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Abstract: We construct dense Borel measurable subgroups of Lie
groups of intermediate Hausdorff dimension. In particular, we gener-
alize the Erdős-Volkmann construction [6], showing that any nilpo-
tent σ-compact Lie group N admits dense Borel subgroups of arbi-
trary dimension between 0 and dimN . In algebraic groups defined
over a finite extension of the rationals, using diophantine properties
of algebraic numbers, we are also able to construct dense subgroups
of arbitrary dimension, but the general case remains open. In partic-
ular, we raise the following question: does there exist a measurable
proper subgroup of R of positive Hausdorff dimension which is sta-
ble under multiplication by a transcendental number? Subgroups of
nilpotent p-adic analytic groups are also discussed.

1 Introduction
In 1966, Erdős and Volkmann [6] constructed measurable additive subgroups
of R of arbitrary dimension between 0 and 1 (see also [7], example 12.4). This
particular problem can be put in a more general setting: given a metric group
G, what can be the Hausdorff dimension of a measurable subgroup of G? In
this paper, we investigate the case of nilpotent Lie groups, endowed with a
left-invariant Riemannian metric. In particular, we show the following theorem.

Theorem 1.1. If G is a nilpotent real Lie group, and Γ is a countable sub-
group of G, then, for all α P r0,dimGs, there exists a measurable subgroup of
G containing Γ that has Hausdorff dimension α. In particular, if G has at
most countably many connected components, then G admits dense measurable
subgroups of arbitrary dimension.

The construction used to prove this theorem is based on induction, and the
subgroups we obtain are not very "homogeneous" in the sense that, although
they have intermediate dimension, their projection on the quotients of the lower
central series might not. Therefore, we investigate an alternative way to con-
struct dense subgroups having intermediate dimension in all quotients. This
alternative construction is an adaptation of the Erdős-Vokmann construction,
using approximating lattices in G; as such, it only works for nilpotent Lie groups
having rational structure constants. We obtain the following proposition.
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Proposition 1.2. Let N be a connected nilpotent Lie group having rational
structure constants. Denote l the nilpotency class of N , and pCiq0¤i¤l the lower
central series of G. Then, for all a ¡ l, N admits a dense measurable subgroup
F such that, for all p P t0, . . . , lu, the Hausdorff dimension of the projection of
F on N{Cp is equal to 1

a

°p
i�1 ipdimCi�1{Ciq.

Using elementary diophantine properties of algebraic numbers, we are also
able to get a partial result for solvable groups:

Theorem 1.3. If G is the group of real points of a solvable linear algebraic
group defined over a number field, then G admits dense measurable subgroups
of arbitrary Hausdorff dimension.

Theorems 1.1 and 1.3 can be put into contrast with the main result of [11]:
if G is a compact simple Lie groups, then measurable subgroups cannot have
Hausdorff dimension arbitrarily close to dimG (see also [10]). This phenomenon
is closely related to what happens in additive combinatorics: nilpotent groups
admit approximate subgroups whereas simple algebraic groups do not (see for
instance [3, 4]).

For p-adic analytic groups, the study of the Hausdorff dimension was ini-
tiated by Abercrombie [1] who, among other things, proved the analog of the
Erdős-Volkmann theorem for Qp. Here, the ideas used in the real setting also
apply for p-adic analytic groups, and yield the following result:

Theorem 1.4. Let N be a p-adic analytic nilpotent group, then N admits mea-
surable subgroups of arbitrary dimension between 0 and dimN that are dense in
a neighborhood of the identity.

Again, it should be noted that such a theorem is false without the nilpotency
assumption, as one can see by studying the case of SLdpZpq (see [11]).

The organization of the paper is as follows. After a few preliminary state-
ments given in section 2, the first theorem is obtained by a simple induction on
the dimension of the group, starting from the Erdős-Volkmann theorem. This is
discussed in section 3, together with the other constructions in nilpotent groups.
In section 4, we investigate subgroups of solvable groups and prove theorem 1.3.
The induction we use there is very similar to the one used in the proof of the-
orem 1.1, but the starting point requires more effort: we need to construct
additive subgroups of the Euclidean space of arbitrary dimension, which are
invariant under matrix transformations with entries in a number field. This is
where we use some basic diophantine properties of algebraic numbers. Finally,
in section 5, we describe the p-adic setting and prove theorem 1.4.

Acknowledgements: This article is part of the research I did for my doctoral
thesis, under the supervision of Emmanuel Breuillard. It is a pleasure for me
to thank him here for his advice and encouragements. Thanks are also due to
Yves Benoist for many helpful remarks and comments.
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2 General setting, notations and preliminary lem-
mas

If A is a subset of a metric space G, for s P R� and ε ¡ 0, we define

Hpsq
ε pAq � inft

¸
i

rsi u

where the infimum is taken over all countable coverings of A with balls of radius
at most ε. Then we let HpsqpAq � limεÑ0H

psq
ε pAq. The Hausdorff dimension of

A is defined to be the nonnegative number

dimH A � infts P R��|HpsqpAq � 0u.

Here, G will be a real Lie group or an analytic p-adic Lie group. If G is a
real Lie group, we endow it with a left-invariant Riemannian metric, whereas if
it is a p-adic analytic, we will use any left-invariant metric such that the local
charts from G to ZdimG

p are bilipschitz maps.
We will make use of the Vinogradov notation: if x and y are two quantities,

we write x ! y if there exists an absolute constant C such that x ¤ Cy, and
x � y if x ! y if y ! x.

We now recall two basic lemmas which we will use in the course of the paper.
The first one will be used for the inductive constructions in nilpotent Lie groups,
or Lie algebras:

Lemma 2.1. Denote K � R or Zp. If A is a measurable subset of Kk, then

dimHpA�Klq � l � dimH A.

Proof. This follows from formulae 7.2 and 7.5 of [7], because the Hausdorff
dimension of Kl is equal to its upper Minkowski dimension, which is equal to
l.

The second one will enable us to go easily from nilpotent Lie algebras to
connected nilpotent Lie groups using the fact that the exponential map is a
covering map. For completeness, we include a proof.

Lemma 2.2. Let p : X Ñ Y be a covering of smooth manifolds, and A � X.
Then, dimH A � dimH ppAq.

Proof. First, p is locally Lipschitz, so

dimH ppAq ¤ dimH A.

For the converse inequality, as p is a covering map, we may choose a countable
open covering pXiqiPN of X such that for all i, p induce a diffeomorphism from
Xi onto ppXiq. Then,

dimH A � max
i

dimHpAXXiq � max dimH ppAXXiq ¥ dimH ppAq.
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3 Nilpotent Lie groups

3.1 The Abelian case
Let us start by recalling the Erdős-Volkmann result about subgroups of Rd:

Theorem 3.1 (Erdős-Volkmann, 1966). There exist measurable additive sub-
groups of Rd of arbitrary Hausdorff dimension in r0, ds.

Using lemma 2.2, one can reformulate the Erdős-Volkmann theorem in the
slightly more general setting of connected Abelian Lie groups:

Theorem 3.2. If G is a connected Abelian Lie group of dimension d, then G
admits measurable subgroups of arbitrary dimension in r0, ds.

Now in order to generalize this theorem to nilpotent Lie groups having at
most countably many connected components, it is convenient to start in the Lie
algebra setting.

Definition 3.3. If g is a Lie algebra, we define a Q-subalgebra of g to be a
Q-vector subspace of g that is stable under the bracket operation.

Definition 3.4. Let V be a vector space. A subgroup of GLpV q will be called
unipotent if there exists a basis of V in which all the elements of G are upper
triangular with all diagonal entries equal to 1.

With these definitions, we have the following:

Proposition 3.5. Let n be a nilpotent Lie algebra of dimension d, and D be
a countable unipotent subgroup of Autpnq. For any α P r0,dim ns, there exists
a dense measurable Q-subalgebra of n of Hausdorff dimension α that is stable
under the elements of D.

Proof. We use induction on the dimension of n.
If d � 1, the only unipotent element is the identity, so the result follows imme-
diately from the Erdős-Volkmann theorem, noting that if Hα is a subgroup of
dimension α, then

�
kPN�

1
kHα is a Q-vector subspace of same dimension.

Now let n be a nilpotent Lie algebra, and suppose we know the result for nilpo-
tent Lie algebras of dimension less than that of n. As D is unipotent, there
exists a one-dimensional subspace V � n which is fixed under D. Moreover,
as the center of n is stable under the elements of D, we may assume that V is
central in n.
First case: α ¤ 1.
Then, by the d � 1 case, we can choose a measurable dense Q-subspace Vα of
V of Hausdorff dimension α. Choose any dense countable Q-subalgebra C0 of
n stable under D (this is easily seen to exist) and let nα � C0 � Vα. Then nα
is a countable union of copies of Vα, so dimH nα � α; nα is a dense measurable
Q-subalgebra of n; and nα is stable under D, because C0 and Vα are.
Second case: α ¡ 1
In this case, we choose a subspace V 1 such that n � V ` V 1. Identifying V 1

with n{V , and using the induction hypothesis, we can find a dense measurable
Q-subalgebra V 1

α�1 of V 1 of Hausdorff dimension α � 1 which is stable under
D. Let nα � V � V 1

α�1. This is a dense measurable Q-subalgebra of n; by
lemma 2.1, it has Hausdorff dimension α; and it is stable under D because V is
stable, V 1

α�1 is stable modulo V , and V � nα.
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The following observation is the tool we need to pass from nilpotent Lie
algebras to nilpotent Lie groups.

Lemma 3.6. Let N be a nilpotent Lie group and n its Lie algebra. If nα is
a Q-subalgebra of n, then Nα � exp nα � texpx |x P nαu is a subgroup of
N of Hausdorff dimension α. Moreover, if nα is stable under a family D of
automorphisms of n, then Nα is stable under the automorphisms of N whose
tangent map at the identity lie in D.

Remark: In the preceding lemma, if nα is dense and N is connected, then is
Nα is dense in N .

Proof. The fact that exp nα is a subgroup follows from the Campbell-Hausdorff
formula (see [5], chapter 1):

expX expY � exppX � Y � P pX,Y qq

where P pX,Y q is a finite (because N is nilpotent) Q-linear combination of
multiple brackets of X and Y . And it must have dimension α, by lemma 2.2,
because the exponential map is a covering map from n to the identity component
of N . Finally, if ϕ is an automorphism of N whose tangent map Tϕ lies in D,
then we have, for X P nα,

ϕpexpXq � exppTϕpXqq P Nα,

because nα is stable under Tϕ.

We can finally state and prove our theorem about measurable subgroups of
nilpotent Lie groups:

Theorem 3.7. If N is a nilpotent Lie group and D is a countable subgroup
of N , then, for all α P r0,dimN s, there exists a measurable subgroup of N
containing D which has Hausdorff dimension α.

Proof. Denote N0 the identity component of N and n the Lie algebra of N .
Then N acts on n by the adjoint action. If a P N , we want to show that Ad a
is a unipotent transformation on n. For this, we show (with a slight abuse of
notation) that Ad a is unipotent on each cppnq{cp�1pnq, where cppnq is the lower
central series of n (defined by c0pnq � n and, for p ¥ 0, cp�1pnq � rn, cppnqs).
Using that cppnq{cp�1pnq is Abelian, we find, for X P cppnq{cp�1pnq,

expppAd a� 1qXq � a expXa�1 expp�Xq � pa, expXq,

where px, yq � xyx�1y�1 is the commutator map, and the exponential is from
cppnq{cp�1pnq to N{xexp cp�1pnqy. Thus, for n P N large enough, and indepen-
dent of X,

expppAd a� 1qnXq � pa, pa, . . . , pa, exppXqq . . . q � 1.

Therefore, pAd a � 1qn
�
cppnq{cp�1pnq

�
lies in the discrete set exp�1pt1uq and,

by connectedness, pAd a � 1qn
�
cppnq{cp�1pnq

�
� t0u, i.e. Ad a is unipotent

on cppnq{cp�1pnq. As pcppnqqp¥0 terminates at t0u, we indeed get that Ad a in
unipotent on n.
By Kolchin’s theorem (see [12], part I, page 5.7), the group AdD is unipotent.
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As it is also countable, we may apply proposition 3.5 and get that there exists
a dense measurable Q-subalgebra of n of dimension α which is stable under
AdD. Denote by Nα its image under the exponential map; by lemma 3.6, this
is a measurable subgroup of N0 of Hausdorff dimension α, which is stable under
conjugation by the elements of D. Finally, letMα be the subgroup generated by
Nα and D. Then, Mα is a measurable subgroup of N containing D. Moreover,
using that Nα is stable under conjugation by elements of D, we see that any
element of Mα can be written d.nα where d P D and nα P Nα. Hence Mα is a
countable union of copies of Nα, so it has Hausdorff dimension α. This is what
we wanted.

Using that any σ-compact Lie group admits a dense countable subgroup, we
get,

Corollary 3.8. If N is a nilpotent Lie group having at most countably many
connected components, then it admits dense measurable subgroups of arbitrary
dimension.

Remark: This corollary is false without the σ-compactness assumption. In-

deed, let U �

"�
1 x
0 1



;x P R

*
endowed with the discrete topology, and

consider the semi-direct product G � U 
 R2. If H is a dense subgroup of
G, then, as U is discrete, H must contain a representative of each coset of G
modulo R2. But then, H contains the orbit of a nonzero vector of R2 under
the whole action of U , which has dimension 1. So any dense subgroup of G has
Hausdorff dimension at least 1.

3.2 Approximating lattices
The subgroups constructed in the proof of theorem 3.7, although they have an
intermediate dimension in G, may not have an intermediate dimension in all
the quotients of the lower central series. In fact, it is easily seen that they have
intermediate dimension in at most one of the quotients.
Recall the lower central series of a groupN is defined inductively by C0pNq � N
and, for p ¥ 0, Cp�1pNq � pN,CppNqq, the subgroup generated by the com-
mutators px, yq � xyx�1y�1 with x P N and y P CppNq. If N is nilpotent, the
series terminates to t1u, and the smallest integer l such that ClpNq � t1u is
called the nilpotency class of N .
It is natural to ask whether it is possible to construct more "homogeneous" in-
termediate dimensional subgroups. It turns out that in the case where N admits
approximating lattices, we are able to mimic the Erdős-Volkmann construction
and so to prove the following.

Proposition 3.9. Let N be a connected simply connected nilpotent Lie group
having rational structure constants. Denote l the nilpotency class of N . Then,
for all a ¡ l, N admits a dense measurable subgroup F satisfying:
For all p P t0, . . . , l � 1u, the Hausdorff dimension of the projection of F on
N{CppNq is equal to 1

a

°p
i�1 ipdimCi�1pNq{CipNqq.

Recall that if N is a connected nilpotent Lie group, N admits a lattice if
and only if it has rational structure constants (see [9], theorem 2.12) this is the
reason why we have to restrict attention to these groups when trying to adapt
the Erdős-Volkmann proof.
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Proof of proposition 3.9. Let N be a connected simply connected nilpotent Lie
group having rational structure constants. Let B be a basis of n in which the
structure constants are rational. Let pCppnqq0¤p¤l be the lower central series of
n, defined by C0pnq � n, and, for p ¥ 0, Cp�1pnq � rn, Cppnqs. Starting from B,
and using successive brackets of elements of B, one easily obtains subspaces mp

such that, for each p,
Cp�1pnq � Cppnq `mp

together with a basis peiq of n adapted to the decomposition n �
À
mp in which

the structure constants of n are rational. The Campbell-Hausdorff formula (cf.
[5], chapter 1) then describes the product law in N � Rd �

À
Rei:

For x P n we write x � x1e1 � � � � � xded, and, if α P Nd, xα �
±d
i�1 x

αi
i .

Denote degpeiq the largest integer j such that ei P Cj�1pnq. Also denote, for
α P Nd, dα �

°
degpeiqαi. Then, one has

pxyqi � xi � yi �
¸
Cα,βx

αyβ

where the Cα,β are rational constants, and the sum is on the indices α and β
such that dα � dβ ¤ degpeiq, dα ¥ 1 and dβ ¥ 1. We may replace the basis
peiq by a proportional basis pe1iq � pλeiq; then, the Campbell-Hausdorff formula
becomes

pxyq1i � x1i � y1i �
¸
λ|α|�|β|�1Cα,βx

1αy1β

so that, without loss of generality, we may assume that the Cα,β are integers.
We then have, for n P N�,

Γn �
à

Z
ei

ndegpeiq
is a lattice of N.

Now we define, for pnkq an increasing sequence of integers:

Fr � tx P N : @k, dpx,Γnk
q ¤ rn�ak u

and
F �

¤
rPN�

Fr.

Of course F is a dense measurable subgroup of N . Let us compute its Haus-
dorff dimension. For conveniency, denote A �

°
p p dimmp and B � dimN �°

p dimmp. First, for any ball U , F X U is covered by at most C.n�Ak balls of
radius rn�ak , and therefore dimH Fr ¤

A
a . Using that F is a countable union of

Fr, we get

dimH F ¤
A

a
.

To prove the reverse inequality, we show dimH F1 X U ¥ A
a for some open ball

U containing 1. For this we use the mass distribution principle as described in
Falconer [7], chapter 4:

Starting from a total mass 1 (for U), we equidistribute it at each step on
the balls of lower scale which appear in the construction of F1. This gives us a
sequence of measures µn. Then we choose a converging subsequence of pµnq to
obtain a Borel measure µ supported on F1 X U and we check that the measure
µ is s-Hölder for s ¥ A

a .
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The µ-measure of a n�ak -ball Bk appearing at stage k is bounded above by
the inverse of the number of such balls, which is

nA1
VolU

.
nA2
naB1

. . .
nAk
naBk�1

�
nAk

VolU

k�1¹
i�1

nA�aBi .

Hence,

µpBkq ¤
VolU

nAk

k�1¹
i�1

naB�Ai .

Now, let Bρ a ball of radius ρ ¡ 0. Choose k such that nk ¤ ρ   nk�1. Then
Bρ meets at most pρBnAk q many balls of scale k, so

µpBρq ¤ pρBnAk q
VolU

nAk

k�1¹
i�1

naB�Ai � ρB VolU
k�1¹
i�1

naB�Ai .

At the same time, Bρ meets at most one ball of scale k � 1, hence

µpBρq ¤
VolU

nAk�1

k�2¹
i�1

naB�Ai .

Taking the geometric mean of ratio s P p0, 1q, we find,

µpBρq ¤

�
ρB VolU

k�1¹
i�1

naB�Ai

�s
.

�
VolU

nAk�1

k�2¹
i�1

naB�Ai

�1�s

� ρsBnA�saBk�1

k�2¹
i�1

nA�aBi .

Therefore, if we take pnkq to increase sufficiently rapidly, we have, for s ¡ A
aB ,

µpBρq ! ρsB .

The measure µ has support in F and is psBq-Hölder for all s ¡ A
a , thus,

dimH F ¥
A

a
,

which is exactly the content of the proposition, in case p � l. Exactly the
same computation can be made for any p in t0, . . . , lu in order to prove the
proposition, we leave the details to the reader.

4 Solvable Lie groups

4.1 Additive subgroups of Rd stable under matrices with
coefficients in a number field

We explain here how the diophantine properties of algebraic numbers can be
used to construct subgroups of Rd of arbitrary dimension that are stable under
the action of matrices with entries in a number field. The fundamental observa-
tion is the following lemma, which should be classical, but for which we could
not find a suitable reference.
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Lemma 4.1. If α is a real algebraic number of degree p, then there exists a
constant c � cpαq ¡ 0 such that for all n P N�,

mint|a0 � a1α� � � � � ap�1α
p�1|; |ai| P t�n, . . . , nuu ¥

c

np�1
.

Proof. Without loss of generality, we may assume that α is an algebraic integer.
Otherwise, we replace α by kα where k P N� is appropriately chosen. Denote
β � a0 � � � � � ap�1α

p�1. Then β is an algebraic integer, hence its norm Npβq
is a nonzero integer; in particular, |Npβq| ¥ 1. Now using the fact that Npβq is
the product of all Galois conjugates of β, we get

|Npβq| �
p¹
i�1

|σipβq|

�
p¹
i�1

|a0 � a1σipαq � � � � � ap�1σipαq
p|

� |β|
p¹
i�2

|a0 � a1σipαq � � � � � ap�1σipαq
p|

¤ Cα.|β|.n
p�1,

where Cα � maxt1, |σ2pαq|
p, . . . , |σppαq|

pu. So that

|β| ¥
1

Cα

1

np�1
.

In order to construct intermediate dimensional subgroups that are stable
under multiplication by some algebraic numbers, it is convenient to have the
following lemma, which generalizes the Erdős-Volkmann construction.

Definition 4.2. If S is a subset of a metric space U , we will say that S is
δ-dense in U if U can be covered by balls of radius δ centered at points of S.

Lemma 4.3. Denote Γ a finitely generated subgroup of Rd. Let BΓpnq be the
ball of radius n centered at 1 in Γ, for the word metric associated to some finite
generating set of Γ. Assume that for some a ¡ 1, for all ball U centered at 0 in
Rd, there exists δ ¡ 0 arbitrarily small and nδ P N� such that

BΓpnδq is δ-dense in U (1)

and
NpBΓpnδq X U, δaq � δ�d.VolU, (2)

where NpA, δq denotes the minimal cardinality of a covering of A with ball of
radius δ. Choose a sequence pδkq of such δ and, denoting nk � nδk , let

F �
¤
r,s¥1

Fr,s

with
Fr,s �

£
pBΓpsnkqqrδak ,

where Arδak denotes the rδak neighborhood of the set A.
Then F is a measurable subgroup of Rd of Hausdorff dimension d

a , provided pδkq
decreases sufficiently fast to zero.
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Proof. First, it is clear that F is measurable, and that it is a subgroup of N .
Besides, (2) shows that Fr,s can be covered by at most δ�dk balls of radius rδak ,
and therefore that dimH Fr,s ¤

d
a . Using that F is a countable union of Fr,s,

we get

dimH F ¤
d

a
.

Now we have to prove the reverse inequality. For this we use the mass distribu-
tion principle (see Falconer [7], chapter 4). Choose a maximal δk-separated set
Sk in each BΓpnkqXU , and, starting from a total mass 1 (for U), equidistribute
it at each step on the balls of lower scale. Finally choose a converging subse-
quence to obtain a Borel measure µ supported on F1,1 X U . The µ-measure of
a δak-ball Bk at stage k is bounded above by

1

NpBΓpnkq X U, δ1q
� � �

1

minxPSk�1
tNpBΓpnkq XBpx, δak�1q, δkqu

.

Now, using assumption (1), we have, for all x P Si�1,

NpBΓpnkq XBpx, δai�1q, δiq " δadi�1δ
�d
i

and so

µpBkq !
k¹
i�1

δ�adi�1 δ
d
i .

Now we claim that µ is Hölder. To see this, let Bρ a ball of radius ρ ¡ 0. Choose
k such that δk ¤ ρ   δk�1. Then Bρ meets at most p ρδk q

d many balls of radius
δ�ak , so

µpBρq ! p
ρ

δk
qd

k¹
i�1

δ�adi�1 δ
d
i .

And at the same time, Bρ meets at most one ball of radius δak�1 centered at an
element of Sk�1, hence

µpBρq ! p
δak�1

δk
qd

k¹
i�1

δ�adi�1 δ
d
i .

Therefore,

µpBρq ! p
mintρ, δak�1u

δk
qd

k¹
i�1

δ�adi�1 δ
d
i .

Now, for β Ps0, 1r, mintρ, δak�1u ¤ ρβδ
ap1�βq
k�1 so

µpBρq ! ρdβδ
adp1�βq�ad�d
k�1 δd�adk�2 δd�ad1

! ρdβδ
dp1�aβq
k�1 δd�adk�2 . . . δd�ad1

! ρdβ

as long as β ¡ 1
a and pδkq decrease sufficiently fast to 0.

The measure µ has support in F , and is pβdq-Hölder for all β ¡ 1
a , therefore,

dimH F ¥
d

a
.
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Remark: Suppose that Γ is generated by p elements, and that there exists
c � cpΓq such that, for all n P N, BΓpnq is c.n�

p
d�1-separated. Then Γ satisfies

conditions (1) and (2) for all a ¡ 1.

Proposition 4.4. Let K be a real number field. For any s P r0, ds, there exists
a dense measurable subgroup of Rd of Hausdorff dimension s which is stable
under multiplication by the matrices with entries in K.

Proof. From the primitive element theorem, we may write K � Qrαs where
α is an algebraic integer. Let Γ � Zd � Zdα � � � � � Zdαp�1 where p is
the degree of α. Endow Γ with the word metric for the set of generators
e1, αe1, . . . , α

p�1e1, . . . , ed, . . . , α
p�1ed, where the peiq is the usual basis of Rd.

From lemma 4.1, for all n P N�, the ball BΓpnq is c
np�1 -separated. Hence,

using lemma 4.3 and the following remark, we can construct a dense measur-
able subgroup F of dimension 1

a , which is easily checked to be invariant under
multiplication by matrices with entries in Zrαs. Letting

F 1 �
¤
nPN�

1

n
F,

one gets a dense measurable subgroup of Rd of dimension d
a which is stable

under multiplication by matrices with entries in K � Qrαs.

The previous proposition leads to the following natural questions: For what
real numbers α does there exist a measurable subgroup of R having arbitrary (or
just positive) Hausdorff dimension which is invariant under multiplication by α?
Does there exist a measurable subgroup of R of positive Hausdorff dimension
which is invariant under multiplication by a transcendental real number? etc.

4.2 Solvable algebraic groups defined over a number field
Starting from proposition 4.4 and using induction, we will prove the following
lemma, which we will need for our study of solvable algebraic groups:

Lemma 4.5. Let n be a nilpotent Lie algebra, and let D be a family of auto-
morphisms of n such that, in an appropriate basis of n, all the elements of n
have entries in K, where K is a real number field. Then for any α P r0,dim ns,
there exists a dense measurable Q-subalgebra of n of Hausdorff dimension α that
is invariant under D.

Proof. We use induction on the nilpotency class of n.
If n is Abelian, then the result follows from proposition 4.4.
Now let n be a nilpotent Lie algebra, and suppose we know the result for nilpo-
tent Lie algebras of nilpotency class less than that of n. As the elements of D
are automorphisms of the Lie algebra n, the center z of n is invariant under D.
First case: α ¤ dim z.
Then, by the Abelian case, we can choose a measurable dense Q-subspace zα
of z of Hausdorff dimension α. Choose any dense countable Q-subalgebra C0 of
n stable under D (this is easily seen to exist) and let nα � C0 � zα. Then nα
is a countable union of copies of zα so dimH nα � α; nα is a dense measurable
Q-subalgebra of n; and nα is invariant under D.
Second case: α ¡ dim z
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In this case, we choose a subspace V 1 such that n � z ` V 1. Identifying V 1

with n{z, and using the induction hypothesis, we can find a dense measurable
subgroup V 1

α�1 of V 1 of Hausdorff dimension α�dim z which is stable under D.
Let nα � z� V 1

α�1; this is a dense measurable Q-subalgebra of n; by lemma 2.1
it has Hausdorff dimension α; and it is invariant under D because V is stable,
V 1
α�1 is stable modulo z, and z � nα.

We are now ready to state and prove our theorem about measurable sub-
groups of connected solvable algebraic groups defined over a number field.

Theorem 4.6. If G � GpRq is the group of real points of a connected solv-
able algebraic group G defined over a number field K, then G admits dense
measurable subgroups of arbitrary dimension.

Proof. By the structure theorem for connected solvable algebraic groups (see
Borel [2], theorem 10.6), G can be written as a semidirect product G � T.Gu
where T is a maximal torus and Gu is the connected unipotent group of unipo-
tents elements of G. Denote gu the Lie algebra of Gu. We distinguish two cases.
First case: α ¤ dimGu
From theorem 7.7 of [8], the group D � GpKq is a dense subgroup of G. More-
over, it acts (by the adjoint action) on gu with matrices with entries in K.
Therefore, by lemma 4.5 we can choose a dense measurable Q-subalgebra of gu
of Hausdorff dimension α which is invariant under AdD. By lemma 3.6 and the
remark following it, its image under the exponential map is then a dense mea-
surable subgroup Gu,α of Gu of dimension α which is stable under conjugation
by the elements of D. We define Gα to be the subgroup generated by D and
Gu,α. One easily checks that Gα has the required properties.
Second case: α ¡ dimGu
Then, as T is a connected Abelian Lie group, it contains a dense subgroup
Tα�dimGu of dimension pα � dimGuq. So we let Gα � Tα�dimGu .Gu. The
group Gα is a dense measurable subgroup of G, and it has Hausdorff dimension
α, because of lemma 2.1.

Example: The more general question which asks whether any solvable Lie
group admits dense measurable subgroups of arbitrary dimension remains open.
For instance, let G be the semidirect product R�� 
θ R2 where

θ : R�� Ñ AutR2

t ÞÑ ppx, yq ÞÑ ptx, tλyqq,

with λ P R � Q. If α ¥ 2, one easily construct a dense subgroup of G of
dimension α of the form Hα 
 R2, where Hα is a subgroup of R�� of dimension
α�2. If α P r1, 2s, it is still possible to construct a dense subgroup of dimension
α of the form Q�

�
pHα�Rq, with Hα a dense subgroup of R of dimension α�1
which is invariant under multiplication under the rationals. However, if α   1,
then the existence of a dense measurable subgroup of dimension α is unclear.

5 The p-adic setting

5.1 Nilpotent p-adic analytic groups
The proof of theorem 1.4 follows the same lines as in the real case: we start with
the Abelian case, then use induction to study nilpotent Lie algebras, and finally
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lift the result to nilpotent Lie groups, using the Campbell-Hausdorff formula
instead of the exponential map.
In the p-adic setting, dense subgroups of arbitrary dimension of Zp were con-
structed by Abercombie [1].

Theorem 5.1 (Abercrombie). There are dense measurable subgroups of Zp of
arbitrary dimension between 0 and 1.

In fact, one can prove this theorem using almost the same construction as
Erdős and Volkmann: define

Fr � tx P Zp|@k, Dx1 P t0, . . . , rpnk � 1u : |x� x1| ¤ p�anku,

F �
¤
rPN

Fr,

and check that F is a measurable subgroup of Zp of Hausdorff dimension 1
a .

The analog of proposition 3.5 is the following.

Proposition 5.2. Let n be a nilpotent Lie algebra over Qp of dimension d, and
D be a countable unipotent subgroup of Autpnq. For any α P r0,dim ns, there
exists a measurable Q-subalgebra of n of Hausdorff dimension α which is stable
under the elements of D.

The proof is exactly the same as that of proposition 3.5, so we omit it. Now,
in order to obtain results about p-adic nilpotent Lie groups, we start by the
following consequence of the proposition:

Corollary 5.3. Let n be a p-adic nilpotent Lie algebra. Define N0 to be the
group whose elements are the elements of n, and whose law is defined using the
Campbell-Hausdorff formula (see [12], part II, page 5.18, remark 1). Let Γ be a
countable subgroup of N0. Then, for all α P r0,dimN0s, there exists a measur-
able subgroup of N0 of Hausdorff dimension α containing Γ. In particular, N0

contains a dense subgroup of Hausdorff dimension α.

Proof. The group D � Ad Γ is a countable unipotent subgroup of GLpnq, so, by
the previous proposition, there exists a dense Q-subalgebra nα of n of Hausdorff
dimension α which is stable under D. Then, as in the proof of proposition 3.6,
one checks that Nα � exppnαq is a subgroup of N0 of Hausdorff dimension α
which is stable under conjugation by the elements of Γ. This implies that the
subgroup Mα generated by Nα and Γ is a countable union of copies of Nα and
hence has Hausdorff dimension α. Of course, Mα is measurable and contains Γ
so we have what we wanted.

We can finally state and prove our theorem on nilpotent p-adic analytic
groups:

Theorem 5.4. If N is a nilpotent p-adic analytic group, then, for all α P
r0,dimN s, there exists a measurable subgroup of N of Hausdorff dimension α
which is dense in a neighborhood of the identity.

Proof. From [12], page 5.34, corollary 1, N contains an open subgroup which is
isomorphic to an open subgroup U of the group N0 above. But, by the previous
proposition, U0 contains a dense subgroup of Hausdorff dimension α, so we are
done.
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Remark: If N contains a normal open subgroup which is isomorphic to a
subgroup of N0, then, reasoning in the same way as we did in the real setting, it
is possible to show thatN has a dense subgroup of Hausdorff dimension α. So we
ask the following question: given a nilpotent p-adic analytic group N does there
exist an open normal subgroup of N which is isomorphic to a subgroup of N0,
where N0 is defined from the Lie algebra of N , using the Campbell-Hausdorff
formula?
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