
ON THE FOURIER DECAY OF MULTIPLICATIVE CONVOLUTIONS

TUOMAS ORPONEN, NICOLAS DE SAXCÉ, AND PABLO SHMERKIN

ABSTRACT. We prove the following. Let µ1, . . . , µn be Borel probability measures on
r´1, 1s such that µj has finite sj-energy for certain indices sj P p0, 1swith s1`. . .`sn ą 1.
Then, the multiplicative convolution of the measures µ1, . . . , µn has power Fourier decay:
there exists a constant τ “ τps1, . . . , snq ą 0 such that

ˇ

ˇ

ˇ

ˇ

ż

e´2πiξ¨x1¨¨¨xn dµ1px1q ¨ ¨ ¨ dµnpxnq

ˇ

ˇ

ˇ

ˇ

ď |ξ|´τ

for sufficiently large |ξ|. This verifies a suggestion of Bourgain from 2010.

1. INTRODUCTION

In 2010, Bourgain [2, Theorem 6] proved the following remarkable Fourier decay prop-
erty for multiplicative convolutions of Frostman measures on the real line.

Theorem 1.1 (Fourier decay for multiplicative convolutions). For all s ą 0, there exists
ε ą 0 and n P Z` such that the following holds for every δ ą 0 sufficiently small.
If µ is a probability measure on r´1, 1s satisfying

@r P rδ, δεs, sup
aPr´1,1s

µpBpa, rqq ă rs

then for all ξ P R with δ´1 ď |ξ| ď 2δ´1,
ż

e2πiξx1...xndµpx1q . . . dµpxnq ď δ´ε. (1.2)

This result found striking applications in the Fourier decay of fractal measures and
resulting spectral gaps for hyperbolic surfaces [3, 9]. It was recently generalised to higher
dimensions by Li [5].

At the end of the introduction of [2], Bourgain proposes to study the optimal relation
between s and n. Our goal here is to show that, as suggested by Bourgain, Theorem 1.1
holds under the condition n ą 1{s, which is optimal up to the endpoint, as we shall see
in Example 1.10 below.

The statement we obtain applies more generally to multiplicative convolutions of dif-
ferent measures, and our proof also allows us to replace the Frostman condition by a
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slightly weaker condition. Precisely, for a finite Borel measure µ on R, given s P p0, 1s
and δ ą 0, the s-energy of µ is defined as

Ispµq :“

¨
|x´ y|´s dµpxq dµpyq.

We refer the reader to [6] for the basic properties of the energy of a measure. As in
Bourgain’s theorem, we shall be mostly interested in the properties of measures up to
some fixed small scale δ; for that reason, we also define the s-energy of µ at scale δ by

Iδs pµq “ Ispµδq,

where µδ “ µ ˚ Pδ is the regularisation of µ at scale δ, and Pδ a smooth approximate unit
of size δ. The main result of the present article is the following.

Theorem 1.3 (Fourier decay under optimal entropy condition). Let n ě 2, and tsjunj“1 Ă
p0, 1s such that

ř

sj ą 1. Then, there exist δ0, ε, τ P p0, 1s, depending only on the parameters
above, such that the following holds for δ P p0, δ0s. Let µ1, . . . , µn be Borel probability measures
on r´1, 1s satisfying the energy conditions

Iδsj pµjq ď δ´ε, 1 ď j ď n. (1.4)

Then, for all ξ satisfying δ´1 ď |ξ| ď 2δ´1,
ˇ

ˇ

ˇ

ˇ

ż

e´2πiξx1...xn dµ1px1q . . . dµnpxnq

ˇ

ˇ

ˇ

ˇ

ď |ξ|´τ . (1.5)

Remark 1.6. It is not difficult to check that the Frostman condition µpBpa, rqq ď rs from
Bourgain’s Theorem 1.1 is stronger that the assumption on the s-energy at scale δ used
above. The reader is referred to Lemma 3.8 for a detailed argument.

Remark 1.7. The values of the parameters δ0, ε ą 0 stay bounded away from 0 as long
as mints1, . . . , snu ą 0 stays bounded away from 0, and

ř

j sj ą 1 stays bounded away
from 1, and n ranges in a bounded subset of N.

The following corollary is immediate:

Corollary 1.8. Let n ě 2, and tsjunj“1 Ă p0, 1s such that
ř

sj ą 1. There exists τ “
τpn, tsjuq ą 0 such that the following holds. Let µ1, . . . , µn be Borel probability measures on
R such that Isj pµjq ă `8. Then there is C “ Cptµjuq ą 0 such that

ˇ

ˇ

ˇ

ˇ

ż

e´2πiξx1...xn dµ1px1q . . . dµnpxnq

ˇ

ˇ

ˇ

ˇ

ď C ¨ |ξ|´τ , ξ P R. (1.9)

Writing µ1� ¨ ¨ ¨�µn for the image of the measure µ1ˆ¨ ¨ ¨ˆµn under the product map
px1, . . . , xnq ÞÑ x1 . . . xn, the Fourier decay condition (1.9) implies that additive convolu-
tion powers of µ1 � ¨ ¨ ¨� µn become absolutely continuous with respect to the Lebesgue
measure on R, with arbitrarily smooth densities. In particular, if Ai denotes the support
of the measure µi, for i “ 1, . . . , n, a sumset of the product set

A1A2 . . . An “ ta1a2 . . . an : ai P Aiu

must contain a non-empty interval. This observation, together with the example below,
shows that the condition

ř

sj ą 1 used in Theorem 1.3 is essentially optimal.
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Example 1.10. Given s P p0, 1q and an increasing sequence of integers pnkqkě1, define a
subset Hs in R by

Hs “ tx P r0, 1s : @k ě 1, dpx, n´sk Zq ď n´1k u.

If pnkq grows fast enough, then both Hs and the additive subgroup it generates will have
Hausdorff dimension s.

Now assume that the parameters s1, . . . , sn satisfy
ř

si ă 1. Fixing s1i ą si such that
one still has

ř

s1i ă 1, Frostman’s lemma yields probability measures µi supported on
Hs1i

and satisfying µipBpa, rqq ă rsi for all r ą 0 sufficiently small. However, since the
support Ai of µi satisfies Ai Ă Hs1i

, one has

A1 . . . An Ă
!

x P r0, 1s : @k ě 1, d
´

x, n
´
ř

s1i
k Z

¯

ď n ¨ n´1k

)

.

This shows that the subgroup generated by A1 . . . An has dimension bounded above by
ř

s1i ă 1 and so is not equal to R. So the measure µ1 � ¨ ¨ ¨ � µn cannot have polynomial
Fourier decay.

An analogue of Theorem 1.3 in the prime field setting was obtained by Bourgain in
[1], and our proof follows a similar general strategy, based on sum-product estimates
and flattening for additive-multiplicative convolutions of measures. Example 1.10 above
shows that there exist compact sets A and B in R such that the additive subgroup xABy
generated by the product set AB satisfies dimHxABy ď dimHA` dimHB. Conversely, it
was shown in [7] as a consequence of the discretised radial projection theorem [8] that
for Borel sets A,B Ă R, one has

dimHpAB `AB ´AB ´ABq ě mintdimHA` dimHB, 1u. (1.11)

The main ingredient in the proof of Theorem 1.3 is a discretised version of this inequal-
ity; the precise statement is given below as Proposition 3.6 and is taken from [7, Pro-
position 3.7]. It can be understood as a precise version of the discretised sum-product
theorem, which allows us to improve on the strategy used by Bourgain in [2] and obtain
Fourier decay of multiplicative convolutions under optimal entropy conditions. Before
turning to the detailed proof, let us give a general idea of the argument.

Notation. We fix for the rest of the article a standard, L1-normalized approximate iden-
tity tPδuδą0 “ tδ´1P p¨{δquδą0. Given a measure µ on R, recall that we write µδ for the
density of µ at scale δ, or equivalently, µδ “ µ ˚ Pδ.

Below, we shall use both additive and multiplicative convolution of measures. To
avoid any confusion, we write µ� ν, µ� ν and µ� ν to denote the image of µˆ ν under
the maps px, yq ÞÑ x ` y, px, yq ÞÑ x ´ y, and px, yq ÞÑ xy, respectively. Similarly, we
denote additive and multiplicative k-convolution powers of measures by µ�k and µ�k,
respectively.

The push-forward of a Borel measure µ on the real line under a Borel map g : R Ñ R
is denoted g7µ, that is,

ż

f dpg7µq “

ż

f ˝ g dµ.



4 TUOMAS ORPONEN, NICOLAS DE SAXCÉ, AND PABLO SHMERKIN

Sketch of proof of Theorem 1.3. The n “ 2 case of Theorem 1.3 is classical and already
appears in Bourgain’s paper [2, Theorem 7]: If µ and ν are two probability measures on
r´1, 1s such that ‖µδ‖22 ď δ´1`s and ‖νδ‖22 ď δ´1`t, then the multiplicative convolution
µ� ν satisfies

|{µ� νpξq| . δ
s`t´1

2 , δ´1 ď |ξ| ď 2δ´1.

For the reader’s convenience we record the detailed argument below, see Section 2.
We want to use induction to reduce to this base case. To explain the induction step, we

focus on the case n “ 3. The main point is to translate equation (1.11) into a flattening
statement for additive-multiplicative convolutions of measures. For simplicity, assume
we knew that if µ and ν are probability measures on r´1, 1s, then the measure

η :“ pµ� νq� pµ� νq� pµ� νq� pµ� νq

satisfies, for ε ą 0 arbitrarily small,

‖ηδ‖22 ď δ1´ε‖µδ‖22‖νδ‖22. (1.12)

(Note that this is the exact analogue of (1.11) for L2-dimensions of measures at scale δ.)
If µ1, µ2 and µ3 satisfy ‖pµiqδ‖22 ď δ´1`si for some parameters si with s1 ` s2 ` s3 ą 1,
we apply the above inequality to µ1 and µ2 to obtain

‖ηδ‖22 ď δ´1´ε`s1`s2 ,

where η “ pµ1 � µ2q� pµ1 � µ2q� pµ1 � µ2q� pµ1 � µ2q. If ε is chosen small enough, we
have ps1` s2´ εq` s3 ą 1, and so we may apply the n “ 2 case to the measures η and µ3
to get, for δ´1 ă |ξ| ă 2δ´1,

|{η � µ3pξq| ă δ
s1`s2`s3´ε´1

2 .

To conclude, one observes from the Cauchy-Schwarz inequality that for any two prob-
ability measures µ and ν, one always has |{µ� νpξq|2 ď {pµ� µq� νpξq. This elementary
observation applied twice yields

| {µ1 � µ2 � µ3pξq|4 ď {η � µ3pξq
4 ă δ

1
2
ps1`s2`s3´ε´1q

which is the desired Fourier decay, with parameter τ “ 1
8ps1 ` s2 ` s3 ´ ε´ 1q.

Unfortunately, the assumptions on the L2-norms of µ and ν are not sufficient to ensure
inequality (1.12) in general. One also needs some kind of non-concentration condition on
µ and ν, and for that purpose we use the notion of energy of the measure at scale δ, which
gives information on the behaviour of the measure at all scales between δ and 1. The
precise statement we use for the induction is given as Lemma 3.1 below. It is also worth
noting that to obtain the correct bound on the energy, we need to use a large number k of
additive convolutions, whereas k “ 4 was sufficient in the analogous statement (1.11) for
Hausdorff dimension of sum-product sets. We do not know whether Lemma 3.1 holds
for k “ 4, or even for k bounded by some absolute constant.

We conclude this introduction by an example showing that for n ě 3, the assumption
Iδsj pµjq ď δ´ε in Theorem 1.3 cannot be replaced by the "single-scale" L2-bound }µδ}22 ď
δsj´1´ε. This is mildly surprising, because the situation is opposite in the case n “ 2, as
shown by Proposition 2.1 below. We only write down the details of the example in the
case n “ 3, but it is straightforward to generalise to n ě 3.
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Example 1.13. For every s P p0, 12q and δ0 ą 0 there exists a scale δ P p0, δ0s and a Borel
probability measure µ “ µδ,s on r1, 2swith the following properties:

‚ }µ}22 „ δs´1.
‚ | {µ� µ� µpδ´1q| „ 1.

The building block for the construction is the following. For r P 2´N, and a suitable
absolute constant c ą 0, let I “ Ir be a family of r´1 intervals of length cr, centred
around the points rZX r0, 1s. Then, if c ą 0 is small enough, we have

cosp2πx{rq ě 1
2 , @x P YI.

Consequently, if ρ is any probability measure supported on YI, then |pρpr´1q| ě 1
2 .

Fix s P p0, 12q, δ ą 0, and let ρ be the uniform probability measure on the intervals
Iδs . As we just discussed, |pρpδ´sq| „ 1. Next, let µ “ µδ,s be a rescaled copy of ρ inside
the interval r1, 1 ` δ1´ss Ă r1, 2s. More precisely, µ “ τ7λ7ρ, where τpxq “ x ` 1 and
λpxq “ δ1´sx. Now µ is a uniform probability measure on a collection of δ´s intervals of
length δ, and consequently }µ}22 „ δs´1.

We next investigate the Fourier transform of µ� µ� µ. Writing µ1 :“ λ7ρ, we have

{µ� µ� µpδ´1q “
˚

e´2πiδ
´1px`1qpy`1qpz`1q dµ1pxq dµ1pyq dµ1pzq.

We expand

δ´1px` 1qpy ` 1qpz ` 1q “ δ´1xyz ` δ´1pxy ` xz ` yzq ` δ´1px` y ` zq ` δ´1.

Now the key point: since x, y, z P sptµ1 Ă r0, δ1´ss, we have both |δ´1xyz| ď δ2´3s and
|δ´1pxy ` xz ` yzq| . δ1´2s. Since s ă 1

2 , both exponents 2 ´ 3s and 1 ´ 2s are strictly
positive and consequently,

e´2πiδ
´1px`1qpy`1qpz`1q “ e´2πiδ

´1px`y`z`1q ` oδÑ0p1q.

Using this, and also that µ̂1pξq “ pρpδ1´sξq, we find

{µ� µ� µpδ´1q “ e´2πiδ
´1

˚
e´2πiδ

´1px`y`zq dµ1pxq dµ1pyq dµ1pzq ` oδÑ0p1q

“ e´2πiδ
´1
ppρpδ´sqq3 ` oδÑ0p1q.

In particular, | {µ� µ� µpδ´1q| „ 1 for δ ą 0 sufficiently small.

If we allow µ to be supported on r´1, 1s, as in Theorem 1.3, an even simpler example
is available, namely µ “ δ´1`s1r0,cδ1´ss, where s ă 2{3. Then µ � µ � µ is supported on
r0, c3δ3´3ss Ă r0, cδs, so it satisfies | {µ� µ� µpδ´1q| & 1 if c ą 0 is chosen small enough.

2. THE BASE CASE n “ 2

In the n “ 2 case, Theorem 1.3 is proved by a direct elementary computation. In fact,
to obtain the desired Fourier decay, one only needs an assumption on the L2-norms of
the measures at scale δ.

Proposition 2.1 (Base case n “ 2). Let δ P p0, 1s and let µ, ν be Borel probability measures on
r´1, 1s and s, t P r0, 1s such that

‖µδ‖22 ď δ´1`s and ‖νδ‖22 ď δ´1`t.
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Then, for all ξ with δ´1 ď |ξ| ď 2δ´1,
ˇ

ˇ

ˇ

ˇ

¨
e´2πiξ¨xy dµpxq dνpyq

ˇ

ˇ

ˇ

ˇ

. δ
s`t´1

2 .

Remark 2.2. If µ and ν are equal to the normalized Lebesgue measure on balls of size δ1´s

and δ1´t, respectively, the assumptions of the proposition are satisfied. In that case, the
multiplicative convolution µ � ν is supported on a ball of size δ1´maxps,tq, so the Fourier
decay cannot hold for |ξ| ď δ´1`maxps,tq.

The above proposition is an easy consequence of the lemma below, which is essentially
[2, Theorem 7], except that we keep slightly more careful track of the constants. We
include the proof for completeness.

Lemma 2.3. Let δ P p0, 1s, and let µ, ν be Borel probability measures on r´1, 1s with

A :“

ż

|ξ|ď2δ´1

|µ̂pξq|2 dξ and B :“

ż

|ξ|ď2δ´1

|ν̂pξq|2 dξ.

Then, for all ξ with 1 ď |ξ| ď δ´1,
ˇ

ˇ

ˇ

ˇ

¨
e´2πiξ¨xy dµpxq dνpyq

ˇ

ˇ

ˇ

ˇ

.
a

AB{|ξ| ` δ. (2.4)

Proof. Let ϕ P C8c pRq be an auxiliary function with the properties 1r´1,1s ď ϕ ď 1r´2,2s
(thus ϕ ” 1 on sptµ) and pϕ ě 0. Fixing 1 ď |ξ| ď δ´1, the left-hand side of (2.4) can be
estimated by

ˇ

ˇ

ˇ

ˇ

¨
e´2πiξ¨xy dµpxq dνpyq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

xϕµpyξq dνpyq

ˇ

ˇ

ˇ

ˇ

ď

¨
pϕpx´ yξq|µ̂pxq| dx dνpyq

“

ż

|µ̂pxq|

ˆ
ż

pϕpx´ yξq dνpyq

˙

dx.

We split the right-hand side as the sum
ż

|x|ď2δ´1

|µ̂pxq|

ˆ
ż

pϕpx´ yξq dνpyq

˙

dx`

¨
|x|ě2δ´1

|µ̂pxq|pϕpx´ yξq dx dνpyq “: I1 ` I2.

For the term I2, we use that pϕpx´ yξq . |x´ yξ|´2, |µ̂pxq| ď 1, and νpRq “ 1:

I2 . max
yPr´1,1s

ż

|x|ě2δ´1

dx

|x´ yξ|2
.

ż

|x|ěδ´1

dx

|x|2
. δ.

For the term I1, we first use the Cauchy-Schwarz inequality and the definition of A to
deduce

I1 ď
?
A

˜

ż
„
ż

pϕpx´ yξq dνpyq

2

dx

¸1{2

.

Finally, for the remaining factor, assume ξ ą 0 without loss of generality, and write
pϕpx ´ yξq “ xϕξpx{ξ ´ yq, where ϕξ “ ξ´1ϕp¨{ξq. With this notation, and by Plancherel’s
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formula,
ż
„
ż

pϕpx´ yξq dνpyq

2

dx “

ż

pxϕξ ˚ νqpx{ξq
2 dx “ ξ

ż

pxϕξ ˚ νqpzq
2 dz

“ ξ

ż

ϕξpuq
2|ν̂puq|2 du . ξ´1

ż

sptϕξ

|ν̂puq|2 du.

Finally, recall that sptϕ Ă r´2, 2s, so sptϕξ Ă r´2ξ, 2ξs Ă r´2δ´1, 2δ´1s. This shows that
I1 .

a

AB{ξ, and the proof of (2.4) is complete. �

Proof of Proposition 2.1. Observe that by Plancherel’s formula

A “

ż

|ξ|ď4δ´1

|µ̂pξq|2 dξ ď ‖µ δ
10
‖22 . ‖µδ‖22 ď δ´1`s

and similarly

B “

ż

|ξ|ď4δ´1

|µ̂pξq|2 dξ . δ´1`t.

So Lemma 3.1 applied at scale δ{2 implies that for δ´1 ď |ξ| ď 2δ´1,
ˇ

ˇ

ˇ

ˇ

¨
e´2πiξ¨xy dµpxq dνpyq

ˇ

ˇ

ˇ

ˇ

.
a

AB{|ξ| ` δ

. δ
s`t´1

2 .

�

3. DIMENSION AND ENERGY OF ADDITIVE-MULTIPLICATIVE CONVOLUTIONS

This section is the central part of the proof of Theorem 1.3. Its goal is to derive
Lemma 3.1 below, whose statement can be qualitatively understood in the following
way: If µ and ν are two Borel probability measures on R with respective dimensions s
and t, then there exists some additive convolution of µ�ν with dimension at least s`t´ε,
where ε ą 0 can be arbitrarily small. The precise formulation in terms of the energies of
the measures at scale δ will be essential in our proof of Fourier decay for multiplicative
convolutions.

Lemma 3.1. For all s, t P p0, 1s with s` t ď 1, and for all κ ą 0, there exist ε “ εps, t, κq ą 0,
δ0 “ δ0ps, t, κ, εq ą 0, and k0 “ k0ps, t, κq P N such that the following holds for all δ P p0, δ0s
and k ě k0. Let µ, ν be Borel probability measures on r´1, 1s satisfying

Iδs pµq ď δ´ε and Iδt pνq ď δ´ε. (3.2)

Then, with Π :“ pµ� µq� pν � νq, we have

Iδs`tpΠ
�kq ď δ´κ.

Moreover, the value of k0 stays bounded as long as mints, tu ą 0 stays bounded away from zero.

The main component of the proof of Lemma 3.1 will be a combinatorial result from [7]
which we will apply in the following form. Let NpE, δq denote the smallest number of
δ-balls required to cover E.
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Lemma 3.3. For all s, t P p0, 1s with s` t ď 1, and for all κ ą 0, there exist ε “ εps, t, κq ą 0
and δ0 “ δ0ps, t, κ, εq ą 0 such that the following holds for all δ P p0, δ0s and k ě 2. Let µ, ν be
Borel probability measures on r´1, 1s satisfying

Iδs pµq ď δ´ε and Iδt pνq ď δ´ε. (3.4)

Let Π :“ pµ� µq� pν � νq and assume that E Ă R is a set with Π�kpEq ě δε. Then,

NpE, δq ě δ´s´t`κ. (3.5)

Since this lemma does not explicitly appear in [7], we now briefly explain how to
derive it from the results of that paper. Recall that a Borel measure µ on R is said to be
ps, Cq-Frostman if it satisfies

µpBpx, rqq ď Crs for all x P R, r ą 0.

The precise statement we shall need is [7, Proposition 3.7], see also [7, Remark 3.11],
which reads as follows.

Proposition 3.6. Given s, t P p0, 1s and σ P r0,mints ` t, 1uq, there exist ε “ εps, t, σq ą 0
and δ0 “ δ0ps, t, σ, εq ą 0 such that the following holds for all δ P p0, δ0s.
Let µ1, µ2 be ps, δ´εq-Frostman probability measures, let ν1, ν2 be pt, δ´εq-Frostman probability
measures, all four measures supported on r´1, 1s, and let ρ be an ps`t, δ´εq-Frostman probability
measure supported on r´1, 1s2. Then there is a set Bad Ă R4 with

pµ1 ˆ µ2 ˆ ν1 ˆ ν2qpBadq ď δε,

such that for every pa1, a2, b1, b2q P R4 zBad and every subset G Ă R2 satisfying ρpGq ě δε,
one has

Nptpb1 ´ b2qa` pa1 ´ a2qb : pa, bq P Gu, δq ě δ´σ. (3.7)

The derivation of Lemma 3.3 from Proposition 3.6 is relatively formal; it mostly uses
the link between the Frostman condition and the energy at scale δ, and the pigeonhole
principle to construct large fibres in product sets. Let us first record an elementary state-
ment about the energy at scale δ of a Frostman measure.

Lemma 3.8 (Frostman condition and s-energy). Fix C ě 1, s P p0, dq, and ε P p0, 12 s. Then
the following holds for all δ ą 0 small enough. Let µ be a probability measure on Bp1q Ă Rd.

(1) If µ satisfies µpBpx, rqq ď Crs for all x P Rd and all r P rδ, δεs, then Iδs pµq ď Cδ´dε.
(2) Conversely, if Iδs pµq ď δ´ε, there exists a set A such that µpAq ě 1´plog 1{δqδε and for

every r P rδ, 1s, µ|ApBpx, rqq ď δ´2εrs.

Proof. Assume first that µ satisfies the Frostman condition µpBpx, rqq ď Crs for r P rδ, δεs.
It is not difficult to check that the measure µδ with density µ ˚ Pδ satisfies

µδpBpx, rqq .

$

’

&

’

%

Cδs´drd, 0 ă r ď δ,

Crs, δ ď r ď δε,

1, r ě δε.

Consequently, for x P Rd fixed,
ż

|x´ y|´s dµδpyq .
ÿ

2kďδ

Cδs´d2pd´sqk `
ÿ

δď2kďδε

C `
ÿ

2kěδε

2´ks .s Cδ
´sε.
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Since µδ is a probability measure, and s ă d, this implies Iδs pµq ď Cδ´dε for δ ą 0 small
enough.

For the converse, we observe that
ż

|x´ y|´s dµδpyq “ s

ż

µδpBpx, rqqr
´s´1 dr,

and so, with a change of variables,

Iδs pµq “ s

¨
µδpBpx, rqqr

´s dr

r
dµpxq “ plog 2q ¨ s

¨
µδpBpx, 2

´uqq2su du dµpxq.

If Iδs pµq ď δ´ε, letting

Eu “ tx : 2suµδpBpx, 2
´uqq ą δ´2εu,

one gets µpEuq ď δε. So, for E “
Ť

Eu, where u “ 0, 1, . . . , tlog 1{δu, we find µpEq ď
plog 1{δqδε. Thus, letting A “ Rd zE, one indeed has

µpAq ě 1´ plog 1{δqδε

and for all x in A, for all r P rδ, 1s, µpBpx, rqq . δ´2εrs. �

Proof of Lemma 3.3. First of all, we may assume that k “ 2, since if k ą 2, we may write

Π�kpEq “

ż

Π�2pE ´ x3 ´ . . .´ xkq dΠpx3q ¨ ¨ ¨ dΠpxkq,

and in particular there exists a vector px3, . . . , xkq such that Π�2pE ´ x3 ´ . . .´ xkq ě δε.
After this, it suffices to prove (3.5) with E ´ x3 ´ . . .´ xk in place of E.

Second, we may assume that the measures µ, ν satisfy the Frostman conditions

µpBpx, rqq ď δ´6εrs and νpBpx, rqq ď δ´6εrt

for δ ď r ď 1 and all x P R. Indeed, since Iδs pµq ď δ´3ε, Lemma 3.8 shows that there exists
a Borel set A Ă R of measure µpAq ě 1 ´ δ2ε with the property pµ|AqpBpx, rqq ď δ´6εrs

for all x P R and all r P rδ, 1s. Similarly, we may find a Borel set B Ă R of measure
νpBq ě 1 ´ δ2ε with the property pν|BqpBpx, rqq ď δ´6εrt. Now, we still have Π

�2
pEq ě

1
2δ
ε, where

Π :“ pµ|A � µ|Aq� pν|B � ν|Bq.

Therefore, we may proceed with the argument, with µ, ν replaced by µ|A, ν|B .
Let us rewrite the condition Π�2pEq ě δε as pµˆ νq4pG8q ě δε, where

G8 :“ tpa1, b1, . . . , a4, b4q P R8 : pa1 ´ a2qpb3 ´ b4q ` pb1 ´ b2qpa3 ´ a4q P Eu.

In particular, there exists a subset G6 Ă R6 of measure pµ ˆ νq3pG6q ě δ2ε such that for
every pa1, b1, a2, b2, a3, b3q in G6, one has pµˆ νqpG2q ě δ2ε, where

G2 :“ tpa4, b4q P R2 : pa1, b1, . . . , a4, b4q P G8u. (3.9)

Next, we plan to apply Proposition 3.6. To make this formally correct, let us "freeze" two
of the variables, say pa3, b3q: more precisely, fix pa3, b3q in such a way that pµˆ νq2pG4q ě

δ2ε, where
G4 :“ tpa1, b1, a2, b2q P R4 : pa1, b1, a2, b2, a3, b3q P G6u.
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If ε is chosen small enough in terms of s, t and σ :“ s` t´ κ, we may apply Proposition
3.6 with µ1 “ µ2 “ µ and ν1 “ ν2 “ ν, and ρ “ µˆ ν, using 6ε instead of ε. Then, one has

pµˆ νq2pBadq ă δ6ε ď pµˆ νq2pG4q,

and (3.7) holds for all pa1, b1, a2, b2q P R4 zBad. Consequently, we may find a 4-tuple
pa1, b1, a2, b2q P G4 zBad, and eventually a 6-tuple

pa1, b1, a2, b2, a3, b3q P G6

such that whenever G Ă R2 is a Borel set with pµˆ νqpGq “ ρpGq ě δ6ε, then

Nptpa1 ´ a2qpb3 ´ b4q ` pb1 ´ b2qpa3 ´ a4q : pa4, b4q P Gu, δq

“ Nptpa1 ´ a2qb4 ` pb1 ´ b2qa4 : pa4, b4q P Gu, δq ě δ´σ “ δ´s´t`κ.

In particular, by (3.9), this can be applied to the set G :“ G2, and the conclusion is that

Nptpa1 ´ a2qpb3 ´ b4q ` pb1 ´ b2qpa3 ´ a4q : pa4, b4q P G2u, δq ě δ´s´t`κ. (3.10)

However, since pa1, b1, a2, b2, a3, b3q P G6, we have pa1, b1, . . . , a4, b4q P G8 for all pa4, b4q P
G2, and consequently

@pa4, b4q P G2, pa1 ´ a2qpb3 ´ b4q ` pb1 ´ b2qpa3 ´ a4q P E.

Therefore, (3.10) implies (3.5). �

We now want to go from the combinatorial conclusion of Lemma 3.3 to the more meas-
ure theoretic statement of Lemma 3.1 involving energies at scale δ. For that, our strategy
is similar in flavour to the one used by Bourgain and Gamburd [4] to derive their flatten-
ing lemma, decomposing the measures into dyadic level sets.

Proof of Lemma 3.1. Let Πr :“ Π ˚ Pr, where we recall that tPrurą0 “ tr´1P p¨{rqurą0 is a
standard approximate identity. The goal will be to show that if k ě 1 is sufficiently large
(depending on s, t, κ), then, for all r P rδ, 1s,

Jrpkq :“ ‖Π�2
k

r ‖2 ď δ´κ{2rps`t´1q{2. (3.11)

This implies in a standard manner (using for example [6, Lemma 12.12], Plancherel and
a dyadic frequency decomposition) that

Iδs`tpΠ
�2kq . δ´2κ.

Note that the sequence tJrpkqukPN is decreasing in k, since by Young’s inequality

Jrpk ` 1q “ ‖Π�2
k

r �Π�2
k

r ‖2 ď ‖Π�2
k

r ‖1‖Π�2
k

r ‖2 “ ‖Π�2
k

r ‖2 “ Jrpkq.

Therefore, in order to prove (3.11), the value of k may depend on r, as long as it is uni-
formly bounded in terms of s, t, κ. Eventually, the maximum of all possible values for k
will work for all δ ď r ď 1.

Let us start by disposing of large r, i.e. r ě δκ{2. For that, we have the trivial bound
(recalling also that we assumed s` t ď 1)

Jrpkq ď Jrp0q . r
´1 ď δ´κ{2rs`t´1.

So, it remains to treat the case r P rδ, δκ{2s. We now fix such a scale r. By the pigeonhole
principle, given a small parameter ε P p0, κ4 q to be fixed later (the choice will roughly
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be determined by applying Lemma 3.3 to the parameters s, t, κ), there exists k . 1{ε,
depending on r, such that

}Π�2
k`1

r }2 “ Jrpk ` 1q ě rεJrpkq “ rε}Π�2
k

r }2. (3.12)

This index k is fixed for the rest of the argument, so we will not display it in (all) sub-
sequent notation. We may assume that }Π�2

k

r }2 ě 1, otherwise (3.11) is clear.
Let Dr be the dyadic intervals of R of length r. For each I P Dr, we set

aI :“ sup
xPI

Π�2
k

r pxq.

Next, we fix an absolute constant C0 ě 1 to be specified momentarily, and we define the
collections

Aj :“

#

tI P Dr : aI ď C0u, j “ 0,

tI P Dr : C02
j´1 ă aI ď C02

ju, j ě 1.

We also define the sets Aj :“ YAj ; note that the sets Aj are disjoint for distinct j indices.
Since Π is a probability measure, Π�2

k

r . 1{r for all k ě 1. Therefore Aj “ H for
j ě C logp1{rq, and evidently

Π�2
k

r .
C logp1{rq

ÿ

j“0

2j ¨ 1Aj . (3.13)

Here the implicit constants may depend on C0. Conversely, we claim that

C logp1{rq
ÿ

j“1

2j ¨ 1Aj . Π�2
k

r . (3.14)

To see this, fix x P Aj with j ě 1, and let I “ Ipxq P Dr be the dyadic r-interval con-
taining x. Then aI ě C02

j´1, which means that there exists another point x1 P I with
Π�2

k

r px1q ě C02
j´1. Now the key point: the function Π�2

k

r is C1{r-Lipschitz for some
absolute constant C1 ą 0. Therefore, Π�2

k

r pxq ě C02
j´1 ´ C1|x ´ x1|{r „ 2j , provided

that C0 ě 2C1. This proves (3.14).
Based on (3.14) (and our hypothesis }Π�2

k

r }2 ě 1 to treat the case j “ 0) we may
deduce, in particular, that

2j‖1Aj‖2 . ‖Π�2
k

r ‖2, j ě 0. (3.15)

Next, using (3.13), we may pigeonhole an index j ě 0 and a setA :“ Aj with the property

}Π�2
k`1

r }2 ď }Π
�2k
r �Π�2

k

r }2 . plog 1{rq ¨ 2j ¨ ‖1A �Π�2
k

r ‖2.
Since further, by Plancherel and Cauchy-Schwarz,

}1A �Π�2
k

r }2 ď }1A � 1A}
1{2
2 }Π�2

k`1

r }
1{2
2

we deduce that

rε}Π�2
k

r }2
(3.12)
ď }Π�2

k`1

r }2 . plog 1{rq2 ¨ 22j ¨ ‖1A � 1A‖2

. r´ε ¨ 22j ¨ ‖1A‖1‖1A‖2
(3.15)
. r´ε ¨ 2j ¨ ‖1A‖1‖Π�2

k

r ‖2. (3.16)
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At this point we note that if j “ 0, then the preceding inequality shows that }Π�2
k

r }2 .
r´2ε, which is better than (3.11), since we declared that ε ď κ{4. So, we may and will
assume that j ě 1 in the sequel.

In (i) below we combine (3.16) and (3.14), whereas in (ii) below we combine (3.16) with
2j}1A}1 . }Π�2

k

r }1 “ 1:

(i) r2ε . 2j‖1A‖1 . Π�2
k

r pAq,
(ii) r2ε}Π�2

k

r }2 . 2j‖1A‖2 . ‖1A‖´11 ‖1A‖2.
Since A is a union of intervals in Dr, one has

‖1A‖1 „ rNpA, rq and ‖1A‖2 „ r1{2NpA, rq1{2,

so item (ii) yields

‖Π�2
k

r ‖2 . r´
1
2
´2εNpA, rq´1{2.

On the other hand, since

Irs pµq ď Iδs pµq ď δ´ε ď r´ε{κ and Irt pνq ď r´ε{κ,

Lemma 3.3 applied at scale r (and recalling (i) above) shows that if ε is chosen small
enough in terms of s, t, κ, then

NpA, rq ě r´s´t`κ.

We thus obtain what we claimed in (3.11):

}Π�2
k

r }2 . δ
´κ{2rps`t´1q{2.

This completes the proof of Lemma 3.1. �

4. THE INDUCTION STEP

The proof of Theorem 1.3 is by induction on n, starting from the n “ 2 case, already
studied in Section 2. The induction step is based on the flattening results for additive-
multiplicative convolutions developed in the previous section. It will be essential in the
argument to be able to switch the order of addition and multiplication. For that we record
the following lemma, which is a simple application of the Cauchy-Schwarz inequality.

Lemma 4.1. Given two Borel probability measures µ and ν on R, one has, for all ξ in R,

|{µ� νpξq|2 ď {pµ� µq� νpξq.

Proof. Writing the Fourier transforms explicitly, and applying the Cauchy-Schwarz in-
equality, one gets∣∣∣∣¨ e´2πiξxy dx dy

∣∣∣∣2 ď ż

∣∣∣∣ż e´2πiξxy dx∣∣∣∣2 dy “˚ e´2πiξpx1´x2qy dx1 dx2 dy.

�

Proof of Theorem 1.3. For the base case n “ 2, we may apply Proposition 2.1. Indeed,
assuming Iδsipµiq ď δ´ε for i “ 1, 2, one has

‖µi,δ‖22 “
ż

|yµi,δpξq|2 dξ . δ´1`si`ε
ż

|ξ|1´si |yµi,δpξq|2 dξ . δ´1`si`2ε
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so if s1 ` s2 ą 1, taking ε small enough to ensure s1 ` s2 ´ 4ε ą 1, one finds, for every
δ´1 ď |ξ| ď 2δ´1,

| {µ1 � µ2pξq| ď δ
s1`s2´4ε´1

2 ,

which is the desired Fourier decay.
Now let n ě 3, and assume that we have already established the case n ´ 1 with the

collection of parameters Sn´1 :“ ts1 ` s2, s3, . . . , snu, and some constants

εn´1pSn´1q ą 0 and δ0 :“ δ0pSn´1q ą 0. (4.2)

It is easy to reduce to the case s1 ` s2 ď 1, so we assume this in the sequel.
Given ξ with δ´1 ď ξ ď 2δ´1, our goal is to bound

Fpξq :“ pµ1 � . . .� µnq
^pξq.

Applying Lemma 4.1 twice, first with µ “ µ1 and ν “ µ2� . . .�µn and then with µ “ µ2
and ν “ pµ1 � µ1q� µ3 � . . .� µn, yields

|Fpξq|4 ď pΠ� µ3 � . . .� µnq^pξq,
where Π “ pµ1 � µ1q� pµ2 � µ2q. Using the same lemma again k times, we further get

|Fpξq|2k`2
ď pΠ�2

k
� µ3 � . . .� µnq

^pξq.

Lemma 3.1 applied with constants s :“ s1 and t :“ s2, and κ :“ εn´1 :“ εn´1pSn´1q,
shows that if ε “ εps1, s2, εn´1q ą 0 is sufficiently small, k “ kps1, s2, εn´1q is sufficiently
large, and µ1, µ2 satisfy Iδsj pµjq ď δ´ε for j “ 1, 2, then

Iδs1`s2pΠ
�2kq ď δ´κ “ δ´εn´1 .

We apply our induction hypothesis to the collection of n´ 1 probability measures

tµ̄1, . . . , µ̄n´1u “ tΠ
�2k , µ3, . . . , µnu

with exponents ts1 ` s2, s3, . . . , snu to get

|Fpξq|2k`2
ď |ξ|´εn´1 .

(To be precise, since the measure Π�2
k

is not supported on r´1, 1s but on r´2k`2, 2k`2s,
so one rather needs to consider the rescaled measure µ̄1 “ p2´k´2q˚Π�2

k
, which satisfies

Iδs1`s2pµ̄1q „k I
δ
s1`s2pΠ

�2kq but the involved constant depending on k is harmless.) This
shows that the Fourier decay property holds for n, with constants εn :“ mintε, εn´1u and
τn “

τn´1

2k
. The necessary size of k is determined by the application of Lemma 3.1, so it

depends only on mints1, s2u ą 0. The proof of Theorem 1.3 is complete. �
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