ′ < min( 1
8 ,

κ
8 ), we can sum over i to get∑

2i≥δ

‖µ ∗∆iF‖2 � δκ
′

and in turn,
‖µ ∗ F‖2 � ‖Pδ ∗ F‖2 + δκ

′
.

3 Local action on the torus and Fourier series
Let G be a Lie group and Td be the d-dimensional torus. In this section, we
discuss local actions of G on a small open set V of Td. The reader may think
of V as a small open set in an arbitrary manifold that we embedded in Td via
a local chart, in order to be able to use Fourier series to study the action of G
on elements of L2(V ).

Definition 3.1. Given neighborhoods U and V of the identity in G and Td,
respectively, we define a local action of G on Td as a smooth map

U × V → Td
(g, x) 7→ g · x

satisfying, for all g, h ∈ U and x ∈ V , g(g−1x) = x if g−1x ∈ V and g(hx) =
(gh)x if hx ∈ V and gh ∈ U .

Suppose now that we are given a local action of a Lie group G on Td defined
on U × V . If f is a real-valued function supported on V that is integrable for
the Haar measure dx on Td and µ any Borel probability measure supported on
U , we define the convolution product µ ∗ f to be the integrable function on Td
defined by the formula, for almost every x ∈ Td,

µ ∗ f(x) =

∫
G

f(g−1x) dµ(g). (3)

3.1 Convolution and high-frequency harmonics
As before, suppose we have a local action U × V → Td of a Lie group G on the
torus Td. Given f ∈ L2(V ), we can decompose it into its Fourier series

f =
∑
n∈Zd

f̂(n)en

where f̂(n) =
∫
Td f(x)e−2iπn·xdx and en(x) = e2iπn·x for x ∈ Td. If µ is a

probability measure supported on U , we want to control the Fourier expansion
of µ ∗ f in terms of that of f .
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Notation. Given a positive integer N , and a continuous function f on Td, we
write Supp f̂ ∩N = ∅ if f̂(n) = 0 whenever |n| ≤ N .

Lemma 3.2. Let G be a Lie group and U ×V → Td a local action of G on Td.
Fix θ ∈ C∞c (V ). Given positive constants τ,A, there exists C = Cτ,A such that
the following holds.
Suppose µ is a Borel probability measure with Suppµ ⊂ U and f ∈ L2(Td) is
such that Supp f̂ ∩N = ∅. Then, one can decompose

µ ∗ (θf) = f0 + f1 with
{
‖f0‖2 ≤ Cτ,AN−A‖f‖2
Supp f̂1 ∩N1−τ = ∅

Proof. Let ψ = µ ∗ (θf). The Fourier coefficient ψ̂(n) is given by

ψ̂(n) =

∫
G

∫
Td
e−2iπn·xθ(g−1x)f(g−1x)dx dµ(g)

=

∫
G

∫
Td
e−2iπn·(gx)θ(x)f(x)|g′(x)|dx dµ(g)

where |g′(x)| denotes the Jacobian of the diffeomorphism x 7→ g(x), defined for
x ∈ V and g ∈ U . Fixing g ∈ U , let ηn,g(x) = e−2iπn·(gx)|g′(x)|θ(x), so that the
inner integral above rewrites∫

Td
e−2iπn·(gx)θ(x)f(x)|g′(x)|dx =

∫
Td
ηn,g(x)f(x)dx

If ∆ denotes the usual Laplacian on Td, we can bound, for p any positive integer,
if n 6= 0,

‖∆pηn,g‖∞ ≤ Cp|n|2p,
where the constant Cp depends only on p. On the other hand, if hp ∈ L2(Td) is
such that ∆php = f and hp has zero average, we have

‖hp‖2 ≤ N−2p‖f‖2

because f̂(n) = 0 whenever |n| ≤ N . Therefore, integrating by parts p times,
we find ∫

Td
ηn,g(x)f(x)dx =

∫
Td

∆pηn,g(x)hp(x)dx

≤ Cp
(
|n|
N

)2p

‖f‖2

Integrating over dµ(g), we find, provided |n| ≤ N1−τ ,

|ψ̂(n)| ≤ CpN−2pτ‖f‖2.

Let f0 =
∑
|n|≤N1−τ ψ̂(n)en and f1 =

∑
|n|>N1−τ ψ̂(n)en. One has of course

Supp f̂1 ∩ N1−τ = ∅, and by the above estimates, provided p has been chosen
so that 2pτ − d > A, one also has

‖f0‖2 ≤ Cτ,AN−A‖f‖2.

This proves the lemma.
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3.2 The regular local action
We define now the regular local action of a d-dimensional Lie group G on the
torus Td. It corresponds to the action of G on itself by left-multiplication, in
a neighborhood of the identity. More precisely, let U be a neighborhood of the
identity in G such that ι = expTd ◦ exp−1G induces a diffeomorphism from U to
a neighborhood V of the identity in Td. We define the regular local action of G
on Td by

∀g ∈ U, x ∈ V, g · x = ι(gι−1(x)).

Recall that Pδ denotes the family of C∞c (G) approximations to the identity
defined at the beginning of Section 2. The lemma below relates the Fourier
expansion of a function f on Td with the size of Pδ∗f , which is the regularization
of f at scale δ. Here the convolution product refers to the local action of G on
Td, as defined in (3).

Lemma 3.3. Let G be a d-dimensional Lie group and consider the regular local
action · : U×V → Td as defined above. Fix θ ∈ C∞c (V ). For all positive integer
k, there exists a constant Ck such that for all N ≥ 1, for all δ > 1

N , for all
f ∈ L2(Td) with Supp f̂ ∩N = ∅,

‖Pδ ∗ (θf)‖2 ≤ Ckδ−d
(

1

δN

)2k

‖f‖2

Proof. The proof is similar to that of Lemma 3.2 and will follow from integrating
by parts. We have

Pδ ∗ (θf)(x) =

∫
G

θ(g−1x)f(g−1x)Pδ(g) dg

Use change of variables u = gx, and let Jx(u) be the Jacobian of u 7→ xu−1, to
write

Pδ ∗ (θf)(x) =

∫
Td
f(u)θ(u)Pδ(g(u))Jx(u) du

=

∫
Td
f(u)ψ(u) du,

where ψ(u) = θ(u)Pδ(g(u))Jx(u). For any positive integer k, we can bound

∆kψ(u) ≤ Ckδ−2k−d

and on the other side, if ηk is a mean-zero function on Td such that ∆kηk = f ,

‖ηk‖2 ≤ N−2k‖f‖2

because Supp f̂ ∩N = ∅. Therefore,∣∣∣∣∫
Td
f(u)ψ(u)du

∣∣∣∣ ≤ Ckδ−2k−dN−2k‖f‖2.
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3.3 Iterating the convolution inequality
Given a Frostman measure µ on a connected Lie group G, the goal of the rest
of this section is to apply Corollary 2.4 inductively. More precisely, we prove
Proposition 3.4 below, which will allow us to show in Section 4 that large powers
of Frostman measures become arbitrarily smooth.

Proposition 3.4. Given a connected perfect Lie group G, we consider the reg-
ular local action U×V → Td, as defined in the previous paragraph. There exists
κ > 0 such that for all A > 0, there exist U ′ ⊂ U , V ′ ⊂ V and p ∈ N∗ such
that for θ ∈ C∞c (V ′), if µ1, ..., µp are (d − κ)-Frostman probability measures
supported on U ′, then there exists C > 0 such that, for all f ∈ L2(Td) with
Supp f̂ ∩N = ∅,

‖µp ∗ · · · ∗ µ1 ∗ (θf)‖2 ≤ CN−A‖f‖2.

We start by a lemma which will be an easy consequence of Corollary 2.4 and
Lemma 3.3.

Lemma 3.5. Let G be a perfect Lie group and U × V → Td the regular local
action. There exists κ > 0 such that if θ ∈ C∞c (V ), for all (d − κ)-Frostman
probability measure µ, there exists C ≥ 0 such that for all f ∈ L2(Td) such that
Supp f̂ ∩N = ∅,

‖µ ∗ (θf)‖2 ≤ CN−κ‖f‖2.

Proof. Since ι = expTd ◦ exp−1G induces a diffeomorphism from U to V , any
function ψ on V corresponds to a function F = ψ ◦ ι on U . Moreover, for some
constant C depending only on the ambiant group G,

1

C
‖ψ‖2 ≤ ‖F‖2 ≤ C‖ψ‖2.

We apply this observation to ψ = θf , and denote F = (θf) ◦ ι. Thus, by
Corollary 2.4, for all δ > 0,

‖µ ∗ (θf)‖2 � ‖µ ∗ F‖2 � ‖Pδ ∗ F‖2 + δκ
′
‖F‖2.

Using Lemma 3.3, we can bound the first term on the right

‖Pδ ∗ F‖2 ≤ Ckδ−d
(

1

δN

)2k

‖f‖2

so that choosing δ = N−
1
2 and k ≥ d

2 + κ′ we obtain

‖µ ∗ (θf)‖2 � N−κ
′
‖f‖2.

This proves the lemma, with κ = κ′ given by Corollary 2.4.

We are now ready to prove Proposition 3.4.

Proof of Proposition 3.4. Again, we assume without loss of generality that ‖f‖2 =
1. Let κ > 0 be as in Lemma 3.5. Choose τ > 0 and p ∈ N∗ such that

κ+ (1− τ)κ+ · · ·+ (1− τ)p−1κ > A.
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Choose the neighborhoods U ′, V ′ so that U ′p∗V ′ ⊂ 1
2V , and for each i = 1, ..., p,

let θi ∈ C∞c (U) be such that

θi(x) =

{
1 if x ∈ U ′i ∗ V ′
0 if x 6∈ U ′i+1 ∗ V ′

By Lemma 3.2 we can write

µ1 ∗ (θf) = f0 + f1 with
{
‖f0‖2 � N−A

Supp f̂1 ∩N1−τ = ∅

By Lemma 3.5, ‖f1‖2 � N−τ . Note that since µ1 ∗ (θf) is supported on U ′ ∗V ′,
we have µ1 ∗ (θf) = θ1(µ1 ∗ (θf)) = θ1f0 + θ1f1. So we apply Lemma 3.2 again,
this time to θ1f1, at scale N1−τ to write

µ2 ∗ (θ1f1) = f10 + f11 with
{
‖f10‖2 � N−A

Supp f̂11 ∩N (1−τ)2 = ∅

This time, by Lemma 3.5, ‖f11‖2 ≤ N−κ−κ(1−τ). We apply this procedure p
times to obtain in the end

‖µp ∗ · · · ∗ µ1 ∗ f‖2 � N−A +N−κ−κ(1−τ)−···−κ(1−τ)
p−1

� N−A.

4 Applications

4.1 Differentiability of convolution powers
We now prove the main result of this note.

Theorem 4.1 (Convolution of Frostman measures). Let G be a connected per-
fect Lie group. Given a positive integer k, there exists κ > 0 and p ∈ N∗ such
that if µ1, . . . , µp are compactly supported (d−κ)-Frostman measure on G, then
the k-fold convolution µp ∗ · · · ∗ µ1 is absolutely continuous with respect to Haar
measure, with density k times differentiable.

Proof. Let κ > 0 and p ∈ N∗ be such that Proposition 3.4 holds for A >
2k+ d. Assume first that each µi is supported in the neighborhood U ′ given by
Proposition 3.4. We identify the measure ν = µp ∗ · · · ∗ µ1 with its pushforward
under the diffeomorphism ι = expTd ◦ exp−1G . Recall that ∆ denotes the usual
Laplacian on Td. It suffices to show that the distribution ∆kν lies in L2(Td).
Since ν ∗∆kPδ = ∆kν ∗ Pδ converges to ∆kν when δ goes to zero, we just need
to bound the L2-norm ‖ν ∗ ∆kPδ‖2 independently of δ. Fix θ ∈ Cc(V ′) equal
to 1 on a neighborhood of 0 and, for δ > 0 small enough, decompose Pδ = θPδ
into its Fourier series:

Pδ =
∑
n∈Zd

P̂δ(n)en =
∑
n∈Zd

P̂δ(n)θen,

and
∆kPδ =

∑
n∈Zd

|n|2kP̂δ(n)θen.
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By Proposition 3.4 applied to en, we get

‖ν ∗ (θen)‖2 � |n|−A

and therefore, since |P̂δ(n)| ≤ 1,

‖ν ∗∆kPδ‖2 �
∑
n∈Zd

|n|−A+2k ≤ CA <∞.

This shows that ∆kν lies in L2 and therefore that ν is k times differentiable.
The general case reduces to the case where the µi are supported in U ′.

Indeed, if B is a large symmetric compact set containing
⋃p
i=1 Suppµi, cover

B by a finite union of translates gjU ′′, where U ′′ is chosen so that for all g in
the product set Bp, gU ′′g−1 ⊂ U ′. Taking a partition of unity associated to
this cover, we see that we may assume that for each i, µi is supported on some
giU

′′. Let
νi = δ(gi...g1)−1 ∗ µi ∗ δgi−1...g1 ,

so that each νi is supported on U ′ and

µp ∗ · · · ∗ µ1 = δgp...g1 ∗ νp ∗ · · · ∗ ν1.

Since νp ∗ · · · ∗ ν1 is k-times differentiable by the first part of the proof, so is
µp ∗ · · · ∗ µ1, and we are done.

As a consequence of the above theorem, we have the following.

Corollary 4.2 (Convolution of continuous functions). Let G be a connected
perfect Lie group. Given a positive integer k, there exists p ∈ N∗ such that

Cc(G)∗p ⊂ Ckc (G).

Example 1. Note that the assumption that G is perfect is necessary. Indeed,
the function on T1 defined by

F (x) =
∑
n≥1

1

n2
e2
niπx

is continuous, but for all p, F ∗p is nowhere differentiable. This example can
easily be generalized to any connected abelian Lie group.

Corollary 4.3 (Convolution of Lq-functions). Let q > 1 and denote by Lqc(G)
the space of compactly supported Lq-functions on G. Then, given any positive
integer k, there exists p ∈ N∗ such that

Lqc(G)∗p ⊂ Ckc (G).

Proof. By the classical Young inequalities, Lq(G) ∗ Lq(G) ⊂ L
q

2−q (G) so that
for some integer p ∈ N∗, we get

Lq(G)∗p ⊂ Lr(G), for some r ≥ 2.

This implies in particular that

Lqc(G)∗p ⊂ L2
c(G),

and since L2
c(G)∗L2

c(G) ⊂ Cc(G), the result follows from the previous corollary.
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Example 2. The assumption that q > 1 is necessary, as is shown by the
following example. Let (B(xn, 2

−n))n≥1 be a collection of disjoint balls included
in BG(1, 2), and define

f(x) =

{
n−22n dimG if x ∈ B(xn, 2

−n) for some n
0 otherwise

Then f ∈ L1
c(G) but for all p ∈ N∗, f∗p is not in L2(G). In particular, no

convolution power of f can be continuous.

4.2 Products sets and Hausdorff dimension
Recall Frostman’s lemma, which relates sets and Hausdorff dimension to Frost-
man measures.

Lemma 4.4. Let G be a Lie group with a Riemannian metric and A ⊂ G a
measurable set. If dimH A > α, then there exists an α-Frostman measure µ with
compact support included in A.

For subsets A1, . . . , Ap of a group G, we denote by A1A2 · · ·Ap the product
set of all elements g ∈ G that can be written g = a1a2 . . . ap, with each ai ∈ Ai.
The above lemma allows us to deduce the following from the results about
Frostman measures of the preceding paragraph.

Theorem 4.5. Let G be a connected perfect Lie group of dimension d. There
exists α < d and p ∈ N∗ such that for any measurable sets A1, . . . , Ap with
dimH Ai > α, the product set A1A2 · · ·Ap contains a non-empty open set.

Proof. Let κ > 0 and p ∈ N∗ be as in Theorem 4.1, with k = 0, and set
α = d − κ. By Frostman’s lemma, we may choose for each i an α-Frostman
probability measure µi with support included in Ai. By Theorem 4.1, the
convolution product µ1 ∗ · · · ∗ µp is absolutely continuous with respect to Haar
measure, with continuous density. In particular, S = Suppµ1 ∗ · · · ∗µp contains
a non-empty open set. This proves the theorem, because S is included in the
product set A1 · · ·Ap.

This has the following consequence about measurable subgroups of a con-
nected perfect group G.

Corollary 4.6. Let G be a connected perfect Lie group of dimension d. There
exists α < d such that G admits no proper measurable subgroup of Hausdorff
dimension larger than α.

It was proven in Saxcé [6] that a connected simple subgroup G has no dense
measurable subgroup of intermediate dimension α ∈ (0,dimG). The new infor-
mation contained in the above corollary is that the only measurable subgroup
of maximal Hausdorff dimension is G, so that we find:

Theorem 4.7. Let G be a connected simple Lie group. Any proper dense mea-
surable subgroup of G has Hausdorff dimension 0.

We recall that such a simple Lie group G always contains many uncountable
subgroups of Hausdorff dimension zero.
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