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Abstract
We prove that in a simple real Lie group, there is no Borel measurable

dense subgroup of intermediate Hausdorff dimension.

1 Introduction
The main purpose of the present paper is to prove the following theorem.

Theorem 1.1. Let G be a connected simple real Lie group endowed with a
Riemannian metric. There is no Borel measurable dense subgroup of G with
Hausdorff dimension strictly between 0 and dimG.

For the group SU(2), Theorem 1.1 was proved by Lindenstrauss and Saxcé
[11]. In contrast, it is shown in [13] that in a connected nilpotent Lie group G
there exist dense Borel measurable subgroups of arbitrary dimension between 0
and dimG.

The study of subgroups of Lie groups with intermediate Hausdorff dimension
started with the work of Erdős and Volkmann [7], who constructed additive sub-
groups of the real line with arbitrary Hausdorff dimension between 0 and 1, and
conjectured that any Borel subring of the reals has Hausdorff dimension 0. This
conjecture was settled by Edgar and Miller [6] in 2002, and shortly afterwards,
Bourgain [1, 2] provided an independent and more quantitative solution.

The proof of Theorem 1.1 given in this paper follows the strategy of “dis-
cretization” used by Bourgain in its solution to the Erdős-Volkmann Conjecture,
and also yields the following more precise theorem.

Theorem 1.2. Let G be a connected simple real Lie group endowed with a
Riemannian metric. There exists a neighborhood U of the identity in G and a
positive integer k such that for all σ > 0, there exists ε = ε(σ) > 0 such that the
following holds.
Suppose A is a Borel subset of U generating a dense subgroup of G and with
Hausdorff dimension dimH A ∈ [σ, dimG− σ], then

dimH A
k ≥ dimH A+ ε,
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where Ak denotes the set of all elements of G that can be written as products of
k elements of A.

It should be noted that the assumption that the set A is Borel measurable
cannot be omitted. Indeed, Davies [5] showed that there exist non-Borel sub-
fields of the real line of arbitrary Hausdorff dimension (see also [8]); it is then
easy to check that if F is a subfield of R of Hausdorff dimension α, then the
subgroup SL(2, F ) in SL(2,R) has Hausdorff dimension 3α.

The idea of “discretization” is to translate problems about Hausdorff dimen-
sion into combinatorial problems about covering numbers of sets by balls of
some small fixed radius δ. For that, Katz and Tao [9] introduced the notion of
(σ, ε)-set at scale δ, which is the natural discretized analog of sets of Hausdorff
dimension σ. The study of Hausdorff dimension of product sets then consists
into three steps: first, one proves a combinatorial statement about covering
numbers of (σ, ε)-sets at scale δ, then one deduces from it a flattening statement
for measures, and finally, using Frostman’s Lemma, on derives an inequality on
Hausdorff dimensions.

In the proof of Theorems 1.1 and 1.2, the combinatorial part is based on a
discretized Product Theorem for simple Lie groups [14, Theorem 1.1]. A key
point in this combinatorial analysis is to understand the set Ξ of “troublemakers”
of a subset A in G. Roughly speaking, those are the elements ξ such that there
exist large subsets A′ and B′ in A such that the product set A′ξB′ is not much
larger than A. By controlling the structure of approximate subgroups in G, we
will show that if A is a (σ, ε)-set at scale δ, then the set Ξ is included in a union
of few neighborhoods of cosets of closed subgroups of G. This observation
will allow us to prove the expansion statement needed to derive flattening of
measures.

The plan of the paper is as follows. In Section 2, we investigate the structure
of approximate subgroups of G and derive some elementary lemmas about sub-
group chunks. Section 3 is devoted to the proof of the combinatorial discretized
version of Theorem 1.2. Finally, in Section 4, we prove a Flattening Lemma for
Frostman measures, and carry out the applications to Hausdorff dimension of
product sets.

Acknowledgements I am very grateful to Yves Benoist for many helpful and
motivating discussions, for his precious comments on a previous version of this
manuscript, and above all, for his enthusiasm for this problem.
I also thank Emmanuel Breuillard, with whom this problem was raised, during
my doctoral thesis under his supervision, and Elon Lindenstrauss for interesting
discussions.
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2 Approximate subgroups and subgroup chunks

2.1 Controlling approximate subgroups
We start by recalling some elementary facts from additive combinatorics. If A
and B are subsets of a group G, we denote by AB the product set of A and B,
i.e.

AB = {ab ; a ∈ A, b ∈ B}.

Similarly, for k ≥ 1, Ak denotes the set of elements that can be written as the
product of k elements of A. An important definition for us will be that of an
approximate subgroup, due to Tao [15].

Definition 2.1. Let G be a metric group, and K ≥ 1 a parameter. A K-
approximate subgroup of G is a subset of G satisfying
• A is symmetric and contains the identity.
• There exists a finite set X of cardinality at most K such that AA ⊂ XA.

In this paper, G will always denote a connected simple Lie group, endowed
with a left-invariant Riemannian metric. If A is a bounded subset of G, and
δ > 0 is some small scale, we denote by N(A, δ) the minimal number of balls of
radius δ needed to cover A.

For the application to the study of Hausdorff dimension of product sets, the
following definition, due to Katz and Tao [9] is appropriate.

Definition 2.2. Let G be a real Lie group of dimension d. Given σ ∈ (0, d)
and ε > 0, we say that a subset A in G is a (σ, ε)-set at scale δ if it satisfies

1. N(A, δ) ≤ δ−σ−ε
2. For all ρ ≥ δ, for all x in G, N(A ∩B(x, ρ), δ) ≤ ρσδ−εN(A, δ).

Remark 1. One should think of (σ, ε)-sets at scale δ as sets of Hausdorff di-
mension σ discretized at scale δ. The parameter ε quantifies what we lose in
the discretization process.

Example 1. For σ = log 2
log 3 and any ε > 0, the usual triadic Cantor set is a

(σ, ε)-set at scale δ for all δ sufficiently small.

Given a connected simple Lie group G endowed with a Riemannian met-
ric, we want to describe the structure of (σ, ε)-sets in G that are also δ−ε-
approximate subgroups. For that purpose, we make the following definition.

Definition 2.3. Let G be a Lie group, and fix O a neighborhood of 0 in the
Lie algebra g on which the exponential map is injective. Given a symmetric
neighborhood U of the identity such that U ⊂ expO, we define a subgroup
chunk in U to be a set of the form U ∩ exp(O ∩ h), for some Lie subalgebra
h < g.
Similarly, a coset chunk in U is a set of the form U ∩ g exp(O ∩ h), for some Lie
subalgebra h < g and some element g in U .
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Throughout the paper, if X is any subset of G and ρ some positive number,
X(ρ) denotes the ρ-neighborhood of X in G, i.e.

X(ρ) = {x ∈ G | d(x,X) ≤ ρ}.

What will allow us to control approximate subgroups with subgroup chunks is
the following discretized Product Theorem [14, Theorem 1.1].

Theorem 2.4 (Product Theorem). Let G be a simple real Lie group of di-
mension d. There exists a neighborhood U of the identity in G such that the
following holds.
Given σ ∈ (0, d), there exists τ = τ(σ) > 0 and ε0 = ε0(σ) > 0 such that, for all
ε ∈ (0, ε0), for all δ > 0 sufficiently small, if A ⊂ U is a set satisfying

1. N(A, δ) ≤ δ−σ−ε
2. ∀ρ ≥ δ, N(A, ρ) ≥ δερ−σ
3. N(AAA, δ) ≤ δ−εN(A, δ)

then there exists a closed connected subgroup H ⊂ G, such that

A ⊂ H(δτ ).

Moreover, τ and ε0 remain bounded away from zero when σ varies in a compact
subset of (0, d).

Remark 2. Note that if A is a (σ, ε)-set at scale δ, then it necessarily satisfies
the first two conditions of the Product Theorem.

Remark 3. In the conclusion of the Product Theorem, we may of course assume
that the closed connected subgroup H is maximal. If this is the case, then we
know [14, Proposition 2.1] that, provided U has been chosen small enough, H∩U
is just the subgroup chunk in U with Lie algebra h = LieH.

Given a (σ, ε)-set H̃ that is also a δ−ε-approximate subgroup, we know from
the Product Theorem that H̃ is included in a small neighborhood of a proper
subgroup chunk. The purpose of the following lemma is to allow us to choose
the subgroup chunk H ′ of minimal dimension that can control H̃.

Lemma 2.5. Let G be a simple Lie group of dimension d. There exists a
neighborhood U of the identity in G such that the following holds.
Given σ ∈ (0, d) and b ∈ (0, 1), there exist constants K` and τ` = τ`(σ, b) > 0,
for ` ∈ {1, . . . , d− 1}, and ε0 = ε0(σ) > 0 such that the following holds for any
ε ∈ (0, ε0) and any δ > 0 small enough.
Suppose H̃ ⊂ U is a (σ, ε)-set at scale δ and a δ−ε-approximate subgroup.
There exists ` in {1, . . . , d− 1}, a subgroup chunk H ′ in U4 of dimension ` and
a subset H̃ ′ ⊂ H ′(τ`), such that:

1. There is a finite set X of cardinality at most δ−K`ε such that
H̃ ⊂ XH̃ ′ ∩ H̃ ′X.

2. If D is any coset chunk in U such that dimD < `, then
N(H̃ ′ ∩D(δbτ` ), δ) ≤ δ8K`εN(H̃, δ).
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Proof. Choose a symmetric neighborhood U , and parameters τ and ε0 for which
the Product Theorem 2.4 holds. We also assume that U4 is still an exponential
neighborhood of the identity in G.
Then, let K` = 2 · 10d−` and τ` = ( b3 )d−`τ , and choose ` maximal such that for
any coset chunk D of dimension less than `,

N(H̃ ∩D(δ
bτ`
2 ), δ) ≤ δ9K`εN(H̃, δ).

By the Product Theorem 2.4 and Remark 3, there exists a proper subgroup
chunk H0 in U such that H̃ ⊂ H(δτ )

0 . This shows that ` ≤ d− 1.
On the other hand, coset chunks of dimension 0 are just points, and using that
H̃ is a (σ, ε)-set at scale δ, we see that, provided ε is sufficiently small, for any
x in G, one has,

N(H̃ ∩B(x, δ
bτ1
2 ), δ) ≤ δσ

bτ1
2 −εN(H̃, δ) ≤ δ9K1εN(H̃, δ).

So we also have ` ≥ 1.
By maximality of `, there exists an `-dimensional coset chunk C in U such that

N(H̃ ∩ C(δ
bτ`+1

2 ), δ) = N(H̃ ∩ C(δ
3τ`
2 ), δ) ≥ δ9K`+1εN(H̃, δ).

Writing C = gH ′ for some subgroup chunk H ′ and some element g in U , one
readily sees that, for some constant L depending only on U ,

N(H̃2 ∩H ′(Lδ
3τ`
2 ), δ) ≥ δ9K`+1εN(H̃, δ) ≥ δ 9

10K`εN(H̃, δ).

Note that we allow ourselves here a slight abuse of notation, denoting by H ′
both the subgroup chunk in U and the subgroup chunk in U2.

Let A = H̃2 ∩H ′(Lδ
3τ`
2 ) and B = H̃. We have

N(AB, δ) ≤ N(H̃3, δ) ≤ δεN(H̃, δ) ≤ δ(K`−1)εN(A, δ),

so that by Rusza’s Covering Lemma (see below Lemma 2.6), we find that there
exists a finite set X of cardinality at most δ−K`ε such that

H̃ ⊂ XH̃ ′ ∩ H̃ ′X,

where H̃ ′ is a neighborhood of size O(δ) of the set (H̃2 ∩H ′(Lδ
3τ`
2 ))2. Provided

δ is sufficiently small, we have H̃ ′ ⊂ H ′(δ
τ` ), where H ′ now stands for the

subgroup chunk in U4.
It remains to check Condition 2. Using that H̃ is a δ−ε-approximate sub-

group, one sees that H̃ ′ can be covered by at most δ−4ε translates of neighbor-
hoods of H̃ of size O(δ):

H̃ ′ ⊂
δ−4ε⋃
i=1

xiH̃
(O(δ)).
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Let D be any coset chunk in U of dimension less than `.
For each i, we have,

N(xiH̃
(O(δ)) ∩D(δbτ` ), δ) = N(H̃(O(δ)) ∩x−1

i D(δbτ` ), δ) ≤ N(H̃ ∩x−1
i D(δ

bτ`
2 ), δ),

and therefore, by assumption on `,

N(xiH̃
(O(δ)) ∩D(δbτ` ), δ) ≤ δ9K`εN(H̃, δ).

This shows that

N(H̃ ′ ∩D(δbτ` ), δ) ≤ δ−4εδ9K`εN(H̃, δ) ≤ δ8K`εN(H̃, δ).

For convenience of the reader, we now give the version of Ruzsa’s Covering
Lemma we used in the above proof.

Lemma 2.6 (Ruzsa Covering Lemma). Let G be a Lie group and U a compact
neighborhood of the identity. There exists a positive constant L such that the
following holds for any parameter K ≥ 1.
Suppose A and B are subsets of U such that N(AB, δ) ≤ KN(A, δ). Then there
exists a finite set X of cardinality at most LK such that B is included in the
neighborhood of size Lδ of A−1AX. Similarly, if N(BA, δ) ≤ KN(A, δ), there
exists a finite set Y of cardinality at most LK such that B is included in the
neighborhood of size Lδ of Y AA−1.

Proof. Let X = {x1, . . . , xs} be maximal among subsets of B such that for each
i 6= j, the translates Axi and Axj are away from each other by at least 2δ, in
the sense that

∀x ∈ Axi, ∀y ∈ Axj , d(x, y) > 2δ.

Let L1 > 0 such that left and right translations by elements of U are L1-bi-
Lipschitz on U . For each i, we have

N(Axi, δ) ≥ N(A,L1δ)� N(A, δ).

The set AB contains all the translates Axi, and those are 2δ separated, so we
find

N(AB, δ) ≥
∑

N(Axi, δ)� (cardX)N(A, δ),

and therefore,
cardX � K.

On the other hand, by maximality of X, if b is any element of B, there exists
an element xi is X such that Ab meets the neighborhood of size 2δ of Axi. This
shows that d(b, A−1Axi) ≤ 2L1δ and thus,

B ⊂ A−1AX(2L1δ).
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2.2 Intersections of neighborhoods
For us, an important property of neighborhoods of coset chunks is that they are
stable under intersection. Recall that if X is a subset of G, then X(ρ) denotes
the ρ-neighborhood of X. The lemma we will need is as follows.

Lemma 2.7. Let G be a real Lie group. There exists a neighborhood U of the
identity in G and constants a, b > 0 such that for all ρ > 0 sufficiently small,
for any two coset chunks C1 and C2 in U , satisfying C1 6⊂ C(ρa)

2 , we have

C
(ρ)
1 ∩ C(ρ)

2 ⊂ C(ρb)
0 ,

for some coset chunk C0 in U with dimC0 < dimC1.

The proof goes into three steps. First, we study intersections of linear sub-
spaces in a Euclidean space, then we consider intersections of subalgebras of a
Lie algebra, and finally, we prove Lemma 2.7.

Definition 2.8. Given two subspaces V1 and V2 of a Euclidean space E, we
define the distance from V1 to V2 by

d(V1, V2) = sup{d(v, V2) ; v unit vector in V1}.

Note that d does not define a distance on the set of subspaces of E, as
d(V1, V2) = 0 just means that V1 is included in V2.

Lemma 2.9. Let d be a positive integer. There exists a constant c0 = c0(d) > 0
such that if E is a Euclidean space of dimension d, the following holds for any
ρ > 0 small enough.
Suppose V1 and V2 are two proper subspaces of E such that d(V1, V2) ≥ ρc0 .
Then there exists a nonnegative integer ` < dimV1, a constant c ≥ c0, and an
orthogonal family (ui)1≤i≤` of unit vectors such that,

∀i, ui ∈ V1 ∩ V (ρc)
2 (1)

and
BE(0, 1) ∩ V1 ∩ V (ρ

3c
4 )

2 ⊂ V (ρ
c
6 ),

where V = Span(ui)1≤i≤`.

Proof. We will prove the lemma with constant c0 = 2−d−1.
Let ` ≥ 0 be maximal such that there exists an orthonormal family (ui)1≤i≤` of
vectors in V1 such that

∀i ∈ {1, . . . , `}, d(ui, V2) ≤ ρ2−` .

The assumption d(V1, V2) ≥ ρc0 ensures that ` < dimV1. Choosing c = 2−`, the
ui’s certainly satisfy condition (1).
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Now let v be a vector in BE(0, 1)∩V1∩V (ρ
3c
4 )

2 . Write v = λ1u1 + · · ·+λ`u`+v′,
with v′ in V1 ∩ (u1, . . . , u`)

⊥. We have, provided ρ is small enough,

d(v′, V2) = d(v −
∑

λiui, V2) ≤ ρ 3c
4 + `ρc ≤ ρ 2c

3 ,

and therefore, by maximality of `,

ρ
2c
3 ≥ ‖v′‖d(

v′

‖v′‖
, V2) ≥ ‖v′‖ρ c2

which implies
d(v, V2) = ‖v′‖ ≤ ρ c6 .

This shows that BE(0, 1) ∩ V1 ∩ V (ρ
3c
4 )

2 ⊂ V (ρ
c
6 ).

The next step, passing from linear subspaces to Lie subalgebras, is an appli-
cation of Łojasiewicz’s inequality.

Lemma 2.10. Let g be a real Lie algebra endowed with a Euclidean metric.
There exist positive constants a and b such that for all ρ > 0 small enough, we
have the following. Let h1 and h2 be two Lie subalgebras of g, and assume that
d(h1, h2) ≥ ρa. Then, there exists a Lie subalgebra h such that dim h < dim h1

and
Bg(0, 1) ∩ h

(ρ)
1 ∩ h

(ρ)
2 ⊂ h(ρb).

Proof. For each ` in {1, . . . , d}, the variety M` of orthogonal `-tuples of unit
vectors in g is compact and real analytic. We define a real-valued function f on
M` by

f(u1, . . . , u`) =
∑

1≤i<j≤`

d([ui, uj ],Span(ui)1≤i≤`)
2,

where [, ] denotes the Lie bracket in g.
Note that f(u1, . . . , u`) = 0 if and only if Span(ui) is stable under Lie brackets,
i.e. if and only if the `-tuple (ui) is the basis of a Lie subalgebra of g. The
function f is real-analytic so that by the Łojasiewicz inequality [10, Théorème
2, page 62], there exists a constant C such that for r small enough,

f(u1, . . . , u`) ≤ r =⇒ d((ui), Zf ) ≤ r 1
C ,

where Zf is the zero set of f . In other terms, if f(u1, . . . , u`) ≤ r, then there
exists a Lie subalgebra h of dimension ` such that d(Span(ui), h) ≤ r 1

C .
Let c0 be the constant from Lemma 2.9, and let a = c0.
Now suppose h1 and h2 are two subalgebras as in the lemma. Choose ` < dim h1,
c ≥ c0 and a orthonormal family (ui)1≤i≤` as given by Lemma 2.9. For each
i < j, we have ui and uj are in h1, so that [ui, uj ] ∈ h1. Moreover, ui and uj are
in h

(ρc)
2 so, for some constant L depending only on g, we have [ui, uj ] ∈ h

(Lρc)
2 .

Thus, for ρ > 0 small enough, [ui, uj ] ∈ h1 ∩ h
(ρ

3c
4 )

2 ⊂ (Span(ui))
(ρ
c
6 ), and

f(u1, . . . , u`) ≤ d2ρ
c
6 ≤ ρ c7 .
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Therefore, there exists a Lie subalgebra h of dimension ` such that d(Span(ui), h) ≤
ρ
c

7C . However, by definition of the ui’s, the intersection Bg(0, 1) ∩ h
(ρ)
1 ∩ h

(ρ)
2 is

included in (Span(ui))
(ρ+ρ

c
6 ), so that, setting b = c0

8C , we indeed get, provided
ρ is small enough,

h
(ρ)
1 ∩ h

(ρ)
2 ⊂ h(ρb).

The above Lemma 2.10 can of course be reformulated in terms of subgroup
chunks, and thus allows to prove Lemma 2.7.

Proof of Lemma 2.7. Suppose without loss of generality that the intersection
g1H

(ρ)
1 ∩ g2H

(ρ)
2 is nonempty, and fix g0 ∈ g1H

(ρ)
1 ∩ g2H

(ρ)
2 . Then we have, for

some constant L depending only on the compact neighborhood U ,

g0H
(Lρ)
1 ⊃ g1H

(ρ)
1 and g0H

(Lρ)
2 ⊃ g2H

(ρ)
2 .

All we have to show is that g0H
(Lρ)
1 ∩g0H

(Lρ)
2 is included in the ρb-neighborhood

of some coset chunk. From g1H1 6⊂ g2H
(ρa)
2 , we have g0H1 6⊂ g0H

( ρ
a

2 )
2 whence

H1 6⊂ H
(ρ
ρa

2 )
2 . Therefore, by Lemma 2.10 – adjusting slightly the values of a

and b –, there exists a subgroup chunk H0 of dimension less than dimH1 such
that

H
(Lρ)
1 ∩H(Lρ)

2 ⊂ H(ρb)
0 ,

and this allows us to concude that

g1H
(ρ)
1 ∩ g2H

(ρ)
2 ⊂ g0H

(ρb)
0 .

3 The set Ξ of troublemakers
Let G be a Lie group and U a compact neighborhood of the identity. If A ⊂
U is a (σ, ε)-set at scale δ in a Lie group G, we associate to it the set Ξ of
troublemakers for A, defined as

Ξ =

{
ξ ∈ U

∣∣∣∣∃Ω ⊂ A×A with N(Ω, δ) ≥ δεN(A, δ)2

and N(πξ(Ω), δ) ≤ δ−εN(A, δ)

}
, (2)

where πξ : (x, y) 7→ xξy. Roughly speaking, an element ξ is a troublemaker for
the set A if there exist large portions A′ and B′ of A such that the product set
A′ξB′ is not much larger than A.

Example 2. Suppose A = H ∩U for some closed subgroup of the Lie group G.
If ξ ∈ U is any element of the normalizer NG(H) of H, we have AξA ⊂ Hξ∩U3,
which has roughly the same size as A. So Ξ contains NG(H) ∩ U .
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3.1 Controlling the troublemakers
The purpose of this subsection is to show that if A is a (σ, ε)-set in a simple
Lie group G, then the set of troublemakers for A is included in a small number
of neighborhoods of cosets of proper closed subgroups of G. Our aim is the
following.

Proposition 3.1. Let G be a simple Lie group. There exists a neighborhood
U of the identity in G such that, given σ ∈ (0,dimG), there exist constants
η = η(σ) > 0 and ε1 = ε1(σ) > 0 such that the following holds for any ε ∈ (0, ε1)
and any δ > 0 small enough.
If A ⊂ U is a (σ, ε)-set at scale δ, then the set Ξ of troublemakers for A, defined
as in (2), is included in a union of at most δ−O(ε) neighborhoods of size δη of
coset chunks in U .
Moreover, η and ε1 remain bounded away from 0 when σ varies in a compact
subset of (0,dimG).

First, we recall the following proposition on “almost stabilizers” of subspaces
in the adjoint representation of a simple Lie group [14, Proposition 2.7].

Proposition 3.2. Let G be a simple Lie group with trivial center. There exists
a neighborhood U of the identity in G, and a constant c > 0 such that for all
ρ > 0 small enough, the following holds.
For each proper subspace V < g, there exists a proper closed connected subgroup
SV such that for all ξ in U ,

d((Adξ)V, V ) ≤ ρ =⇒ d(ξ, SV ) ≤ ρc.

That proposition has the following corollary.

Corollary 3.3. Let G be a simple Lie group. There exists a neighborhood U of
the identity and a constant c > 0 such that the following holds for any ρ > 0
sufficiently small.
For any two proper subgroup chunks H and R of same dimension in U , there
exists a coset chunk C in U such that, for all ξ in U ,

ξHξ−1 ⊂ R(ρ) =⇒ ξ ∈ C(ρc).

Proof. Since the statement only involves a neighborhood of the identity, it is
enough to prove it in the case the group G has trivial center. Choose a neigh-
borhood U of the identity and a constant c > 0 such that Proposition 3.2 holds
for UU−1 and 2c.
Given two subgroup chunks H and R having the same dimension, assume that
for some ξ0 in U , ξ0Hξ−1

0 is included in R(ρ). If ξ is another element satisfying
ξHξ−1 ⊂ R(ρ), we have, for some constant L depending only on U ,

(ξ−1
0 ξ)H(ξξ−1

0 )−1 ⊂ H(Lρ).

and this implies, if h denotes the Lie algebra of H,

d((Ad ξ−1
0 ξ)h, h) ≤ Lρ.
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From Proposition 3.2, it follows that there exists a closed subgroup S such that
for ρ small enough,

ξHξ−1 ⊂ R(ρ) =⇒ ξ ∈ ξ0S(Lρ2c) ⊂ ξ0S
(ρc).

This proves the lemma.

The proof of Proposition 3.1 is based on the following lemma, which is an
application of the inclusion-exclusion principle.

Lemma 3.4. Let G be a Lie group, and fix a neighborhood U of the identity
and constants a and b as given by Lemma 2.7.
Let σ ∈ (0, d) and fix an integer ` ∈ {1, . . . , d − 1}. Let A be any subset of
U , and δ > 0 some small scale. Given two parameters K and τ > 0, we are
interested in subsets C̃ of U such that:

1. δKεN(A, δ) ≤ N(C̃ ∩A, δ)
2. We have C̃ ⊂ C(δτ ), for some coset chunk C of dimension `.
3. If D is any coset chunk such that dimD < `, then

N(C̃ ∩D(δbτ ), δ) ≤ δ4KεN(A, δ).
Let C be the union of all such sets C̃. Then, there exists a family (Ci)1≤i≤2δ−Kε

of coset chunks of dimension ` such that

C ⊂
2δ−Kε⋃
i=1

C
(δaτ )
i .

Proof. Choose successively sets C̃i, i ≥ 1 satisfying all requirements of the
lemma – in particular C̃i ⊂ C

(δτ )
i for some `-dimensional coset chunk Ci – and

such that for each i,

C
(δτ )
i+1 6⊂

i⋃
k=1

C
(δaτ )
k .

Clearly, this procedure must stop, and when it does, we obtain a finite family
(Ci)1≤i≤N of coset chunks such that

C ⊂
N⋃
i=1

C
(δaτ )
i .

It remains to check that N ≤ 2δ−Kε. For that, first note that for all 1 ≤ i <
j ≤ N , by Lemma 2.7, there exists a coset chunk D with dimD < ` such that
C

(δτ )
i ∩ C(δτ )

j ⊂ D(δbτ ). In particular,

N(C̃i ∩ C̃j , δ) ≤ N(C̃j ∩ C(δτ )
i ∩ C(δτ )

j , δ) ≤ N(C̃j ∩D(δbτ ), δ),

whence, using the third assumption on C̃j ,

N(C̃i ∩ C̃j , δ) ≤ δ4KεN(A, δ).

11



Now, as A certainly contains
⋃N
i=1A ∩ C̃i, we find

N(A, δ) ≥ N(A ∩ C̃1, δ) + (N(A ∩ C̃2, δ)−N(A ∩ C̃1 ∩ C̃2, δ))

+(N(A ∩ C̃3, δ)−N(A ∩ C̃1 ∩ C̃3, δ)−N(A ∩ C̃2 ∩ C̃3, δ)) + . . .

≥ δKεN(A, δ)
[
1 + (1− δ3Kε) + (1− 2δ3Kε) + . . .

]
,

keeping only the first min(N, δ−3Kε) terms in the sum. The terms on the right-
hand side of the above inequality are non-negative and form an arithmetic pro-
gression, so that we get the lower bound

N(A, δ) ≥ δKε 1

2
min(N, δ−3Kε)N(A, δ).

This forces min(N, δ−3Kε) = N and in turn,

N ≤ 2δ−Kε.

Proof of Proposition 3.1. A. Choose a symmetric neighborhood U such that
both Lemma 2.5 and Lemma 3.7 hold in the neighborhood U4. Let ξ be an ele-
ment of Ξ. From the non-commutative version of the Balog-Szemerédi-Gowers
Lemma, due to Tao [15, Theorem 6.10], there exists a constant K ≥ 2 such that
there exists a δ−Kε-approximate subgroup H̃ and elements x, y in G such that

δKεN(A, δ) ≤ N(xH̃ ∩A, δ) ≤ N(H̃, δ) ≤ δ−KεN(A, δ)

and
δKεN(A, δ) ≤ N(ξ−1H̃y ∩A, δ) ≤ N(H̃, δ) ≤ δ−KεN(A, δ).

B. First, we claim that H̃ is a (σ, 3Kε)-set at scale δ.
Indeed, suppose for a contradiction that for some ball Bρ of radius ρ ≥ δ, we
have

N(H̃ ∩Bρ, δ) > δ−3KερσN(H̃, δ).

Then,
N((H̃ ∩Bρ)H̃, δ) ≤ N(H̃2, δ) ≤ δ−KεN(H̃, δ),

so that
N((H̃ ∩Bρ)H̃, δ) ≤ δ2Kερ−σN(H̃ ∩Bρ, δ).

Applying the Covering Lemma 2.6 to the sets H̃ ∩ Bρ and H̃, we find that for
some constant L depending on U only, there is a set W of cardinality at most
Lδ2Kερ−σ such that,

H̃ ⊂W · (H̃2 ∩B(1, Lρ)) ⊂
⋃
w∈W

B(w,Lρ).

Recalling that N(xH̃ ∩ A, δ) ≥ δKεN(A, δ), we see that for some w in W , we
have

N(A ∩B(xw,Lρ), δ) ≥ 1

cardW
δKεN(A, δ) ≥ 1

L
δ−KερσN(A, δ),

12



contradicting the fact that A is (σ, ε)-set at scale δ, since for δ small enough,

1

L
δ−Kερσ > (Lρ)σδ−ε.

C. Now, let ε0, K` and τ`, 1 ≤ ` ≤ d − 1, be as in Lemma 2.5. Provided
ε < ε1 := ε0

2K , Lemma 2.5 shows that there is an integer ` ∈ {1, . . . , d− 1} and
a subgroup chunk H ′ of dimension ` such that, for some set H̃ ′ ⊂ H ′(τ`),

1. There is a finite set X of cardinality at most δ−3K`Kε such that H̃ ⊂
XH̃ ′ ∩ H̃ ′X.

2. If D is any coset chunk in U such that dimD < `, then
N(H̃ ′ ∩D(δbτ` ), δ) ≤ δ24K`KεN(H̃, δ) ≤ δ23K`KεN(A, δ).

We have xH̃ ⊂ xXH̃ ′, and recalling that N(xH̃ ∩ A, δ) ≥ δKεN(A, δ), we find
that for some x′ in xX,

N(x′H̃ ′ ∩A, δ) ≥ 1

cardX
δKεN(A, δ) ≥ δ4K`KεN(A, δ).

Similarly, there exists y′ such that

N(ξ−1H̃ ′y′ ∩A, δ) ≥ δ4K`KεN(A, δ).

Denote by C the union of all subsets C̃ of U4 satisfying the conditions of
Lemma 3.4, with constants K ′ = 4K`K and τ = τ`. By Lemma 3.4, there
is a family of coset chunks (Ci)1≤i≤2δ−4K`Kε such that

C ⊂
2δ−4K`Kε⋃

i=1

C
(δaτ )
i .

D. As x′H̃ ′ and ξ−1H̃ ′y′ both satisfy the conditions of Lemma 3.4, there must
exist indices i and j such that

x′H̃ ′ ⊂ C(δaτ )
i and ξ−1H̃ ′y′ ⊂ C(δaτ )

j . (3)

Denote by Hi the left-direction of Ci, i.e. the subgroup chunk such that there
exists xi such that Ci = xiHi, and by Rj the right-direction of Cj . From (3),
we get

ξ−1Hiξ ⊂ R(δaτ )
j ,

and therefore, by Corollary 3.3, for some small c > 0 depending only on U ,

ξ ∈ C(δcaτ )
i,j ,

where Ci,j is a left-coset of some proper maximal closed subgroup in G.
Letting η = caτd−1 = min1≤`≤d−1 caτ` and considering all (at most δ−O(ε))
cosets Ci,j arising for some dimension ` ∈ {1, . . . , d− 1}, this proves the propo-
sition.
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3.2 Escaping from the troublemakers
We start by a lemma that will allow us to escape from hyperplanes in the adjoint
representation.

Lemma 3.5. Let G be a connected simple real Lie group of dimension d. There
exist integers k and s such that for any set A containing 1 and generating a dense
subgroup of G, there exists a finite family (ai)1≤i≤k of elements of the product
set As such that for any nonzero vector v ∈ g and any hyperplane V < g, there
exists an index i for which

(Ad ai)v 6∈ V.

Proof. Let A be a topologically generating set of G, and fix (a, b) a topologically
generating pair of elements of A (for the existence of such a pair, see for example
[4]). By induction on ` < d we will show that for any nonzero vector v in g and
any subspace V of dimension `, there exist elements a1, . . . , a` in {1, a, b} such
that

a` . . . a1 · v 6∈ V.

` = 1
If v 6∈ V , just take a1 = 1. Otherwise, V = Rv. The stabilizer StabV of the
line V is a proper closed subgroup of G and therefore we must have a 6∈ StabV
or b 6∈ StabV . This shows that av 6∈ V or bv 6∈ V .
`→ `+ 1
Suppose we know the result for subspaces of dimension at most `, and let V be a
proper subspace of g of dimension `+ 1 < d. Let V1 = V ∩a−1V ∩ b−1V . Either
a or b is out of the proper closed subgroup StabV , so we must have dimV1 ≤ `.
By the induction hypothesis, there exist elements a1, . . . , a` in {1, a, b} such that
a` . . . a1 · v 6∈ V1. By definition of V1 this shows that for some a`+1 in {1, a, b},
we must have

a`+1a` . . . a1 · v 6∈ V.

This proves the lemma, with constants s = d − 1 and k = 2d − 1 (the number
of words of length at most d− 1 in a and b).

The goal of this subsection is to show that one can always escape from the
set Ξ of troublemakers of a (σ, ε)-set A, in the following precise sense.

Proposition 3.6. Let G be a simple Lie group. There exists a neighborhood U
of the identity such that, given σ ∈ (0, d), there exists ε = ε(σ) > 0 such that
the following holds.
Suppose {ai}1≤i≤k is a finite set of elements satisfying the conclusion of Lemma 3.5,
let n = dd and consider the set Π of all projections π : G×n → G of the form

π(x1, . . . , xn) = xi1aj1xi2aj2 . . . ajm−1xim ,

where {i1 < i2 < · · · < im} ⊂ {1, . . . , n} and (j1, . . . , jm−1) ∈ {1, . . . , k}m−1.
Then, for all δ > 0 small enough, if A ⊂ U is a (σ, ε)-set at scale δ, and if Ω
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is any subset of the Cartesian product set A×n such that N(Ω, δ) ≥ δεN(A, δ)n,
then there exists some π in Π such that

π(Ω) 6⊂ Ξ,

where Ξ is the set of troublemakers for A, as defined in (2).

The proof of Proposition 3.6 will be based on a repeated application of the
following lemma.

Lemma 3.7. Let G be a simple Lie group. There exist a neighborhood U of the
identity and a constant b > 0 such that given c0 > 0, for all ρ > 0 small enough
(in terms of c0), the following holds.
Let A be a subset of U , and Ω a subset of the Cartesian product set A×n (n ≥ d).
Assume that there exist coset chunks Ci, 1 ≤ i ≤ d in U such that

Ω ⊂ C(ρ)
1 × · · · × C(ρ)

d × U × · · · × U.

For each i, write Ci = giHi, for some subgroup chunk Hi and some element gi
in U , and suppose that there exist elements ai, 1 ≤ i ≤ d − 1 in U and unit
vectors vi ∈ hi, such that, denoting ti = aigi+1ai+1gi+2 . . . ad−1gd, we have,
for each i in {1, . . . , d− 1},

d((Ad t−1
i )vi,

d⊕
j=i+1

R(Ad t−1
j )vj) ≥ c0. (4)

Finally, let π be the map G×n → G defined by

π(x1, . . . , xn) = x1a1 . . . xd−1ad−1xd

and assume that for some proper coset chunk C in U ,

π(Ω) ⊂ C(ρ).

Then there exists an index i0 in {1, . . . , d} and elements ui ∈ U , 1 ≤ i ≤ d,
i 6= i0, such that the set

Ω′ = {(xi0 , xd+1, . . . , xn) ∈ A×n−d+1 | (u1, . . . , ui0−1, xi0 , ui0+1, . . . , ud, xd+1, . . . , xn) ∈ Ω}

satisfies
1. N(Ω′, δ) ≥ N(Ω,δ)

N(A,δ)d−1

2. Ω′ ⊂ C ′(ρ
b) × U × · · · × U , for some coset chunk C ′ in U satisfying

dimC ′ < max1≤i≤d dimCi.

Proof. Choose U such that Lemma 2.7 holds.
Let c1 > 0 be as in Lemma 3.8 below. Write C = gH for some g in U and some
subgroup chunk H with Lie algebra h. By Lemma 3.8 applied to the family
(ui) = ((Ad ti)

−1vi), there exists an index i in {1, . . . , d} for which

d((Ad t−1
i )vi, h) ≥ c1.
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Fix a large constant L ≥ 2, and let i0 ∈ {1, . . . , d} be maximal such that

d((Ad t−1
i0

)hi0 , h) ≥ c1
Li0

.

Then choose any elements ui, i 6= i0, 1 ≤ i ≤ d so that the set Ω′ defined in the
lemma satisfies

N(Ω′, δ) ≥ N(Ω, δ)

N(A, δ)d−1
.

Now let (xi0 , xd+1, . . . , xn) be an element of Ω′. We want to show that
xi0 stays in a neighborhood of size ρb of a coset chunk C ′ satisfying dimC ′ <
dimCi0 . This will follow from

xi0 ∈ gi0H
(ρ)
i0

and u1a1 . . . ai0−1xi0ai0 . . . ud ∈ gH(ρ).

For simplicity, denote t = ti0 and s = t−1
i0
ai0 . . . ud, so that the above can be

rewritten, for some u in U ,

xi0 ∈ gi0H
(ρ)
i0

and xi0 ∈ utsH(ρ)s−1t−1.

To conclude, we want to apply Lemma 2.7, but for that, we need to check
that the two coset chunks above are away from one another. For each i, write
ui = gihi, for some hi is the subgroup chunk Hi, so that

s = t−1
i0+1hi0+1ti0+1 . . . t

−1
d−1hd−1td−1hd.

By maximality of i0, we have, for each i > i0, d((Ad ti)
−1hi, h) ≤ c1

Li ,
so that in particular, for some constant L0 depending only on U ,

∀i > i0, d(t−1
i hiti, H) ≤ L0c1

Li
.

This shows that s is quite close to H:

d(s,H) ≤
∑
i>i0

L0c1
Li

=
2L0c1
Li0+1

,

which implies, for some constant L1 depending only on U ,

d(sHs−1, H) ≤ L1c1
Li0+1

.

On the other hand, by our choice of i0, we have, for some constant L2 depending
on U only,

d(t−1Hi0t,H) ≥ c1
L2Li0

.

Now, for some constant L3 depending only on U ,

d(Hi0 , tsHs
−1t−1) ≥ 1

L3
d(t−1Hi0t, sHs

−1)

≥ 1

L3
[d(t−1Hi0t,H)− d(H, sHs−1)],
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so that

d(Hi0 , tsHs
−1t−1) ≥ 1

L3
[
c1

L2Li0
− L1c1
Li0+1

]

≥ c1
Li0+1

provided L has been chosen larger than L2(L3 + L1).

To conclude, let a and b be the constants from Lemma 2.7. The above
inequality ensures that for ρ > 0 sufficiently small,

d(Hi0 , tsHs
−1t−1) ≥ ρa,

so that there exists a coset chunk C ′ with dimC ′ < dimCi0 and

gi0H
(ρ)
i0
∩ utsH(ρ)s−1t−1 ⊂ C ′(ρ

b).

Thus,
Ω′ ⊂ C ′(ρ

b) ×A× · · · ×A,
and the lemma is proven.

At the beginning of the above proof, we made use of the following easy
lemma.

Lemma 3.8. Let E be a Euclidean vector space of dimension d. Given c0 > 0,
there exists a constant c1 > 0 such that the following holds.
Suppose (ui)1≤i≤d is a family of unit vectors of E such that

∀i ∈ {1, . . . , d− 1}, d(ui+1,Span(uj)1≤j≤i) ≥ c0. (5)

Then, for all proper linear subspace W < E, there exists an index i for which

d(ui,W ) ≥ c1.

Proof. Given a d-tuple (ui) of elements of g and a hyperplane W < g, we define

ϕ(u1, . . . , ud,W ) = max
1≤i≤d

d(ui,W ).

The map ϕ is continuous, and strictly positive whenever (ui) is a basis for g.
The set Ec0 of d-tuples (ui) of unit vectors satisfying (5) is compact, and so is
the Grassmannian variety G of hyperplanes of g. This proves the lemma, with
constant c1 equal to the minimal value of ϕ on the compact set Ec0 × G.

For simplicity, if Ω is a subset of the Cartesian product set G×n, we will say
that a set Ω′ comes from Ω if there exist indices i1 < i2 < · · · < ir in {1, . . . , n}
and elements xi1 , . . . , xir such that

Ω′ ⊂
{

(xi) 1≤i≤n
i 6∈{i1,...,ir}

∣∣∣∣ (xi)1≤i≤n ∈ Ω

}
.

We now turn to the proof of Proposition 3.6.
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Proof of Proposition 3.6. The neighborhood U is chosen such that Lemma 3.7
holds.
Recall from Proposition 3.1 that there exists a finite family (Ci)1≤i≤δ−O(ε) of
coset chunks in U such that

Ξ ⊂
⋃

1≤i≤δ−O(ε)

C
(δη)
i . (6)

Let Ω be a subset of the Cartesian product A×n such thatN(Ω, δ) ≥ δεN(A, δ)n,
and assume for a contradiction that for all π in Π,

π(Ω) ⊂ Ξ. (7)

For s ∈ {0, . . . , d− 1}, we let ns = dd−s and ηs = bsη. To reach a contradiction,
we apply Lemma 3.7 inductively. We decompose the reasoning into (at most) d
steps.
Step 0
Just using the inclusion (7) for all projections on the coordinates, and recalling
that Ξ is controlled by (6), we see that Ω is included in a union of at most δ−O(ε)

sets of the form C
(δη)
1 × · · · × C(δη)

n , where the Ci’s are proper coset chunks in
U . By the pigeonhole principle, there must exist coset chunks C01, . . . , C0n of
dimension at most d− 1 and a set Ω0 ⊂ Ω such that

1. N(Ω0, δ) ≥ δO(ε)N(Ω, δ)

2. Ω0 ⊂ C(δη)
01 × · · · × C(δη)

0n

Step s+ 1, s ≥ 0
Suppose we have constructed a set Ωs ⊂ A×ns coming from Ω, and coset chunks
Cs1, . . . , Csns of dimension at most d− 1− s and at least 1 such that

1. N(Ωs, δ) ≥ δO(ε)N(A, δ)ns

2. Ωs ⊂ C(δηs )
s1 × · · · × C(δηs )

sns

For each i ∈ {1, . . . , ns}, write Csi = giHi for some subgroup chunk Hi and
some element gi in U . By assumption on the family {ai}, there exists a constant
c0 > 0 such that for all unit vector v ∈ g and all hyperplane W < g, there exists
an element ai such that d((Ad ai)v,W ) ≥ c0. This allows us to choose a1, . . . , ad
among the ai’s so that condition (4) of Lemma 3.7 is satisfied (for some constant
c0 depending only on the set of parameters {ai}). Denote by π the associated
projection. From the inclusions π(Ωs) ⊂ Ξ and (6), we see by the pigeonhole
principle that there exists a coset chunk C = gH in U and a subset Ω′s ⊂ Ωs
such that N(Ω′s, δ) ≥ δO(ε)N(Ωs, δ) and π(Ω′s) ⊂ C(δη).
We now apply Lemma 3.7 to Ω′s, at scale ρ = δηs , and get a set Ωs1 ⊂ A×ns−d+1

coming from Ωs and a coset chunk C(s+1)1 in U of dimension at most d− 2− s
such that

1. N(Ωs1, δ) ≥ δO(ε)N(A, δ)ns−d+1

2. Ωs1 ⊂ C(δηs+1 )
(s+1)1 × C

(δηs )
s(d+1) · · · × C

(δηs )
sns

Repeating this argument with the next d coordinates, and then again with
the d following, etc., we finally get a set Ωs+1 coming from Ωs and included
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in the Cartesian product A×ns+1 , and coset chunks C(s+1)1, . . . , C(s+1)ns+1
of

dimension at most d− 2− s in U such that
1. N(Ωs+1, δ) ≥ δO(ε)N(A, δ)ns+1

2. Ωs+1 ⊂ C(δηs+1 )
(s+1)1 × · · · × C

(δηs+1 )
(s+1)n

As the dimensions of the coset chunks Csi are bounded above by d− s− 1, we
must obtain, for some s ≤ d− 1 and some i ∈ {1, . . . , ns} that dimCsi = 0. In
other terms, the set Csi is reduced to a point, so that the projection S of Ωs
on its i-th coordinate is included in a ball of radius δηs . By construction, S is
included in A, so that recalling that A is a (σ, ε)-set at scale δ, we find

N(S, δ) ≤ δσηs−εN(A, δ).

However, from the lower bound δO(ε)N(A, δ)ns on the cardinality of Ωs, it is
readily seen that

N(S, δ) ≥ δO(ε)N(A, δ),

which yields the desired contradiction, provided ε has been chosen small enough.

Let n = dd, and Π be the set of projections G×n → G as defined in Propo-
sition 3.6. Let N denote the cardinality of Π, and consider the map

w : G×n+N+1 → G
(x1, . . . , xn, y0, . . . , yN ) 7→ y0π1(x1, . . . , xn)y1 . . . yN−1πN (x1, . . . , xn)yN

(8)
Proposition 3.6 has the following corollary on expansion of (σ, ε)-sets in the

simple Lie group G.

Corollary 3.9. Let G be a simple Lie group. There exists a neighborhood U of
the identity such that, given σ ∈ (0, d), there exists ε = ε(σ) > 0 such that the
following holds.
Suppose (ai) is a family of elements of U satisfying the conclusion of Lemma 3.5,
and let w : G×n+N+1 → G be the associated map, as defined above.
For all δ > 0 sufficiently small, if A ⊂ U is a (σ, ε)-set at scale δ and Ω is a
subset of the Cartesian product A×n+N+1 satisfying N(Ω, δ) ≥ δεN(A, δ)n+N+1,
then

N(w(Ω), δ) ≥ δ−εN(A, δ).

Proof. For a n-tuple x = (x1, . . . , xn) of elements of U , we denote

Ωx = {y = (y0, . . . , yN ) | (x1, . . . , xn, y0, . . . , yN ) ∈ Ω}.

Let
Ω′ = {(x, y) ∈ Ω |N(Ωx, δ) ≥

δε

2
N(A, δ)N+1}.

One has

δεN(A, δ)n+N+1 ≤ N(Ω, δ) ≤ N(Ω′, δ) +N(A, δ)n
δε

2
N(A, δ)N+1,
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so that
N(Ω′, δ) ≥ δε

2
N(A, δ)N+n+1.

This shows that we may assume without loss of generality that for all x in the
projection of Ω onto the first n coordinates,

N(Ωx, δ) ≥ δεN(A, δ)N+1.

Now, provided ε is small enough, we may apply Proposition 3.6 to the projection
of Ω to the first n coordinates, and we obtain an index i ∈ {1, . . . , N} and
x0 = (x0

1, . . . , x
0
n) such that

ξ = πi(x
0
1, . . . , x

0
n) 6∈ Ξ.

As N(Ωx0 , δ) ≥ δεN(A, δ)N+1, we may find elements y0
j , j 6∈ {i− 1, i} such that

denoting

Ω1 = {(yi−1, yi) | (x0
1, . . . , x

0
n, y

0
1 , . . . , y

0
i−2, yi−1, yi, y

0
i+1, . . . , y

0
N ) ∈ Ω},

we have
N(Ω1, δ) ≥ δεN(A, δ)2.

By definition of the set Ξ of troublemakers, ξ 6∈ Ξ implies that

N(πξ(Ω1), δ) ≥ δ−εN(A, δ),

where πξ : (x, y) 7→ xξy. However, it is readily seen that for some elements u and
v in UL (where L is the total length of the word w), we have uπξ(Ω1)v ⊂ w(Ω),
and therefore,

N(w(Ω), δ)� δ−εN(A, δ).

4 Flattening and dimension increment
It is now time to translate the combinatorial results of the previous section into
statements about measures, and in turn, about Hausdorff dimension of product
sets.

Definition 4.1. A Borel probability measure on the Lie group G is called σ-
Frostman if it satisfies, for all δ > 0 sufficiently small, and all x in G,

µ(B(x, δ)) ≤ δσ.

The importance of this definition lies in the following lemma (see Mattila [12,
Chapter 8]).

Lemma 4.2 (Frostman’s Lemma). Let G be a Lie group of dimension d, and
σ ∈ (0, d).
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• Suppose µ is a σ-Frostman measure on G, and A is a Borel subset of G
such that µ(A) > 0. Then dimH A ≥ σ.

• Conversely, if A is a Borel subset of G satisfying dimH A > σ, then there
exists a σ-Frostman measure µ whose support in included in A.

The goal of this section is to prove the following Flattening Lemma, in the
spirit of Bourgain-Gamburd [3, Proposition 1].

Lemma 4.3. Let G be a connected simple Lie group of dimension d. There
exists a neighborhood U of the identity in G such that, given σ ∈ (0, d), there
exists ε1 = ε1(σ) > 0 such that the following holds.
Suppose {ai} is a family of elements of U satisfying the conclusion of Lemma 3.5,
and let w : G×p → G be the associated map, as defined in (8).
If µ is a σ-Frostman finite measure supported on U and ν is the pushforward of
µ⊗p under the map w, then ν ∗ ν is (σ + ε1)-Frostman.
Moreover, ε1 is bounded away from 0 if σ varies in a compact subset of (0, d).

From the flattening lemma, it is easy to prove the results announced in the
introduction:

Theorem 4.4. Let G be a connected simple Lie group of dimension d. There
exists a neighborhood U of the identity in G and a positive integer k such that
given σ > 0, there exists ε = ε(σ) > 0 such that if A ⊂ U is any Borel measurable
topologically generating set of Hausdorff dimension α ∈ [σ, d− σ] then

dimH A
k ≥ ε+ dimH A.

Proof. Choose a neighborhood U of the identity and ε1 > 0 such that Lemma 4.3
holds, and let ε = ε1

2 .
The set A is topologically generating, so we may choose in a product set As a
finite collection of elements {ai} satisfying the conclusion of Lemma 3.5.
By Frostman’s Lemma, there exists a Borel probability measure µ which is
(α− ε)-Frostman and whose support is included in A.
Let ν be the image measure ν = w∗(µ

⊗p). All the ai’s are in a product set As
and the measure µ is supported on A, so there exists an integer k (depending
only on G) such that ν ∗ ν is supported on the product set Ak.
By Lemma 4.3, we know that, provided we have chosen ε small enough, the
measure ν ∗ ν is (α+ ε)-Frostman, and this shows that dimH A

k ≥ α+ ε.

As a corollary, we obtain:

Corollary 4.5. Let G be a connected simple real Lie group. Any dense Borel
measurable sub-semigroup of G has Hausdorff dimension 0 or dimG.

Before we turn to the proof of Lemma 4.3, we record the following elementary
lemma.

Lemma 4.6. Let ν be a finite measure on a measurable space T , let U be an
open subset of Rd, and µ be a Borel measure on U with square integrable density.
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Suppose w : U × T → Rd is a measurable map such that for each t in T , the
partial application wt : u 7→ w(u, t) is injective and differentiable, with Jacobian
Jwt . If C is a positive constant such that,

∀t, u, |Jwt(u)| ≥ 1

C
,

then the measure w∗(µ⊗ ν) has square integrable density, and

‖w∗(µ⊗ ν)‖2 ≤ C
1
2 ν(T )‖µ‖2.

Proof. Denoting by f the density of µ, it is readily checked that the measure
w∗(µ⊗ ν) has density θ given by

θ(z) =

∫
T

1{z∈wt(U)}f(w−1
t (z))|Jw−1

t
(z)| dν(t).

By Cauchy-Schwarz’s inequality, we have

‖w∗(µ⊗ ν)‖22 =

∫
Rd

(∫
T

1{z∈wt(U)}f(w−1
t (z))|Jw−1

t
(z)| dν

)2

dz

≤ ν(T )

∫
Rd

∫
T

1{z∈wt(U)}f(w−1
t (z))2|Jw−1

t
(z)|2 dν dz

By assumption, we have for all t and z, |Jw−1
t

(z)| ≤ C, and therefore, using also
Fubini’s Theorem and the obvious change of variables,

‖w∗(µ⊗ ν)‖22 ≤ Cν(T )

∫
Rd

∫
T

1{z∈wt(U)}f(w−1
t (z))2|Jw−1

t
(z)| dν dz

= Cν(T )2‖µ‖22.

We will apply the above lemma to the map w defined in (8). By the following
lemma, this will be possible, provided we restrict to a suitable neighborhood of
the identity.

Lemma 4.7. Let G be a simple Lie group. There exists a neighborhood U of
the identity in G and a constant C depending on G only such that the following
holds.
Suppose {ai}1≤i≤k is a finite set of elements of U satisfying the conclusion of
Lemma 3.5, and let w : Up → G be the corresponding map, defined as in (8). If
(ti)1≤i≤p

i6=i0
is any family of elements of U , then the partial application

wt : x 7→ w(t1, . . . , ti0−1, x, ti0+1, . . . , tp)

is injective on U and its Jacobian satisfies

|Jwt | ≥
1

C
.
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Proof. Let w̃ be the map

Gk+p → G
({ai}, (xi)) 7→ w{ai}(x1, . . . , xp).

Since w̃ is a word in the ai’s and xi’s with only positive exponents, its derivative
at the identity has the form

(n1I |n2I | . . . |nk+pI),

where the ni’s are positive integers. The lemma easily follows from this obser-
vation, by continuity of the derivative of w̃ and by a quantitative version of the
Inverse Function Theorem (see e.g. [14, Theorem 2.11]).

For any small scale δ > 0, we denote by Pδ the function 1B(1,δ)

|B(1,δ| , and if µ is
any Borel measure on the Lie group G, we write µδ = µ ∗ Pδ.

The proof of Lemma 4.3 goes by approximating the measure µδ by dyadic
level sets. We say that a collection of sets {Xi}i∈I is essentially disjoint if for
some constant C depending only on the ambient group G, any intersection of
more than C distinct sets Xi is empty. We will use the following lemma.

Lemma 4.8. Let G be a real Lie group and U be a compact neighborhood of
the identity in G. Suppose µ is a Borel probability measure on G and δ > 0 is
some small scale.
Then, there exist subsets Ai, 0 ≤ i� log 1

δ such that
1. µδ �

∑
i 2i1Ai � µ4δ

2. Each Ai is an essentially disjoint union of balls of radius δ.

Proof. A proof in the case G = SU(2) is given in [11] and also applies in this
more general setting, up to some minor changes.

Proof of Lemma 4.3. Let µ be a σ-Frostman probability measure supported on
U , and assume for a contradiction that for some small ε > 0 and some arbitrary
small ball B(x, δ), we have

ν ∗ ν(B(x, δ)) ≥ δσ+ε.

From
ν ∗ ν(B(x, δ))� δdνδ ∗ νδ(x)� δd‖νδ‖22,

we find
‖νδ‖22 � δ−d+σ+ε. (9)

Using Lemma 4.8, we approximate µδ by dyadic level sets:

µδ �
∑
i

2i1Ai � µ4δ,
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each Ai being an essentially disjoint union of balls of radius δ.
By inequality (9),

δ
−d+σ+ε

2 � ‖νδ‖2 ≤

∥∥∥∥∥∥
∑

i1,...,ip

w∗(2
i11Ai1

⊗ · · · ⊗ 2ip1Aip )

∥∥∥∥∥∥
2

≤
∑

i1,...,ip

‖w∗(2i11Ai1 ⊗ · · · ⊗ 2ip1Aip )‖2,

so there exist indices i1, . . . , ip such that

‖w∗(2i11Ai1 ⊗ · · · ⊗ 2ip1Aip )‖2 ≥ δ
−d+σ

2 +O(ε). (10)

Given ` in {1, . . . , p}, Lemma 4.7 ensures that we may apply Lemma 4.6 to the
map w and to the measures with density 2i`1Ai` and

⊗
`′ 6=` 2i`′1Ai′

`

and this
yields

δ
−d+σ

2 +O(ε) � ‖2i`1Ai`‖2 · ‖
⊗
` 6=`′

2i`′1Ai
`′
‖1

= 2i` |Ai` |
1
2

∏
`′ 6=`

2i`′ |Ai`′ |.

Using also that the definition of the Ai’s implies that

2i|Ai| � 1 and 2i|Ai|
1
2 � ‖µδ‖2,

the above forces

2i`/2 ≥ δ
−d+σ

2 +O(ε) and ∀`′ 6= `, 2i`′ |Ai`′ | ≥ δ
O(ε).

This must hold for each `, and therefore, for each `,

2i` = δ−d+σ+O(ε) and 2i` |Ai` | = δO(ε). (11)

As the set Ai` is a union of ball of radius δ, this shows that

N(Ai` , δ)� δ−d|Ai` | ≥ δ−σ+O(ε).

Moreover, as the measure µ is σ-Frostman, we have, for all ρ ≥ δ,

2i` |Ai` ∩B(x, ρ)| � µ(B(x, 4ρ))� ρσ,

whence

N(Ai` ∩B(x, ρ), δ)� δ−d|Ai` ∩B(x, ρ)| ≤ ρσδ−O(ε)N(Ai` , δ).

Thus, each Ai` is a (σ,O(ε))-set at scale δ, and therefore, so is

A :=

p⋃
`=1

Ai` .
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Now let ϕ be the density function of the measure w∗(2i11Ai1 ⊗ · · · ⊗ 2ip1Aip ).
On one hand, by (10), we have

‖ϕ‖22 = δ−d+σ+O(ε).

On the other hand, µ is σ-Frostman and ν can be written ν1 ∗ µ for some
probability measure ν1, so that ν is also σ-Frostman, which implies

‖ϕ‖∞ ≤ δ−d+σ.

Let

E = {x ∈ G |ϕ(x) ≥ ‖ϕ‖
2
2

2
}.

We have

‖ϕ‖22 ≤
∫
E

ϕ2 +

∫
G\E

ϕ2 ≤ ‖ϕ‖∞
∫
E

ϕ+
‖ϕ‖22

2

∫
G

ϕ ≤ ‖ϕ‖∞
∫
E

ϕ+
‖ϕ‖22

2

whence ∫
E

ϕ ≥ ‖ϕ‖22
2‖ϕ‖∞

≥ δO(ε).

Letting Ω be the inverse image w−1(E), the above inequality certainly implies
that

µ⊗k(Ω) ≥ δO(ε),

which, by the fact that µ is σ-Frostman, shows that

N(Ω, δ) ≥ δ−kσ+O(ε) ≥ δO(ε)N(A, δ)k.

To obtain a contradiction, we will bound the size of w(Ω) = E using that ϕ
takes large values on that set. First observe that isolating the last letter of w –
in (8), the letter yN – allows us to write ϕ as a convolution

ϕ = ϕ1 ∗ (2ip1Ap).

Then, as Ap is a union of balls of radius δ, we have 1Ap � 1Ap ∗ P δ
2
and

therefore,
ϕ� ϕ ∗ P δ

2
.

In particular, for each x in E,

‖ϕ‖22
2
≤ ϕ(x)� δ−d

∫
B(x, δ2 )

ϕ,

and summing this inequality for x in a maximal δ-separated set in E, we find

‖ϕ‖22
2

N(E, δ)� δ−d
∫
ϕ ≤ δ−d.

Thus,
N(w(Ω), δ) ≤ δ−σ−O(ε) ≤ δ−O(ε)N(A, δ),

which contradicts Corollary 3.9, provided we have chosen ε small enough.
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