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Abstract
Using Harder-Narasimhan filtrations and Grayson polygons to describe

the geometry of the space of lattices, we give a new proof of the Kleinbock-
Margulis quantitative non-divergence estimate.

Introduction
Non-divergence estimates were first introduced by Margulis [8] in his study of
unipotent flows on the space of lattices. They were later refined by Dani [5]
and became a fundamental tool for the study of unipotent orbits in quotients of
Lie groups by lattices, which led in particular to Ratner’s work on the subject
[10, 11]. More recently, these estimates were made quantitative by Kleinbock
and Margulis [6] and used to solve long-standing conjectures of Sprindzuk and
Baker in diophantine approximation. Since then, they have found many other
applications in the field; among those, we only cite three recent articles [1], [2]
and [15] where the interested reader can find more references. As far as we
know, until now, all the refinements of non-divergence estimates were proved
following the strategy of the original paper of Margulis [8] on the subject.

The goal of this note is two-fold: first, we present a statement of the quan-
titative non-divergence estimates in terms of Grayson polygons and Harder-
Narasimhan filtrations, two objects used to describe the geometry of lattices in
Rd, and then we give a new proof for them, based on these geometric tools.
We hope that the pictures associated to the Grayson polygons can help the
reader visualize and better understand the meaning of the technical statement
discussed here.

1 Statement of the non-divergence estimate
Given a lattice ∆ in Rd, for k ∈ {1, . . . , d}, we define

λk(∆) = inf{λ | ∃v1, . . . , vk ∈ ∆, linearly independent with ∀i, ‖vi‖ ≤ λ}.

We have of course λ1(∆) ≤ λ2(∆) ≤ · · · ≤ λd(∆), and the numbers λk(∆)
are called the successive minima of the lattice ∆. The successive minima de-
scribe the rough position of ∆ inside the space of lattices Ω = GLd(R)/GLd(Z)
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endowed with a distance induced by a right-invariant Riemannian metric on
GLd(R): two lattices with the same successive minima are at bounded distance
from each other. Alternatively, the position of a lattice ∆ in Ω can be described
by the successive covolumes, given by

µk(∆) = min{‖v1 ∧ · · · ∧ vk‖ ; v1, . . . , vk ∈ ∆ linearly independent},

where ‖v1∧· · ·∧vk‖ denotes the covolume of the sublattice spanned by v1, . . . , vk
in its real span. By Minkowski’s second theorem, the numbers µk(∆) determine
the successive minima within multiplicative constants depending only on d:

µk(∆) � λ1(∆) · · ·λk(∆).

1.1 The Grayson polygon of a lattice
Let ∆ be a lattice in Rd. An important property of the covolume function
on the set of sublattices of ∆ is that for every sublattices V and W , one has
‖V ∩W‖‖V +W‖ ≤ ‖V ‖‖W‖. Equivalently, if τ denotes the function τ : V 7→
log‖V ‖ on sublattices of ∆, then τ is submodular, i.e. satisfies

τ(V ∩W ) + τ(V +W ) ≤ τ(V ) + τ(W ).

To any such function the so-called “slope formalism” associates two canonical
objects: the Grayson polygon and the Harder-Narasimhan filtration. We briefly
recall their definition and elementary properties here, and refer the reader to [4,
§4] or [3, §1.3] for more details on their construction.

The Grayson polygon of a lattice ∆ is a convex function L∆ : [0, d] → R
that allows one to understand all the successive covolumes — or the successive
minima — together in a nice picture. By definition, it is the maximal convex
function on [0, d] such that L∆(0) = 0 and for each k ∈ {1, . . . , d}, L∆(k) ≤
logµk(∆). An example of a Grayson polygon is given in Figure 2 below, where
each point (k, logµk(∆)); k = 0, . . . , 6, is marked with a red cross, and the
graph of L∆ is plotted in blue.

k

u

0 1 2 3 4 5 6

log µ2(∆)

L∆(2)
u = L∆(k)

Figure 1: Graph of k 7→ L∆(k), for k ∈ [0, 6]

At each index k ∈ {1, . . . , d} where the graph of L∆ has an angle, i.e.

L∆(k)− L∆(k − 1) < L∆(k + 1)− L∆(k),
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there is a unique primitive sublattice ∆k of rank k in ∆ such that µk(∆) = ‖∆k‖.
Moreover, if the angles of L∆ occur at the indices k1 < k2 < · · · < ks, then the
sublattices ∆k form a partial flag

{0} < ∆k1 < ∆k2 < · · · < ∆ks < ∆

called the Harder-Narasimhan filtration of ∆.

Example. When the Harder-Narasimhan filtration of ∆ is trivial, or equiva-
lently when the Grayson polygon L∆ is constant equal to zero, one says that
∆ is stable, or semistable. It is worth noting that when the space Ω is endowed
with the Haar probability measure, the measure of the set of stable lattices
tends to one as the dimension goes to infinity [14].

1.2 Quantitative non-divergence
The goal of this note is to describe the behavior of the Grayson polygon and of
the Harder-Narasimhan filtration a random lattice ∆ = xZd, where x ∈ GLd(R)
is a random element distributed according to some probability ν on GLd(R)
satisfying natural regularity conditions. To state the result, it is convenient
to extend the definition on a Grayson polygon to arbitrary compact subsets
S ⊂ GLd(R). For each k ∈ {1, . . . , d}, we write Wk(Z) for the set of non-zero
pure k-vectors in ∧kZd and set

µk(S) =

{
1 if k = 0
infw∈Wk(Z) supx∈S ‖xw‖ if 1 ≤ k ≤ d.

As before, we then define LS : [0, d]→ R to be the maximal convex function such
that for each k, LS(k) ≤ logµk(S). When S = {x} is reduced to a singleton,
one recovers the Grayson polygon of the lattice xZd; we then simply write Lx
instead of L{x}. One should note the following two properties:

1. If LS has an angle at k, then there exists a sublattice wk of rank k in Zd
such that for all x ∈ S, ‖xwk‖ ≤ eLS(k) = µk(S). (If S is not reduced to
a singleton, this sublattice may not be unique.)

2. For all k ∈ {1, . . . , d} and all x ∈ S, there exists a sublattice wk,x of rank
k in Zd such that ‖xwk,x‖ ≤ KeLS(k), for some constant K depending
only on d.

The first assertion is clear by definition of LS and µk(S), and the second follows
from the first, using Minkowski’s second theorem on successive minima. Here
is another way to understand this second property: For every x ∈ S, the graph
of k 7→ Lx(k), which up to bounded additive constants represents the minimal
covolume of a sublattice of rank k in xZd, for k = 1, . . . , d, lies below the graph
of LS .

Now let ν be a measure on GLd(R), and S = Supp ν. The above observations
show that for ν-almost every x, all points on the graph of Lx are under the
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graph of LS . Under some regularity assumptions on ν, the next theorem gives
a converse statement: the ν-measure of points such that Lx contains one point
below LS − log 1

ε goes to zero as ε > 0 goes to zero. Recall that given D > 0, a
finite measure ν on a metric space X is D-doubling if for every x ∈ Supp ν ∩X
and every r > 0, ν(B(x, 2r) ≤ Dν(B(x, r)), and that a function f : X → R
is (C,α)-good on X with respect to the measure ν if we have, for every ball
B = B(x, r) ⊂ X centered at x ∈ Supp ν,

ν({x ∈ B | |f(x)| ≤ ε}) ≤ C
(

ε

‖f‖ν,B

)α
ν(B),

where ‖f‖ν,B = supx∈B∩Supp ν |f(x)|. In the sequel, we endow GLd(R) with the
metric induced by any Euclidean metric on the space Md(R) of d× d matrices
with real entries.

Theorem 1 (Non-divergence with Grayson polygons). Given positive constants
D,C0, α0 > 0, there exist C,α > 0 such that the following holds. Let B be a ball
in GLd(R) and ν a finite measure on GLd(R), D-doubling on 5B. Assume that
for every k ∈ {1, . . . , d}, for every non-zero w = v1 ∧ · · · ∧ vk in ∧kZ, the map
x 7→ ‖xw‖ is (C0, α0)-good on 5B with respect to ν, and let S = B ∩ Supp ν.
For ε ∈ (0, 1), consider the set Bε of points x ∈ GLd(R) satisfying

∃k ∈ {1, . . . , d} : Lx(k) ≤ LS(k) + log ε

Then,
ν(Bε ∩B) ≤ Cεαν(B).

In other words, if ν is a probability measure satisfying the assumptions of
the theorem and ∆ = xZd, with x chosen randomly in B according to the law ν,
then the probability that the graph of L∆ lies between that of LS and LS+log ε
is bounded below by 1− Cεα.

k

u

0 1 2 3 4 5 6

u = LS(k)

u = LS(k) + log ε

Figure 2: With probability ≥ 1− Cεα the graph of L∆ lies in the gray area.

One consequence of the theorem is that in some sense the Harder-Narasimhan
filtration of ∆ = xZd is constant with very high probability. This is the content
of the following corollary.
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Corollary 1 (Partial flag associated to a good measure). There exist constants
C ′, α′ > 0 such that under the assumptions of Theorem 1, the following holds.
Let

JS(ε) = {k ∈ {1, . . . , d− 1} | LS(k + 1) + LS(k − 1)− 2LS(k) ≥ − log ε}

and write JS(ε) = {k1 < · · · < ks}. For ε > 0 small enough, there exists a
unique partial flag

0 < V Sk1
< · · · < V Sks < Zd

such that for each i = 1, . . . , s

ν({x ∈ B | ∀i, µki(xZd) is attained on V Ski}) ≥ 1− C ′εα
′
.

Remark 1. It formally follows from the statement of the corollary that, pro-
vided ε > 0 is small enough, the subspaces V Ski do not depend on ε. But the set
of indices JS(ε) = {k1, . . . , ks} can decrease as ε goes to zero.

While this note was still being written, Lindenstrauss, Margulis, Moham-
madi and Shah informed us that they had independently observed that Mar-
gulis’s proof also allowed to derive the two results above, a fact that they used
in their work on the quantitative behavior of unipotent flows [7, Theorem 5.3].
Our motivation to prove Theorem 1 was another application to diophantine
approximation, described in a paper written in collaboration with Emmanuel
Breuillard [3]. One advantage of the proof given here is that it can be gener-
alized to obtain an intrinsic statement for the non-divergence estimate in an
arbitrary semi-simple Q-group G, without having to embed G in some linear
group GLd. For more details on this aspect, and for other applications of such
estimates, the reader is referred to [12].

2 Proofs
The argument used in this note starts with an estimate for the probability
of having a small sublattice of fixed rank k, Theorem 2 below, a statement
that bears its own interest. Before we turn to its proof, we recall a useful
interpretation of the successive covolumes µk(∆) of a lattice ∆ using exterior
powers. If ∆ is a lattice in Rd, then ∧k∆ is a lattice in ∧kRd ' R(dk) and, its
successive minima are determined by those of ∆ by the following formula, due
to Mahler. See [13, Theorem 7A, page 109].

Lemma 1 (Successive minima of exterior powers). Let ∆ be a lattice in Rd.
Within multiplicative constants depending only on d, the successive minima of
∧k∆ are given by

λτ (∧k∆) � λτ1(∆)λτ2(∆) . . . λτk(∆); τ = {τ1, . . . , τk} ⊂ {1, . . . , d}.

The order on the set of indices τ depends on the values of λ1(∆), . . . , λd(∆),
but the first and second minima of ∧k∆ are always given by {1, . . . , k} and
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{1, . . . , k − 1, k + 1}, so that

λ{1,...,k}(∧k∆) � µk(∆) and λ{1,...,k−1,k+1}(∧k∆) � λk+1(∆)

λk(∆)
µk(∆).

2.1 Sublattices of rank k

For non-divergence estimates as in [6], one is given a map h : X → GLd(R) and
a ball B ⊂ X such that for every sublattice w ⊂ Zd there exists a point x ∈ B
such that

‖h(x)w‖ ≥ ρ, (1)

and concludes that the proportion of points in B such that λ1(h(x)Zd) ≤ ερ
is bounded above by Cεα, for some constants C,α > 0 depending on some
regularity properties of h. Of course, it is readily seen by considering the map

[0, 1] → GL2(R)

x 7→
(

x 1
x2 − ε x

)
that it is not enough to assume (1) only for vectors in Zd. Yet, the main point
of this section is to explain what can be concluded from such an assumption, or
more generally, what can be said when one only assumes (1) for sublattices w
of fixed rank k.

Theorem 2 (Non-divergence for k-sublattices). Given positive constants D,
C0 and α0 > 0, there exist C1, α1 > 0 such that the following holds for any
k ∈ {1, . . . , d} and any choice of parameters M > 1 and ρk > 0. Let B be a
ball in GLd(R), let ν be a finite measure on GLd(R), doubling on 5B, and set
S = B ∩ Supp ν. Assume that for every non-zero w = v1 ∧ · · · ∧ vk in ∧kZ:

1. The map x 7→ ‖xw‖ is (C0, α0)-good on 5B with respect to ν.

2. supx∈S ‖xw‖ ≥ ρk
For ε ∈ (0, 1), consider the set

A(k)
ε =

{
x ∈ B

∣∣∣∣ εMρk ≤ µk(xZd) ≤ ερk
λk(xZd) < ελk+1(xZd)

}
.

Then,
ν(A(k)

ε ) ≤ C1Mεα1ν(B).

Proof. To simplify notation, we shall write µk(x) and λk(x) for µk(xZd) and
λk(xZd), respectively. Note also that it is enough to prove the proposition for
ε smaller than an arbitrary constant.
First case: 1 < M ≤ 4

3 .
For x ∈ S, choose a pure k-vector wx = vx1 ∧ · · · ∧ vxk such that µk(x) = ‖xwx‖.
Then, if x ∈ A(k)

ε ∩ S, let Rx > 0 be maximal such that

∀y ∈ B(x,Rx) ∩ Supp ν, ‖ywx‖ ≤ ε
1
2 ρk.
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LetBx = B(x,Rx). Note thatBx ⊂ 3B and 2Bx ⊂ 5B because supy∈S ‖ywx‖ ≥
ρk. Moreover, by maximality of Rx,

sup
y∈2Bx

‖ywx‖ ≥ ε
1
2 ρk. (2)

We claim that for any y ∈ A(k)
ε ∩Bx,

wy = wx. (3)

In words, up to sign, wx is the only non-zero vector in ∧kZd satisfying ‖ywx‖ =

µk(y). Indeed, if y ∈ A(k)
ε , then λk+1(y) > ε−1λk(y), so, by Lemma 1, for any

w ∈ ∧kZd that is not collinear to wy, for small enough ε > 0,

‖yw‖ � ε−1µk(y) ≥ ε 1
3 ρk,

and since ‖ywx‖ ≤ ε
1
2 ρk, we must have (3). Thus,

y ∈ A(k)
ε ∩Bx ⇒ ‖ywx‖ ≤ ερk.

Using that y 7→ ‖ywx‖ is (C0, α0)-good on 2Bx ⊂ 5B and satisfies (2), we find

ν(A(k)
ε ∩Bx) ≤ C0ε

α0
2 ν(2Bx) ≤ DC0ε

α0
2 ν(Bx).

To conclude, we use Besicovitch’s covering theorem [9, page 30] in the Euclidean
spaceMd(R) ' Rd2

: take a cover ofA(k)
ε ∩B by balls Bxi , i ∈ N with intersection

multiplicity bounded by the Besicovitch constant K of Md(R), and bound

ν(A(k)
ε ∩B) ≤

∑
i∈N

ν(A(k)
ε ∩Bxi)

≤ DC0ε
α0
2

∑
i∈N

ν(Bxi)

≤ C0D
3Kε

α0
2 ν(B).

This is the desired result, with C1 = C0D
3K and α1 = α0

2 .
General case: M ≥ 4

3

We cover the interval [εMρk, ερk] with intervals of the form [ε
j+1

3 ρk, ε
j
3 ρk], for

j = 3, 4, . . . , 3M . For each j, we may apply the first part of the proof with ρk
replaced by ε

j
3−1ρk and find that the ν-measure of points in B satisfying{

ε
j+1

3 ρk ≤ µk(xZd) ≤ ε
j
3 ρk

λk(xZd) < ελk+1(xZd)

is bounded above by C1ε
α1ν(B). To conclude, it suffices to sum all these in-

equalities; we obtain

ν(A(k)
ε ∩B) ≤ 3C1Mεα1ν(B).
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2.2 Full flags
In this final paragraph, we derive Theorem 1 and its corollary. The proof of
Theorem 1 is based on Theorem 2, applied for some well-chosen k ∈ {1, . . . , d}.
The derivation of Theorem 1 from Theorem 2 is based on the following elemen-
tary observation: there exists a constant τ > 0 depending only on d such that if
A > 0 is some parameter and Lx ≤ LS any two convex functions on {0, . . . , d}
such that Lx(i) ≤ Lh(i) − A for some i ∈ {0, . . . , d}, then one may find some
k ∈ {0, . . . , d} such that Lx(k) ≤ LS(k) − τA and such that the angle at k of
the function Lx is at least τA (or k = 0 or d). The formal argument is given
below.

Proof of Theorem 1. Of course, it is enough to prove the estimate for ε smaller
than an arbitrarily small constant depending on d, and in particular, we may
assume ε ∈ (0, 1

2 ). Moreover, if B0
ε denotes the set of points x ∈ GLd(R)

satisfying {
∃i ∈ {1, . . . , d} : logµi(x) ≤ LS(i) + log ε
∀i ∈ {1, . . . , d}, logµi(x) ≥ LS(i) + 2 log ε

then it is enough to show that

ν(B0
ε ∩B) ≤ Cεαν(B).

Indeed, from there, using the inclusion Bε ⊂
⋃∞
n=0 B0

ε2n
, we find

ν(Bε ∩B) ≤ Cν(B)

∞∑
n=0

ε2nα ≤ C ′εαν(B).

Let τ = 1
2d2 and α = τα1, where C1, α1 are given by Theorem 2. Since x 7→ detx

is (C0, α0)-good with respect to ν, we have

ν({x ∈ B | µd(x) ≤ ετeLS(d)}) ≤ C0ε
α0τν(B).

Next, we claim that if x ∈ Supp ν is such that µd(x) ≥ ετeLS(d) and for some i,
logµi(x) ≤ LS(i) + log ε, then there must exist some k such that

µk(x) ≤ ετeLS(k) and λk(x) ≤ ετλk+1(x). (4)

From there, one concludes using Theorem 2 with ετ in place of ε, and M = 2
τ :

ν(B0
ε ∩B) ≤ ν({x ∈ B | µd(x) ≤ ετeLS(d)}) +

d−1∑
k=1

ν(A(k)
ετ ∩B)

≤ C0ε
α0τν(B) + (d− 1)C1ε

τα1ν(B)

≤ Cεαν(B).

Now we turn to the justification of the existence of k satisfying (4). We argue
by contrapositive: assuming{

µd(x) ≥ ετeLS(d)

∀k = 1, . . . , d, µk(x) ≥ ετeLS(k) or λk(x) ≥ ετλk+1(x)
(5)
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we want to show that for all i = 1, . . . , d, logµi(x) ≥ LS(i) + log ε. Using the
equivalence between Grayson polygons and successive covolumes, one sees that
for ε > 0 small enough assumption (5) implies{

Lx(d) ≥ LS(d) + τ log ε

∀k = 1, . . . , d, Lx(k) ≥ LS(k) + 2τ log ε or log λk+1(x)
λk(x) ≤ 2τ |log ε|. (6)

Now let i ∈ {0, . . . , d} be arbitrary, and choose a minimal interval [k1, k2] (pos-
sibly reduced to {i}) containing i such that

Lx(kj) ≥ LS(kj) + τ log ε j = 1, 2.

Because of assumption (6), all the angles of Lx on the segment [k1, k2] are
bounded above by 2τ |log ε|, and the distance from Lx to LS at k1 and k2 is
bounded above by 2τ |log ε|. But Lx and LS are convex functions and Lx ≤ LS ,
so we may bound the maximal distance from Lx to LS on the whole segment
[k1, k2] by 2τ |log ε|+ τ(k1 − k2)2|log ε|. In particular,

Lx(i) ≥ LS(i) + [2 + (k1 − k2)2]τ log ε ≥ LS(i) + 2d2τ log ε.

Now by definition, logµi(x) ≥ Lx(i), so that recalling our choice τ = 1
2d2 , this

proves the desired inequality.

To conclude, we prove Corollary 1 on the partial flag associated to the mea-
sure ν.

Proof of Corollary 1. We write ‖f‖ = supt∈[0,d]|f | for the supremum norm on
real-valued functions on the segment [0, d]. By Theorem 1,

ν({x ∈ B | ‖Lx − LS‖ ≥ − log ε}) ≤ Cεαν(B).

Given a constant C1 > 0, if ε > 0 is sufficiently close to 0, this inequality implies
in particular that there exists x1 ∈ S such that

‖Lx1
− LS‖ ≤ −

log ε

C1
.

Then, provided C1 has been chosen large enough, for each k = 1, . . . , d− 1,∣∣∣∣log
λk+1(x1)

λk(x1)
− LS(k + 1)− LS(k − 1) + 2LS(k)

∣∣∣∣ ≤ − log ε

2
.

So, for k ∈ JS(ε), we must have

λk+1(x1)

λk(x1)
≥ ε− 1

2 .

By Lemma 1, this implies that for k ∈ JS(ε), there exists a unique sublattice
wk of rank k in Zd such that µk(x1) = ‖x1wk‖, and that for every w ∈ ∧kZd
linearly independent with wk,

‖x1w‖ � ε−
1
2µk(x1) ≥ ε−

1
2 + 1

C1 µk(S).
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Thus, for each k ∈ JS(ε), the sublattice wk is the unique sublattice of rank k
satisfying

sup
x∈S
‖xwk‖ = µk(S).

But by construction, the subspace Vk corresponding to wk is the k-dimensional
term in the Harder-Narasimhan filtration of x1Zd, so that if JS(ε) = {k1 <
· · · < ks}, then

{0} < Vk1
< · · · < Vks < Zd.

The reasoning made above for the chosen point x1 is valid for any other x such
that ‖Lx − LS‖ ≤ − log ε

C1
so that for any such x, the subspaces Vk1 < · · · < Vks

occur in the Harder-Narasimhan filtration of xZd, i.e. µki(x) = ‖xwki‖. This
finishes the proof of the corollary, because

ν({x ∈ B | ‖Lx − LS‖ ≥ −
log ε

C1
}) ≤ C ′εα

′
ν(B).
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