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Abstract

We prove a discretized sum-product theorem for representations of Lie
groups whose Jordan-Hölder decomposition does not contain the trivial
representation. This expansion result is used to derive a product theorem
in perfect Lie groups.

1 Introduction
Throughout this paper, G will denote a connected real Lie group, endowed
with a left-invariant Riemmanian metric. For x ∈ G and ρ > 0, we denote by
BG(x, ρ) the ball of center x and radius ρ in G. For A ⊂ G and ρ > 0, A(ρ)

stands for the ρ-neighborhood of A and N(A, ρ) stands for the covering number
of A by ρ-balls, i.e.

N(A, ρ) = min
{
N ∈ N | ∃x1, . . . , xN ∈ G,A ⊂

N⋃
i=1

BG(xi, ρ)
}
.

The same notation is used for other metric spaces.

1.1 Sum-product theorem in representations of Lie groups
In the first part of this paper, we study the sum-product phenomenon in rep-
resentations of Lie groups. We shall work with some linear representation of G
over some finite-dimensional real vector space V , endowed with some norm. We
shall also refer to representations of G as G-modules. For A ⊂ G, X ⊂ V and
s ≥ 1, we denote by 〈A,X〉s the set of elements in V that can be obtained as
combinations of sums, differences and products of at most s elements from A
and X.

Note that the distance on G induces a natural distance on each of its quo-
tients. Let NCG be a closed normal subgroup. We denote by πG/N : G→ G/N
the canonical projection. Then there is a unique distance on G/N satisfying
∀x, y ∈ G, d(πG/N (x), πG/N (y)) = d(x−1y,N). Throughout this paper, all
quotients G/N will be endowed with this distance.

Following [22], we say that a subset A ⊂ G is ρ-away from closed connected
subgroups for some parameter ρ > 0 if for any proper closed connected subgroup
H < G, there exists a ∈ A with d(a,H) > ρ. Similarly, we say that a subset
X ⊂ V is ρ-away from submodules if for any proper G-submoduleW < V , there
exists x ∈ X with d(x,W ) > ρ.
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We say that a G-module V is in P(G) if the trivial representation does not
appear as a simple quotient in the Jordan-Hölder decomposition of G – see
Definition 2.1.

Theorem 1.1 (Sum-product theorem in representations of class P). Let G be
a connected real Lie group and V ∈ P(G). There exists a neighborhood U of the
identity in G such that, for every ε0, κ > 0, there exist s ≥ 1 and ε > 0 such
that the following holds for any δ > 0 sufficiently small. Assume A ⊂ U and
X ⊂ BV (0, 1) satisfy:

(i) For any proper closed connected normal subgroup N CG,

∀ρ ≥ δ, N(πG/N (A), ρ) ≥ δερ−κ;

(ii) A is δε-away from closed connected subgroups;

(iii) X is δε-away from submodules.

Then,
BV (0, δε0) ⊂ 〈A,X〉(δ)s .

This is a bounded generation statement which can be viewed as a generaliza-
tion of previous sum-product results in rings. For example, applying to G = R∗
acting on V = R, one recovers a version Bourgain’s discretized sum-product
theorem [3, 4]. Note that this is not a new proof of Bourgain’s theorem as the
latter is used as an ingredient in the proof of Theorem 1.1.

In Section 2, Theorem 1.1 will be proved in a more precise form where the
conditions (i) and (ii) can be slightly relaxed. See Theorem 2.3.

1.2 Product theorem in perfect Lie groups
In the second part of this paper, we use Theorem 1.1 to derive a product theorem
in perfect Lie groups. For subsets A,B ⊂ G of a Lie group G, we denote by AB
their product set, i.e.

AB = {ab | a ∈ A, b ∈ B}.

For k ≥ 2, we denote by Ak the k-fold product set of A with itself, A · · ·A.
To avoid confusion with Cartesian products between sets, we write A×k for the
Cartesian power A× · · · ×A.

Recall that a Lie group is perfect if its Lie algebra g is perfect, i.e. satisfies
[g, g] = g.

Theorem 1.2 (Product theorem in perfect Lie groups). Let G be a connected
perfect Lie group. There exists a neighborhood U of the identity in G such that
given κ > 0, there exists ε > 0 such that the following holds for δ > 0 sufficiently
small. Let A be a subset of U such that:

(i) N(A, δ) ≤ δ− dimG+κ;

(ii) for any proper closed connected normal subgroup N CG,

∀ρ ≥ δ, N(πG/N (A), ρ) ≥ δερ−κ;

(iii) A is δε-away from closed connected subgroups in G.
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Then
N(AAA, δ) ≥ δ−εN(A, δ).

For G = SU(2), the above theorem was proved by Bourgain-Gamburd [5],
and for a general simple Lie group by the second author [22], borrowing many
ideas from the work of Bourgain and Gamburd [2] on the spectral gap property
in SU(d).

It is not difficult to see that the assumption of perfectness is optimal for such
a product theorem to hold, in the following sense.

Proposition 1.3. Let G be a simply connected Lie group which is not perfect
with Lie algebra g. Write d = dim g− dim[g, g]. For any neighborhood U of the
identity in G, for any κ ∈ (0, 1) and for any δ > 0 small enough, there exists
A ⊂ U such that

(i) N(A, δ) ≈U δ− dimG+d(1−κ);

(ii) for any proper closed connected normal subgroup N CG,

∀ρ ≥ δ, N(πG/N (A), ρ)�U ρ−κ;

(iii) A is 1
OU (1) -away from closed connected subgroups in G.

but
N(AAA, δ)�U N(A, δ).

Note that in a closely related setting, Salehi Golsefidy and Varjú [10] have
already observed that perfectness is a sufficient and necessary condition for an
expansion result to hold. In fact, at different places, our arguments share some
conceptual similarities with the recent work of Salehi Golsefidy [19, 18] on super-
approximation. Also, these examples of approximate subgroups can be seen as
discretized analogues of measurable subgroups of intermediate dimension whose
existence is known in abelian Lie groups [9] and solvable Lie groups [20].

We shall prove Theorem 1.2 and Proposition 1.3 in Section 3.

1.3 Applications
We conclude this introduction by mentioning several applications to Theo-
rems 1.1 and 1.2 above. The first is that the spectral gap property discovered
by Bourgain and Gamburd [5, 2] in the setting of SU(d), d ≥ 2 generalizes to
all compact semisimple Lie groups.

Theorem 1.4. Let G be a compact connected semisimple Lie group, with Lie
algebra g, and write L2

0(G) for the space of zero-mean square-integrable functions
on G. Let µ be a probability measure on G whose support generates a dense
subgroup in G. Assume moreover that in some basis for g, for every g ∈ Suppµ,
the matrix of Ad g has algebraic entries. Then the convolution operator

Tµ : L2
0(G) → L2

0(G)
f 7→ f ∗ µ

satisfies ‖Tµ‖ < 1.
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The local spectral gap property introduced by Boutonnet, Ioana and Salehi
Golsefidy in [7] for non-compact Lie groups can also be generalized to a general
connected perfect Lie group, but in order to keep statements as elementary as
possible, we do not make this precise here.

Originally, discretized expansion statements were introduced by Katz and
Tao [12] and used by Bourgain [3] to study Hausdorff dimensions of sum-sets
and product-sets in R and give a quantitative solution to the Erdős-Volkmann
conjecture: If A is any Borel measurable subset of R with dimH A ∈ (0, 1), then
dimH A+AA > dimH A. The theorems proven here have similar consequences
on the Haudorff dimension of sum and product sets in semi-simple algebras or
perfect Lie groups. In particular, it should be possible to generalize the results
of the second author presented in [21] to the setting of perfect Lie groups; we
hope to address these matters in another paper.

Another nice application of Theorem 1.1 is the very recent work of Li [14, 15]
on the regularity of the Furstenberg measure associated to a random walk on a
semisimple Lie group.

Finally, our results could be used to construct new family of expanders, in
the spirit of the works of Bourgain-Yehudayoff [6] or Vigolo [25].

2 Sum-product theorem in representations of G
The goal of this section is to prove Theorem 1.1 from the introduction. In fact,
our proof will yield a slightly more precise version, see Theorem 2.3.

2.1 Representations without trivial simple quotients
We now define the class of representations to which our theorem will apply,
and gather some elementary properties. Then, we state the refined version of
Theorem 1.1 which will be proved here, Theorem 2.3.

Definition 2.1. Let G be a connected Lie group. We let P(G) denote the
class of finite-dimensional linear representations V of G such that there exists
a sequence {0} = V0 < V1 < · · · < V` = V of subrepresentations of V such that,
for each i = 0, . . . , `− 1, the quotient representation Vi+1/Vi is non-trivial and
irreducible.

Equivalently, V is in P(G) if the trivial representation does not appear as
a simple quotient in a Jordan-Hölder decomposition of V . This property, of
course, does not depend on the choice of the Jordan-Hölder decomposition. We
now list some elementary properties of representations in P(G).

Proposition 2.2. Let V be a representation of a connected Lie group G.

(i) If W is a subrepresentation of V , then V belongs to P(G) if and only if
both W and V/W belong to P(G).

(ii) If H is a closed subgroup of G and V ∈ P(H) as a representation of H,
then V ∈ P(G).

4



(iii) Let H be a normal subgroup of G. If the representation G → GL(V )
factors through G/H, then V ∈ P(G/H) as a representation of G/H if
and only if V ∈ P(G) as a representation of G.

Proof. Indeed, (i) follows from the fact that the set of simple quotients of the
Jordan-Hölder decomposition of V is the union of those of W and those of
V/W . For (ii), note that a Jordan-Hölder sequence of G-submodules in V can
be refined to a Jordan-Hölder sequence of H-submodules, and that if there is
a trivial quotient in the first sequence there must be also one in the refined
sequence. Finally, (iii) is clear, since Jordan-Hölder decompositions of V into
G-modules coïncide with Jordan-Hölder decompositions into G/H-modules.

Remark 1. The class P(G) is the smallest class of finite-dimensionalG-modules
that contains all non-trivial irreducible representations of G and is closed under
extension (i.e., if W and V ′ are in P(G), and 0→W → V → V ′ → 0 is a short
exact sequence of G-modules, then V is in P(G)).

Example 1. • If a representation V contains the trivial representation,
then it is not in P(G). Similarly, if V admits the trivial representation as
a quotient, then it is not in P(G).

• Let n be a positive integer. The representation of G = R∗+ on Rn given
by g · v = gv (scalar multiplication) is in P(G).

• The adjoint representation of a semisimple Lie group G is in P(G).

Throughout this article, we shall consider representations of G as normed
vector spaces: By normed G-module, we mean a G-module endowed with a norm
which makes the underlying linear space a normed vector space.

Whenever V is a normed vector space, and W ≤ V is a linear subspace, we
shall alway consider onW the norm induced by the norm on V , and on quotient
space V ′ = V/W the norm given by the formula

∀v ∈ V, ‖π(v)‖ = d(v,W ),

where π : V → V ′ is the canonical projection. Finally, we endow the space of
linear endomorphisms End(V ) with the associated operator norm.

Let ρ ∈ (0, 12 ) be a parameter and V a normed G-module, we say that a
subset X ⊂ V is ρ-away from submodules if for every proper submoduleW < V ,
there exists x ∈ X such that d(x,W ) ≥ ρ. Similarily, a subset A ⊂ G is said to
be ρ-away from closed connected subgroups if for every proper closed connected
subgroup H, there exists a ∈ A such that d(a,H) ≥ ρ. Finally, a subset A ⊂ G
is said to be ρ-away from identity components of proper stabilizers if for any
subspace W ⊂ V which is not a G-submodule, there exists a ∈ A such that
d(a, (StabGW )◦) ≥ ρ, where (StabGW )◦ denotes the identity component of
the stabilizer StabGW of W in G.

We shall prove the following.

Theorem 2.3 (Sum-product in representations of class P). Let G be a con-
nected real Lie group and V a normed G-module. There exists a neighborhood
U of the identity in G such that, for every ε0, κ > 0, there exist s ≥ 1 and ε > 0
such that the following holds for any δ > 0 sufficiently small.
Assume A ⊂ U and X ⊂ BV (0, 1) satisfy:
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(i) There is a Jordan-Hölder sequence 0 = V0 < . . . < V` = V such that for
every i = 0, . . . , `− 1,

∀ρ ≥ δ, N(pVi+1/Vi(A), ρ) ≥ δερ−κ,

where pVi+1/Vi : G → GL(Vi+1/Vi) denotes the representation of G on
Vi+1/Vi;

(ii) A is δε-away from identity components of proper stabilizers;

(iii) X is δε-away from submodules.

Then,
BV (0, δε0) ⊂ 〈A,X〉s +BV (0, δ).

Note that the assumption (i) implies that V is of class P(G). The proof
goes by induction on the length of V (i.e. the length of any Jordan-Hölder
decomposition of V ). We shall prove the base case, where V is a non-trivial
irreducible representation, in the next subsection. The induction step will then
be carried out in Subsection 2.3.

2.2 Irreducible representations
In the case V is an irreducible representation of G, the above theorem is a
variant of [11, Theorem 3]. For clarity, we restate our theorem in this particular
case. Then, we shall explain how to derive it from the first author’s sum-product
theorem in simple algebras [11, Theorem 2].

Theorem 2.4 (Base case: irreducible representations). Let G be a connected
real Lie group and πV : G → GL(V ) a non-trivial irreducible representation.
There exists a neighborhood U of the identity in G such that, for every ε0, κ > 0,
there exist s ≥ 1 and ε > 0 such that the following holds for any δ > 0 sufficiently
small.
Assume A ⊂ U and X ⊂ BV (0, 1) satisfy:

(i) For every ρ ≥ δ, N(πV (A), ρ) ≥ δερ−κ;

(ii) A is δε-away from identity components of proper stabilizers;

(iii) There exists v ∈ X such that ‖v‖ ≥ δε.

Then,
BV (0, δε0) ⊂ 〈A,X〉s +BV (0, δ).

The proof of this theorem is based on Proposition 2.5 below, a sum-product
statement in matrix representations, which is essentially contained in [11]. Be-
low, A denotes a subset of End(V ), for some real vector space V , and 〈A〉s
denotes the set of elements in End(V ) that can be obtained as combinations of
sums and products of at most s elements in A. If V is a real vector space, if
A is a subset of EndV , and if ρ ∈ (0, 12 ) is a parameter, we say that A acts
ρ-irreducibly on V if for every non-trivial proper linear subspace W < V , there
exists v ∈ BW (0, 1) and a ∈ A such that d(a · v,W ) ≥ ρ.
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Proposition 2.5 (Sum-product in irreducible representations). Let V be a
finite-dimensional normed vector space. Given ε0, κ > 0, there exist s ≥ 1
and ε > 0 such that the following holds. Let A ⊂ BEnd(V )(0, δ

−ε) be a subset of
EndV and v ∈ V a vector. Assume that

(i) For every ρ ≥ δ, N(A, ρ) ≥ δερ−κ;

(ii) A acts δε-irreducibly on V ;

(iii) δε ≤ ‖v‖ ≤ δ−ε.

Then
BV (0, δε0) ⊂ 〈A〉s · v +BV (0, δ).

Proof. Given ε1 > 0, it follows from [11, Proposition 31] that there exists c > 0
such that, provided ε > 0 is small enough, there exists a δ−O(ε)-bi-Lipschitz
linear bijection f : V → Kn, where K is R, C or the quaternions H, n is dimV

dimK
and Kn is endowed with its usual L2 norm, and a scale δ1 with δ ≤ δ1 ≤ δc

such that
fAf−1 ⊂ Matn(K) +B(0, δ1)

and such that for every proper real subalgebra F < End(Kn),

∃a ∈ A : d(faf−1, F ) ≥ δε11 .

Choosing ε1 small enough in terms of ε0 and κ, we may then apply [11, Theorem
5] to conclude that, provided ε > 0 is sufficiently small, for some integer s,

BMatn(K)(0, δ
ε0
1 ) ⊂ f〈A〉sf−1 +BMatn(K)(0, δ1).

Therefore, without loss of generality, we may assume that V = Kn and

BMatn(K)(0, δ
ε0
1 ) ⊂ A+BMatn(K)(0, δ1). (1)

We can further assume that ‖v‖ = 1. Then

BV (0, δε01 ) ⊂ A · v +BV (0, δ1).

In other words, the conclusion of the proposition holds at scale δ1. It remains
to bring the scale back to δ. To do this, we note that from (1), we have in
particular

δ
1
2
1 id ∈ A+BMatn(K)(0, δ1).

Hence, starting from (1), we may multiply both sides by δ
1
2
1 id to obtain

BV (0, δ1) ⊂ BV (0, δ
ε0+

1
2

1 ) ⊂ 〈A〉2 · v +BV (0, 2δ
3
2
1 ),

and iterating this procedure, we get a sequence of integers s2 = 1, s3 = 2, s4, . . .
such that for any k ≥ 2,

BV (0, skδ
k
2
1 ) ⊂ 〈A〉sk+1

· v +BV (0, sk+1δ
k+1
2

1 ).

Choose k > 2
c so that skδ

k
2
1 ≤ δ. Combining all these inclusions, we find, for

s = s2 + · · ·+ sk,
BV (0, δε01 ) ⊂ 〈A〉s · v +BV (0, δ),

which proves the proposition.
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The above proposition readily implies Theorem 2.4.

Proof of Theorem 2.4. It suffices to apply Proposition 2.5 to the set πV (A) ⊂
End(V ). By the assumption on A, conditions (i) and (iii) of the proposition are
satisfied for the set πV (A). That condition (ii) is also satisfied is a consequence
of Lemma 2.6 below.

Lemma 2.6. Let 0 < ρ < 1
2 be a parameter. Let π : G → GL(V ) be a non-

trivial irreducible representation. There is a neighborhood U of 1 in G such that
if A ⊂ U is ρ-away from identity components of proper stabilizers then π(A)
acts ρOπ(1)-irreducibly on V .

It might be interesting to understand how the implied constant in Oπ(1)
depends on π and G, especially if one wants to have explicit constants in Theo-
rems 1.1 and 1.2. Our proof does not provide any insight on this matter since we
rely on an application of Łojasiewicz’s inequality and effectivizing Łojasiewicz’s
inequality can be difficult and involves mathematics far away from the scope of
the present paper (see for example [13] and references therein).

The proof of this lemma is an application of Łojasiewicz’s inequality (which
we recall below as Theorem 2.8). First, it is convenient to reduce to the case
where A is finite. This reduction is the subject of the next lemma. Given a
representation π : G→ GL(V ) of G, a subset A ⊂ G and a parameter ρ ∈ (0, 12 ),
we say that A is ρ-away from proper stabilizers if for any linear subspace W of
V which is not a G-submodule, there exists an element a in A whose distance
to the stabilizer StabGW is at least ρ.

Lemma 2.7. Let 0 < ρ < 1
2 be a parameter. Let π : G → GL(V ) be a repre-

sentation. There is a neighborhood U of 1 in G such that if A ⊂ U is ρ-away
from identity components of proper stabilizers then A is ρOπ(1)-away from proper
stabilizers. In fact, A contains a subset of cardinality at most dimG which is
ρOπ(1)-away from proper stabilizers.

Proof. The representation π differentiates to a representation of the Lie algebra
g of G, which we denote by T1π : g→ End(V ). The stabilizer of W in g

StabgW = {x ∈ g | T1π(x)W ⊂W}

is the Lie algebra of StabGW . In particular, its image under the exponential
map is contained in (StabGW )◦, the identity component of StabGW . We may
assume that exp induces a diffeomorphism from U to its image, and denote the
inverse map by log. Say that logA is ρ-away from proper stabilizers in g if for
any linear subspace W < V which is not a G-submodule, there exists a ∈ A
such that d(log a,StabgW ) ≥ ρ.

We claim that there is a neighborhood U of 1 in G such that if A ⊂ U is ρ-
away from identity components of proper stabilizers then logA is ρ

C -away from
proper stabilizers in g and conversely if logA is ρ-away from proper stabilizers
then A is ρ

C -away from proper stabilizers.
Let us prove this claim. Let x ∈ g. From the identity π(ex) = eT1π(x), we

can express T1π(x) as an absolutely convergent series

T1π(x) = −
∑
n≥1

1

n

(
idV −π(ex)

)n
8



whenever ‖π(ex)− idV ‖ < 1. Therefore, if ex ∈ StabGW is such that the above
series converges, then x ∈ StabgW . It follows that there is r > 0 depending
only on π such that

BG(1, r) ∩ StabGW ⊂ exp(StabgW ).

Let U = BG(1, r2 ). Then for any g ∈ U and any proper linear subspace W ,

1

C
d(g, (StabGW )◦) ≤ d(log g,StabgW ) ≤ Cd(g,StabGW )

where C > 0 is some constant depending only on the the representation. This
proves our claim, and the first part of the lemma.

For the second part, one can reproduce the argument in [22, Lemma 2.5] to
show that if logA is ρ-away from proper stabilizers then logA contains a subset
of cardinality at most dim g which is ρOdim(g)(1)-away from stabilizers.

Remark 2. Note that in the above lemma, the neighborhood U depends on
the representation π, and not only on G. This is readily seen by considering
G = R, V = C ' R2, and π(x)v = einxv, n ∈ N.

Let us recall Łojasiewicz’s inequality [16, Théorème 2, page 62] before we
proceed to prove Lemma 2.6.

Theorem 2.8 (Łojasiewicz’s inequality). Let M be a real analytic manifold
endowed with a Riemannian distance d and let f : M → R be a real analytic
map. If K is a compact subset of M , then there is C > 0 depending on K and
f such that for all x ∈ K,

|f(x)| ≥ C−1 min(1, d(x, Z))C

where Z = {x ∈M | f(x) = 0}.

Proof of Lemma 2.6. Let U be the neighborhood given by Lemma 2.7. On
account of this lemma we may assume that A is finite of cardinality n ≤ dimG
and ρ-away from proper stabilizers.

Let 0 < k < dim(V ) and consider the real-analytic map f : Gn×Grass(k, V )→
R defined by

f(g1, . . . , gn;W ) =

n∑
i=1

∫
BW (0,1)

d(gi · w,W )2 dw.

The integration is with respect to the k-dimensional Lebesgue measure on each
W ∈ Grass(k, V ). To see that this map is real-analytic, remark that we can
trivialize locally the tautological bundle over Grass(k, V ), i.e. for any W0 ∈
Grass(k, V ) there is a neighborhood U of W0 in Grass(k, V ) and a map ϕ : U ×
Rk → V such that for all W ∈ Grass(k, V ), the partial map ϕ(W, ·) : Rk → V
is linear and have W as image. Moreover, we can choose ϕ to be real-analytic
and such that ϕ(W, ·) : Rk →W is an isometry for the Euclidean structures, for
any W ∈ Grass(k, V ). Thus, for all W ∈ Grass(k, V ) and all i = 1, . . . , n,∫
BW (0,1)

d(gi · w,W )2 dw =

∫
BRk (0,1)

∥∥(gi · ϕ(W, v)) ∧ ϕ(W, e1) ∧ · · · ∧ ϕ(W, ek)
∥∥2 dv

9



where (e1, . . . , ek) is the standard basis of Rk. The righthand side is obviously
real analytic.

The zero set of f is exactly

Z = {(g,W ) ∈ Gn ×Grass(k, V ) | ∀i, gi ∈ StabGW}.

By Łojasiewicz’s inequality (Theorem 2.8) applied on Ūn × Grass(k, V ), there
is a constant C > 0 such that for any (g,W ) ∈ Un ×Grass(k, V ),

f(g,W ) ≥ 1

C
d
(
(g,W ), Z

)C
.

Assuming thatA does not act 1
C ρ

C-irreducibly on V , we can findW ∈ Grass(k, V )
such that for all a ∈ A and all w ∈ BW (0, 1), π(a)w ∈ W + BV (0, 1

C ρ
C).

So f(a1, . . . , an,W ) ≤ 1
C ρ

C , and by the inequality above there exists W ′ ∈
Grass(k, V ) such that for all a ∈ A, d(a,StabGW

′) ≤ ρ, so that A is not ρ-away
from proper stabilizers.

2.3 Induction step
The core of the induction step in the proof of Theorem 2.3 is the following
lemma. It is a quantitative discretized version of the following elementary fact:
let V be a G-module, and V1, X two submodules of V ; if π : V → V/V1 maps X
onto V/V1 and if X ∩ V1 = {0}, then V = X ⊕ V1. Once more, the proof relies
on Łojasiewicz’s inequality.

Lemma 2.9. Let G be a connected Lie group and V a normed G-module. There
exist a neighborhood U of the identity in G and a constant C ≥ 1 such that for
any parameters 0 < η < τ < 1, the following holds when δ is sufficiently small.
Let V1 be a proper submodule of V and π : V → V/V1 the canonical projection.
Let A ⊂ U and X ⊂ BV (0, 1) and assume that

(i) 〈A,X〉3 ∩ V (δ)
1 ⊂ BV (0, δCτ ),

(ii) π(X) = BV/V1
(0, δη),

(iii) A is δτ -away from identity components of proper stabilizers.

Then there exists a submodule W < V such that:

(a) The restriction π|W : W → V/V1 is 3δ−η-bi-Lipschitz;

(b) BW (0, δη) ⊂ X(δτ ) and X ⊂W (δτ ).

Proof. For convenience, we write V ′ = V/V1. On account of Lemma 2.7, which
gives us the neighborhood U , we may assume that A is finite of cardinality
n ≤ dim(G) and is δC1τ -away from proper stabilizers, where C1 ≥ 2 is a constant
depending only on V . Shrinking again the neighborhood U if necessary, we can
ensure that the action on V of any element in A is 2-bi-Lipschitz.

Assumption (ii) allows us to pick a section σ : BV ′(0, δ
η) → X of the pro-

jection π, i.e. for any y ∈ BV ′(0, δη),

π ◦ σ(y) = y.
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The choice of such σ is arbitrary. In fact, thanks to assumption (i), different
choices only differ by at most δCτ . Indeed, for any x ∈ X, we have x−σ(π(x)) ∈
(X −X) ∩ V1 and therefore, by assumption (i),

‖x− σ(π(x))‖ ≤ δCτ . (2)

Again from assumption (i), it follows that σ is almost a morphism of G-modules,
in the sense that for all y, z ∈ BV ′(0, δη) and all a ∈ A,

‖σ(y)‖ ≤ δCτ if y ∈ BV ′(0, δ); (3)

‖σ(y) + σ(z)− σ(y + z)‖ ≤ δCτ if y + z ∈ BV ′(0, δη); (4)

‖a · σ(y)− σ(a · y)‖ ≤ δCτ if a · y ∈ BV ′(0, δη). (5)

Indeed, we have, respectively, σ(y) ∈ X ∩V (δ)
1 , σ(y)+σ(z)−σ(y+z) ∈ 3X ∩V1

and a · σ(y)− σ(a · y) ∈ (A ·X −X) ∩ V1.
In particular, (3) and (4) says that σ is almost additive; by Lemma 2.10

below, σ is close to a genuine linear map. More precisely, there exists a linear
section ϕ : V ′ → V of π (i.e. π ◦ ϕ = IdV ′) such that for all y ∈ BV ′(0, δη),

‖ϕ(y)− σ(y)‖ ≤ δ(C−1)τ , (6)

provided δ is small enough. From the linearity of ϕ, the fact that X ⊂ BV (0, 1),
and (2), (5) and (6), we obtain that for all y ∈ V ′, all a ∈ A and all x ∈ X,

‖ϕ(y)‖ ≤ 2δ−η‖y‖;

‖a · ϕ(y)− ϕ(a · y)‖ ≤ δ(C−3)τ‖y‖;

‖x− ϕ(π(x))‖ ≤ δ(C−2)τ .

Let W0 be the image subspace of ϕ. From the above, it follows that:

the restriction π|W0
: W0 → V ′ is 2δ−η-bi-Lipschitz; (7)

X ⊂W0 +BV (0, δ(C−2)τ ); (8)

BW0
(0, δη/2) ⊂ ϕ(BV ′(0, δ

η)) ⊂ X +BV (0, δ(C−1)τ ); (9)

∀a ∈ A, ∀w ∈ BW0
(0, 1), d(a · w,W0) ≤ δ(C−3)τ . (10)

The inequality (10) says that W0 is almost invariant under the action of A.
We now use Łojasiewicz’s inequality to show that it is close to a G-submodule.
Let a1, . . . , an be the elements of A and write a = (a1, . . . , an). Consider the
real-analytic function on G×n ×Grass(dim(V ′), V ) defined by

f(g1, . . . , gn;W ) =

n∑
i=1

∫
BW (0,1)

d(gi · w,W )2 dw.

From (10) follows f(a,W0) ≤ δ(2C−7)τ , provided δ is small enough. By Ło-
jasiewicz’s inequality (Theorem 2.8) applied to the compact set Ū×d×Grass(dim(V ′), V ),
there exists a constant C2 depending only on the representation V such that for
all g = (g1, . . . , gn) ∈ U×n and W ∈ Grass(dim(V ′), V ),

f(g,W ) ≥ 1

C2
d((g,W ), Z)C2 ,

11



where Z is the zero set of f . Therefore, there exists b = (b1, . . . , bn) ∈ G×n and
W ∈ Grass(dim(V ′), V ) such that f(b,W ) = 0 and

d((a,W0), (b,W )) ≤ δC1τ ,

provided 2C − 7 ≥ (C1 + 1)C2. The equality f(b,W ) = 0 exactly means that
each bi belongs to the stabilizer StabGW , and hence

A ⊂ (StabGW )(δ
C1τ )

But A is δC1τ -away from proper stabilizers, hence W must be a G-submodule.
Finally, conclusions (a) and (b) follow from (7), (8), (9) and the fact that W is
δC1τ -close to W0.

In the above proof, we made use of the following elementary lemma, a dis-
cretized version of the fact that any continuous additive map between two vector
spaces is automatically linear.

Lemma 2.10 (Almost additive maps). Let 0 < δ < ρ1 < ρ2 ≤ 1 be parameters.
Let V and V ′ be finite-dimensional normed vector spaces. If σ : BV ′(0, ρ2)→ V
satisfies

(i) σ(BV ′(0, δ)) ⊂ BV (0, ρ1) and

(ii) for all x, y ∈ BV ′(0, ρ2), if x+ y ∈ BV ′(0, ρ2) then

σ(x) + σ(y)− σ(x+ y) ∈ BV (0, ρ1).

Then there is a linear map ϕ : V ′ → V such that for all x ∈ BV ′(0, ρ2),

‖σ(x)− ϕ(x)‖ �V ′ (− log δ + 1)ρ1.

Moreover, if there are linear maps π : V → V ′′ and ψ : V ′ → V ′′ such that
π ◦ σ = ψ on BV ′(0, ρ2), then we may also ensure that π ◦ ϕ = ψ on V ′.

Proof. We first consider the special case where ρ2 = 1 and V ′ = R. In this case
define ϕ : R → V to be the unique linear map such that ϕ(1) = σ(1). From
assumption (ii), it follows that

∀x ∈ [0,
1

2
], ‖2σ(x)− σ(2x)‖ ≤ ρ1.

Using this and a simple induction, we prove that

∀n ∈ N, ‖σ(2−n)− ϕ(2−n)‖ ≤ ρ1. (11)

Let N be the integer such that 2−N ≤ δ < 2−N+1. It follows from (11) and
assumption (i) that

‖ϕ(2−N )‖ ≤ 2ρ1 (12)

For any x ∈ [0, 1], let (x1, . . . , xN ) ∈ {0, 1}N be the N first digits in its binary
expansion, i.e. for some r ∈ [0, δ], x =

∑N
n=1 xn2−n + r. Then by assump-

tion (ii), (11) and (12),

‖σ(x)− ϕ(x)‖ ≤
N∑
n=1

xn‖σ(2−n)− ϕ(2−n)‖+ ‖σ(r)‖+ 2Nr‖ϕ(2−N )‖+Nρ1

≤ (2N + 5)ρ1.

12



Consequently,

‖σ(−x)− ϕ(−x)‖ ≤ ‖ϕ(x)− σ(x)‖+ ‖σ(−x) + σ(x)− σ(0)‖+ ‖σ(0)‖
≤ (2N + 7)ρ1.

This proves the lemma in the case V ′ = R and ρ2 = 1. For general normed
vector space V ′, in the case ρ2 = 1, pick a basis (u1, . . . , ud) consisting of vectors
of unit length then apply the special case to each partial function σi : t 7→ σ(tui),
i = 1, . . . , d. This yields linear maps ϕ1, . . . , ϕd : R → V , and we define ϕ :
V ′ → V by ϕ(t1u1 + · · ·+ tdud) = ϕ1(t1) + · · ·+ ϕd(td). Then by (ii), we have
the desired inequality for any vector in BV ′(0, 1) ∩ ([−1, 1]u1 + · · ·+ [−1, 1]ud).
This domain contains a ball BV ′(0, 1k ) where k ∈ N depends only on V ′ and the
choice of the basis. We conclude by using k times the almost additivity (ii).

The general case ρ2 ≤ 1 follows from the case ρ2 = 1, by considering the
map σ′ : V ′ → V defined by σ′(x) = σ(ρ2x).

The moreover part is clear from the proof.

We are now ready to prove Theorem 2.3. The main idea is to use induction
on the length of the module. Note that among the assumptions of Theorem 2.3,
(ii) is preserved by passing to any submodule or any quotient of V and (iii) is
preserved by passing to any quotient. Finally, (i) passes to the quotient V/V1
of V by the first submodule V1 in the Jordan-Hölder decomposition. Thus by
the induction hypothesis, it is easy to produce a large ball in V/V1. Then it
can be proved (this is done in the third step of the proof below) that we can
produce a large vector in V1 and hence a large ball in V1 by the base case. Then
a technical difficulty arises : a large ball in V/V1 and a large ball in V1 does not
add up to a ball in V . To deal with this difficulty we need to produce the large
ball in V/V1 using only vectors of controlled length (this is done in the first step
in the proof below). Another technical difficulty is in the third step where we
want to produce vector in V1 of length ≥ δε2 for any given ε2 > 0. The idea is
that, otherwise we could apply Lemma 2.9 to conclude that X is trapped in a
submodule, which would contradict assumption ((iii)).

Proof of Theorem 2.3. The proof goes by induction on the length ` of the mod-
ule V . The base case ` = 1, where V is a non-trivial irreducible representation,
corresponds to Theorem 2.4, and is proved above. Assume that the result holds
for all representations of length less than ` ≥ 2, let V ∈ P(G) be a representa-
tion of length `, and suppose A ⊂ G and X ⊂ V satisfy conditions (i)-(ii)-(iii)
of the theorem, for some small ε > 0. Let 0 = V0 < . . . < V` = V be the
Jordan-Hölder sequence given by assumption (i). Write V ′ = V/V1 and denote
by πV ′ : V → V ′ the projection. Then the module V ′ has length ` − 1 and
as noted above, the conditions in Theorem 2.3 are satisfied for A acting on
πV ′(X) ⊂ V ′.
First step: We first prove that there exists ε1 > 0 and s1 ≥ 1 depending on V ,
ε0 and κ such that

BV ′(0, δ
ε0) ⊂ πV ′(〈A,X〉s1 ∩B(0, δε1)) +BV ′(0, δ).

Let ε1 ∈ (0, ε0) be a small parameter, whose precise value will be specified
at the end of this step. By applying the induction hypothesis to V ′, whose
length is at most ` − 1, and replacing X by 〈A,X〉s, we may assume that
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BV ′(0, δ
ε1) ⊂ πV ′(X)(δ). Cover X with δ−O(ε1) balls of radius δ2ε1 , pick a ball

B such that N(πV ′(B ∩ X), δ) is maximal, and translate it back to the origin
to get

N(πV ′(X
′), δ) ≥ δ− dim(V ′)+O(ε1),

with X ′ = (X − X) ∩ BV (0, δ2ε1). This lower bound ensures that πV ′(X ′) is
δO(ε1)-away from proper linear subspaces in V ′. The induction hypothesis, ap-
plied to the subset πV ′(X ′) ⊂ V ′, with acting set A, yields the desired inclusion
provided that ε1 is small enough.
Second step: Assuming X(δ) ∩ V1 contains a large vector.

Let s2, ε2 > 0 be the quantities given by Theorem 2.4 applied to the repre-
sentation V1, with constants κ, ε1. We may choose s2 and ε2 uniformly over all
choices for V1; indeed, up to a (dimV )-bi-Lipschitz isomorphism of G-modules,
there are only finitely many choices for V1. And assume that there exists
v ∈ X(δ) ∩ V1 with ‖v‖ ≥ δε2 . Then, using the base case for the action of
G on the irreducible module V1, we find that

BV1
(0, δε1) ⊂ 〈A,X(δ)〉s2 +BV (0, δ). (13)

Now let z ∈ BV (0, δε0). By the first step, we may find y ∈ 〈A,X〉s1 ∩BV (0, δε1)
and t ∈ V1 such that z = y + t+O(δ). Necessarily, ‖t‖ < 2δε1 , so that by (13),
t ∈ 〈A,X〉2s2 +O(δ). All in all, setting s = s1 +Os1(s2), we find

BV (0, δε0) ⊂ 〈A,X〉s +BV (0, Os1,s2(δ)).

This finishes the proof of the theorem in this case.
Third step: Finally, we prove that there exists s3 ≥ 1 depending on V , ε0 and
κ such that 〈A,X〉(δ)s3 ∩V1 always contains a vector of length at least δε2 , which
allows to conclude, using the second step.

Let C be the constant given by Lemma 2.9. Let 0 < ε3 <
ε2
C be a parameter

whose value will be chosen later according to ε2. Let 0 < ε4 < ε3 be a parameter
whose value will be chosen later according to ε3. Using the induction hypothesis
for the representation V ′ with ε4 and κ, and replacing 〈A,X〉(δ)s by X, we may
assume without loss of generality that

BV ′(0, δ
ε4) ⊂ πV ′(X). (14)

Either 〈A,X〉3 ∩ V (δ)
1 contains a vector of length ≥ δε2 , in which case we are

done or 〈A,X〉3∩V (δ)
1 ⊂ BV (0, δε2). In the latter case, Lemma 2.9 applied with

τ = ε2
C and η = ε4 gives a submodule W < V such that the restriction of πV ′

to W is 3δ−ε4-bi-Lipschitz and

BW (0,
1

2
δε4) ⊂ X(δ1) (15)

where δ1 = δ
ε2
C . Now we apply the base case, Theorem 2.4, to the non-trivial

irreducible representation V/W with ε3 and κ. Observe that πV ′|W being 3δ−ε4-
bi-Lipschitz implies that πV/W |V1

: V1 → V/W is 4δ−ε4-bi-Lipschitz. Hence, for
the projections pV/W : G→ End(V/W ) and pV1

: G→ End(V1), we have

∀ρ ≥ δ, N(pV/W (A), ρ) ≥ δO(ε4)N(pV1
(A), ρ) ≥ δO(ε4)+ερκ.
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Therefore, provided ε4 and ε are small enough in terms of V1, ε3 and κ, The-
orem 2.4 yields some constant s ≥ 1 depending only on V/W , κ and ε3 such
that

BV/W (0, δε3) ⊂ πV/W (〈A,X〉s) +BV/W (0, δ).

Together with inclusion (15), this implies that

N
(
〈A,X〉s +X, δ1

)
� (δ−11 δε3)dimV/W (δ−11 δε4)dimW ≥ δ− dimV

1 δO(ε3).

Cutting 〈A,X〉s+1 into cylinders of axis V1 and diameter δε3 and picking the
part with largest size, we see that

N(〈A,X〉2s+2 ∩ V (δε3 )
1 , δ1) ≥ δ− dimV

1 δO(ε3),

which ensures that X ′ := 〈A,X〉2s+2 ∩ V (δε3 )
1 is δO(ε3)-away from proper linear

subspaces and a fortiori from submodules. Remembering (14), we know that

πV ′(X
′) = BV ′(0, δ

ε3).

At this stage apply Lemma 2.9 to the set X ′ with τ = ε2
C and η = ε3.

If ε3 is chosen sufficiently small compared to ε2, conclusion (b) fails while all
assumptions except (i) are satisfied. So there must be v ∈ 〈A,X ′〉3 ∩ V (δ)

1 with
‖v‖ > δε2 . This concludes the proof of the theorem.

3 A product theorem for perfect Lie groups
The goal of this section is to use Theorem 2.3 to prove Theorem 1.2. More
precisely, we prove the following essentially equivalent version of Theorem 1.2,
which is a bounded generation statement.

Theorem 3.1 (Product theorem in perfect Lie groups). Let G be a connected
perfect Lie group. There exists a neighborhood U of the identity in G such that
given κ > 0 and ε0 > 0, there exist ε > 0 and s ≥ 1 such that the following
holds for δ > 0 sufficiently small. Let A be a subset of U such that:

(i) For any projection πi : G→ G/Hi to a simple factor,

∀ρ ≥ δ, N(πi(A), ρ) ≥ δερ−κ;

(ii) A is δε-away from closed connected subgroups in G.

Then
BG(1, δε0) ⊂ (A ∪ {1} ∪A−1)sBG(1, δ).

Theorem 1.2 follows immediately from Theorem 3.1 in combination with
Ruzsa-type inequality [24, Theorem 6.8].

The proof of Theorem 3.1 goes as follows. We shall first prove the special case
where the radical of our perfect Lie group G is abelian. In this case, the adjoint
representation of G belongs to P(G), as we shall see in Lemma 3.4 below. So
Theorem 2.3 applies and shows that we can produce in the Lie algebra g of G a
large ball using addition and the adjoint action of G: Bg(0, δε0) ⊂ 〈A, logA〉(δ)s .
Then we want to exponentiate this inclusion to the level of the group G. For
that, we use the Campbell-Hausdorff formula, which allows us to approximate
sums in g by products in G with any desired precision; this is the content of
Lemma 3.6. Finally, to deduce the general case from the special case, we shall
use an induction on the nilpotency class of the radical of G.
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3.1 Perfect Lie algebras and Lie groups
We begin by recording some elementary facts about perfect Lie groups and Lie
algebras.

Let G be a connected Lie group with Lie algebra g. Using Levi’s decompo-
sition theorem [23, Corollary 1, p. 49], we may write g as a semi-direct product
g = s n r of a semi-simple Lie algebra s and a solvable radical r. Writing
s = s1⊕· · ·⊕ sk as a sum of simple ideals, one sees that for each i in {1, . . . , k},
hi = (⊕j 6=isj) n r is an ideal in g. The Lie algebra hi is the Lie algebra of a
closed normal subgroup Hi C G. The projection maps πi : G → G/Hi are the
projections of G to its simple factors. Note that any left-invariant Riemannian
metric d on G induces a left-invariant metric on G/Hi. Indeed, if N CG is any
closed normal subgroup, one defines a distance on the quotient G/N by

∀x, y ∈ G, d(x̄, ȳ) = inf
n,n′∈N

d(xn, yn′) = d(y, xN) = d(x−1y,N).

For later use, we now list three elementary and standard lemmas about
perfect Lie algebras.

Lemma 3.2. If g is a perfect Lie algebra, then its solvable radical r is nilpotent.
In particular, g can be written as a semi-direct product g = snr of a semi-simple
Lie algebra s with a nilpotent ideal r.

Proof. See for instance [1, Lemma 2.4].

Lemma 3.3. Let g be a perfect Lie algebra, with Levi decomposition g = sn r.
The image of a proper ideal of g under the map g → g/r is a proper ideal. In
particular, the image of a maximal proper ideal is a maximal proper ideal.

Proof. Let n be an ideal in g such that n + r = g. We want to show that n = g.
Denote by Di r, i ≥ 0 the derived series of r, i.e. D0 r = r and Di+1 r = [Di r; Di r],
∀i ≥ 0. We show by induction that ∀i ≥ 0,

g = n + Di r. (16)

Indeed, (16) is true for i = 0. Suppose that it is true for some i ≥ 0; then it
follows from [g, g] = g that

g = [n, n] + [n,Di r] + [Di r,Di r] ⊂ n + Di+1 r,

because n is an ideal in g. Since r is solvable, we may take i such that Di r = 0
to conclude that n = g.

Lemma 3.4 (Perfect abelian extension of a semi-simple group). Let G be a
perfect Lie group with Lie algebra g. If the radical r of g is abelian, then the
adjoint representation of G is of class P.

Proof of Lemma 3.4. We have an exact sequence of G-modules

0→ r→ g→ g/r→ 0,

and by Proposition 2.2(i), all we need to check is that both r and g/r belong to
P(G). Let R be the solvable radical of G; it is equal to the closed connected
subgroup of G with Lie algebra r. The Lie group G/R is semi-simple, so its

16



adjoint representation belongs to P(G/R). By Proposition 2.2(iii) , g/r is of
class P as a representation of G.

On the other hand, r is totally reducible under the action of the semisimple
group S = G/R, and moreover,

r = [s, r],

because g is perfect and r abelian. This implies that r is a representation of
class P for S, and therefore for G by Proposition 2.2 (iii).

Remark 3. If G is not perfect, then g/[g, g] is non-zero, and G acts trivially
on g/[g, g], so that the adjoint representation does not belong to P(G).

Remark 4. It is not true in general that the adjoint representation of a perfect
connected Lie group is of class P. Indeed, there exist perfect Lie algebras with
non-trivial centers. For instance, let F2,2 denote the free 2-nilpotent Lie algebra
over 2 generators x, y. It is the Lie algebra of the Heisenberg group H3(R).
The action of SL(2,R) on F2,2 by linear substitution integrates to an action of
SL(2,R) on H3(R) by group automorphisms. This allows us the define the Lie
group G = SL(2,R) n H3(R). Its Lie algebra g = sl(2,R) n F2,2 is perfect.
However, the adjoint representation of G is not of class P, because G acts
trivially on the center of g, generated by [x, y].

3.2 Abelian extensions of semi-simple groups
Here, we prove Theorem 3.1 in the case where the Lie algebra of G can be
written as a semi-direct product g = s n r, with r abelian. We shall see in 3.3
that the general case follows from this one.

We fix a connected perfect Lie group G with Lie algebra g = s n r, where
s is semi-simple and r is an abelian ideal. To prove Theorem 3.1 in this case,
the idea is to apply Theorem 2.3 to the adjoint representation of G on its Lie
algebra, and then to use the Campbell-Hausdorff formula. Before that, we note
that condition (i) in Theorem 3.1 automatically implies non-concentration for
the image of A under any non-trivial group homomorphism.

Lemma 3.5. Let G be a perfect connected Lie group. Given a non-trivial homo-
morphism ϕ : G → H to some connected Lie group H, there exists a neighbor-
hood U of the identity in G such that the following holds. Let ε > 0 and κ > 0
be parameters and let A ⊂ U be a subset satisfying condition (i) of Theorem 3.1.
Then

∀ρ ≥ δ, N(ϕ(A), ρ)�ϕ δ
ερ−κ.

Proof. The isomorphism G/ kerϕ → ϕ(G) is bi-Lipschitz when restricted to
compact neighborhoods. Hence without loss of generality, we may assume that
H = G/ kerϕ. Since kerϕ is closed, there exists a neighborhood U of the
identity in G, such that ∀x, y, d(x−1y, kerϕ) = d(x−1y, (kerϕ)◦). This allows
us to further assume that kerϕ is connected.

Let n be a maximal proper ideal of g containing the Lie algebra of kerϕ. By
Lemma 3.3, n is exactly the kernel of the projection of g to one of its simple
factors. It follows n is the Lie algebra of a proper closed normal subgroup NCG,
with G/N one of the simple factors of G. We deduce the desired estimate from
condition (i) of Theorem 3.1 by using the fact that G/ kerϕ → G/N is 1-
Lipschitz.
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Proof of Theorem 3.1, in the case where r is abelian. In this proof, implied con-
stants in Landau and Vinogradov notations depend on G and on the parameter
κ.

By Lemma 3.4, the adjoint representation of G on g is of class P. Setting
X = log(A−1A∩BG(1, δε)) ⊂ g, the hypotheses of Theorem 2.3 are all met with
ε replaced by O(ε). Indeed, assumption (i) is guaranteed by Lemma 3.5, and A
being a δε-away from subgroups is exactly assumption (ii) of Theorem 3.1. So it
remains to check that X is δO(ε)-away from any proper submodule W in g. We
may assume that W is maximal. Then, it is a maximal proper ideal of g, which
by Lemma 3.3 is equal to the kernel Hi of some projection πi : g→ g/hi of G on
a simple factor. In particular, there are only finitely many such W . Shrinking
the neighborhood U if necessary, it suffices to check that A−1A ∩ BG(1, δε) is
δO(ε)-away from Hi. By assumption (i), for any ρ ≥ δ,

N(πi(A
−1A ∩BG(1, δε)), ρ) ≥ max

g
N(πi(A ∩BG(g, δε)), ρ)

≥ δO(ε)N(πi(A), ρ)

≥ δO(ε)ρ−κ.

The last quantity is larger than 1 if we choose ρ = δCε with a large constant
C = O(1). This shows that A−1A ∩BG(1, δε) is δO(ε)-away from kerπi.

Thus, we can apply Theorem 2.3 to get an integer s ≥ 1 such that

Bg(0, δε0) ⊂ 〈A,X〉s +Bg(0, δ) (17)

when ε is small enough.
The idea is now to apply the Campbell-Hausdorff formula at an order ` such

that the error term is of size at most δ. We identify an element w of the free
group Fs generated by s elements and the word map w : G×s → G it induces.
If x, y are elements in g, we want to approximate ex+y by a word in ex, ey. For
example, with a remainder term of order 2, ex+y = exeyeO(‖x‖2+‖y‖2). In order
to get a remainder term of order 3, it is easier to approximate e2(x+y), and then,
we get e2(x+y) = (ex)2(ey)2(ey)2ex(ey)−2(ex)−1eO(‖x‖3+‖y‖3). We shall use the
following lemma, which generalizes these elementary computations, and follows
from the Campbell-Hausdorff formula.

Lemma 3.6. Let exp: g → G denote the exponential map of a Lie group.
We fix a Euclidean norm on g and endow G with the associated left-invariant
Riemannian metric. For all integers s ≥ 1 and ` ≥ 1, there exists an integer
C ≥ 1, a word map w ∈ Fs and a neighborhood U of 0 in g such that for all
x1, . . . , xs ∈ U ,

d
(
exp(Cx1 + · · ·+ Cxs), w(expx1, . . . , expxs)

)
�` (‖x1‖+ · · ·+ ‖xs‖)`.

Proof. Consider g-valued functions f defined on a neighborhood of 0 in g×s that
can be written as a sum of a convergent series

f(x1, . . . , xs) =

+∞∑
k=1

fk(x1, . . . , xs)

where for each k, fk(x1, . . . , xs) is a Q-linear combination of repeated brackets
[xi1 , . . . , xik ] = [xi1 , [xi2 , . . . , [xi`−1

, xik ] . . . ]] of length k. The series converges
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on Bg(0, r)×s for some r > 0 in the sense that the numerical series obtained
by replacing each repeated bracket of length k by rk and each coefficient by its
absolute value is convergent. Identifying two such functions if they agree on a
neighborhood of 0, we get a linear space Gs over Q. Equipped with its obvious
Lie bracket, Gs is a graded Lie algebra over Q. For ` ≥ 1, we write O(d◦ ≥ `)
to denote an unspecified element in Gs of valuation at least `.

By the Baker-Campbell-Hausdorff formula [8], the map defined by (x, y) 7→
x ∗ y = log(exp(x) exp(y)) belongs to G2 and moreover,

x ∗ y = x+ y +
1

2
[x, y] +O(d◦ ≥ 3). (18)

From that we deduce, by induction on s, that

x1 ∗ · · · ∗ xs = x1 + · · ·+ xs +O(d◦ ≥ 2). (19)

We denote by [x, y]∗ the group commutator x∗y∗(−x)∗(−y) and by [x1, . . . , xs]∗
the repeated group commutator [x1, [x2 . . . , [xs−1, xs]∗ . . . ]∗]∗. We have by (18),

[x, y]∗ = [x, y] +O(d◦ ≥ 3)

and again by induction on s,

[x1, . . . , xs]∗ = [x1, . . . , xs] +O(d◦ ≥ s+ 1). (20)

Now we prove by induction on ` that there exists an integer C` and a word
w` ∈ Fs such that

x1 + · · ·+ xs = w∗`
(x1
C`
, . . . ,

xs
C`

)
+O(d◦ ≥ `), (21)

where w∗` is the word map induced by w`, which is well defined on a neighbor-
hood of 0 in g×s. For ` = 2, this is given by (19). Suppose the result has been
proved for some ` ≥ 2. Let f be the sums of terms of degree ` in the remainder
term O(d◦ ≥ `) on the right-hand side of (21). Since f has rational coefficients,
there is an integer C ≥ 1 such that we can write

f(x1, . . . , xs) =

N∑
i=1

mi

(x1
C
, . . . ,

xs
C

)
where each mi is a repeated bracket of length `. Therefore, by (20) and (19),
there is w′ ∈ Fs a product of repeated commutators such that

f(x1, . . . , xs) = w′∗
(x1
C
, . . . ,

xs
C

)
+O(d◦ ≥ `+ 1).

Thus,

x1 + · · ·+ xs = w∗`
(x1
C`
, . . . ,

xs
C`

)
+ w′∗

(x1
C
, . . . ,

xs
C

)
+O(d◦ ≥ `+ 1)

= w∗`
(x1
C`
, . . . ,

xs
C`

)
∗ w′∗

(x1
C
, . . . ,

xs
C

)
+O(d◦ ≥ `+ 1).

In the last step we used the fact that w′∗
(
x1

C , . . . ,
xs
C

)
has valuation at least

`. This finishes the proof of the induction step and concludes the proof of the
lemma.
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To conclude the proof of Theorem 3.1 in the case r is abelian, we choose
` > 1

ε and apply Lemma 3.6 to elements xi of the form xi = Ad(ai)yi, with
ai ∈ As and yi ∈ X. By definition X ⊂ Bg(0, δε), so the error term is indeed of
size Os(δ`ε) = O(δ), and therefore,

exp[C Ad(a1)y1 + · · ·+ C Ad(as)ys] ∈ w(a1e
y1a−11 , . . . , ase

ysa−1s )BG(1, O(δ))

∈ (A ∪ {1} ∪A−1)s
′
BG(1, O(δ)),

for some s′ = Os,`(1). Recalling (17), we obtain

BG(1, δε0) ⊂ exp[C ·Bg(0, δε0)]

⊂ exp[C · 〈A,X〉s +Bg(0, Cδ))]

⊂ As
′
BG(1, O(δ)).

This finishes the proof of the theorem in the case r is abelian.

3.3 Proof of the product theorem, general case
We now explain how to deal with a perfect Lie groupG with Lie algebra g = snr,
where r is nilpotent by Lemma 3.2 but not abelian. This will follow from the
previous case, together with a quantitative version of the following fact: If R is
a nilpotent Lie group, a subset A ⊂ R generates the group R if and only if A
mod [R,R] generates R/[R,R].

For A and B subsets of a group G, we shall write [A,B] to denote the set of
all commutators [a, b], a ∈ A, b ∈ B. This notation is in conflict with the group
theoretic commutator which is the subgroup generated by all commutators.
Despite this inconvenience, it will be clear from the context what [A,B] means.
The precise lemma that we shall use is as follows.

Lemma 3.7. Let R be a connected nilpotent Lie group with descending central
series Ri, i ≥ 1, i.e. R1 = R and for i ≥ 1, Ri+1 = [R,Ri]. For each i ≥ 1
there is k ≥ 1 such that for all ρ > 0 small enough,

BRi+1(1, ρ2) ⊂ [BR(1, ρ), BRi(1, ρ)]k.

Proof. Denote by ri, i ≥ 1 the descending central series of the Lie algebra r.
Let (z1, . . . , zm) be a basis of ri+1 consisting of commutators zj = [xj , yj ] with
xj ∈ r and yj ∈ ri. For each j, consider the map fj : R→ Ri+1 defined by

fj(t) =

{
[exp(

√
txj), exp(

√
tyj)] if t ≥ 0

[exp(
√
−tyj), exp(

√
−txj)] if t < 0

and further define f : Rm → Ri+1 by f(t1, . . . , tm) = f1(t1) · · · fm(tm). The
function f is of class C1 and its differential at 0 is

T0f(h1, . . . , hm) = h1z1 + · · ·+ hmzm,

so it is a C1-diffeomorphism on a neighborhood of 0. This implies that for some
constant c > 0 depending only on R,

BRi+1(1, cρ2) ⊂ f(BR(0, ρ)) ⊂ [BR(1, ρ), BRi(1, ρ)]m.

This finishes the proof of the lemma, because for ρ small enough, BRi+1
(1, cρ2) ·

BRi+1
(1, cρ2) ⊃ BRi+1

(1, 2cρ2).
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We are now ready to finish the proof of Theorem 3.1.

Proof of Theorem 3.1, general case. Here again implied constants in Landau
and Vinogradov notations depend on G and κ. Write the Lie algebra of G
as a semi-direct product g = s n r, with s semi-simple and r a nilpotent ideal,
and let R be the nilpotent radical of G, i.e. the closed connected normal sub-
group of G with Lie algebra r. The proof goes by induction on the nilpotency
class ` of R.

We have already seen that Theorem 3.1 holds if ` ≤ 1. Now suppose that
R has nilpotency class equal to ` ≥ 2 and that Theorem 3.1 has been proved if
the nilpotency class is strictly less than `.

Let Ri, i ≥ 1 denote the lower central series of the group R. Each Ri ,
i ≥ 1 is closed and connected, and the Lie algebra of Ri is exactly the i-th
term in the lower central series of r, see e.g. [17, Theorem 5.7, p. 55]. We first
remark that the assumptions of Theorem 3.1 are preserved when projecting to
a quotient. The nilpotency class of the radical of G/R` is `− 1. Let ε1 > 0 be
some constant, whose value will be specified later. By the induction hypothesis
applied to G/R`, provided ε is small enough compared to ε1, for some integer s
depending on κ and ε1,

BG(1, δε1) ⊂ (A ∪ {1} ∪A−1)sBG(1, δ)R`

Without loss of generality, we may replace (A∪ {1} ∪A−1)sBG(1, δ) by A, and
assume that

BR(1, δε1) ⊂ (R ∩A)R` and BR`−1
(1, δε1) ⊂ (R`−1 ∩A)R`.

By Lemma 3.7, we also have

BR`(1, δ
2ε1) ⊂ [BR(1, δε1), BR`−1

(1, δε1)]O(1).

From these inclusions and the fact that R` is in the center of R, it follows that

BR`(1, δ
2ε1) ⊂ AO(1)BG(1, O(δ)). (22)

At this stage replace AO(1)BG(1, O(δ)) by A. The fact that BR(1, δε1) ⊂ AR`
and BR`(1, δ

2ε1) ⊂ A does not prove what we want yet but gives the lower
bound

N(A2, δ)�G δ− dim(G)+O(ε1).

Covering A2 by balls of radius 1
2δ

3ε1 , we obtain

N(A−2A2 ∩BG(1, δ3ε1), δ)�G δ− dim(G)+O(ε1).

Write A′ = A−2A2 ∩ BG(1, δ3ε1). Then A′ satisfies the assumptions of Theo-
rem 3.1 with κ = 1 and ε = O(ε1). Hence if ε1 is small enough compared to ε0,
then by the induction hypothesis again,

BG(1, δε0) ⊂ A′sBG(1, δ)R`

for some s depending on ε0. Since any element in R` involved in this inclusion
is within distance δ2ε1 from the identity, we can conclude using (22) that

BG(1, δε0) ⊂ A′O(1)BG(1, δ)A.

This finishes the proof of Theorem 3.1.
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3.4 Approximate subgroups in non-perfect Lie groups
Here we prove Proposition 1.3. First, observe that in a nontrivial abelian Lie
group, generalized arithmetic progressions (i.e. sums of arithmetic progressions)
are the prototypes of approximate subgroups. Then in a non-perfect Lie group
G, it suffices to lift a generalized arithmetic progression in its abelianization
G/[G,G] to obtain an approximate subgroup with the desired properties.

Proof of Proposition 1.3. First consider the abelian case G = R×d, with d ≥ 1.
Let κ ∈ (0, 1]. Given a neighborhood U of 0 ∈ R×d, let r > 0 be such that
BRd(0, r) ⊂ U . Define

P =
{
δκx ∈ R×d | x ∈ Z×d ∩ [−δ−κr, δ−κr]×d

}
.

It is easy to check that P satisfy the required properties.
Now let G be a simply connected non-perfect Lie group. Then G/[G,G] '

R×d where d = dim g − dim[g, g]. Let π : G → R×d the projection. Given
a neighborhood U of 1G ∈ G, let r > 0 be such that BG(1G, 2r) ⊂ U and
BRd(0, r) ⊂ π(U). Let P be defined as above and put A = BG(1G, 2r)∩π−1(P ).

On the one hand,

N(A, δ) ≈G,r δ− dim[g,g]N(π(A), δ) ≈G,r δ− dim[g,g]N(P, δ) ≈G,r δ− dim[g,g]−dκ,

and for similar reason,

N(AAA, δ)�G,r δ
− dim[g,g]N(P + P + P, δ)�G,r N(A, δ).

On the other hand, when δ is small so that δκ < r, A is δκ-dense inBG(1G, r),
that is,

BG(1G, r) ⊂ A(δκ).

It follows immediately that for any connected normal subgroup NCG, πG/N (A)
is δκ-dense in BG/N (1G/N , r) and hence

∀ρ ≥ δ,N(πG/N (A), ρ)�G,r ρ
−κ.

Moreover, it is not difficult to see that given a simply connected Lie group G and
r > 0, there is c = c(G, r) > 0 such that no proper closed connected subgroup is
c-dense in BG(1G, r). From this we deduce that A is (c− δκ)-away from proper
closed connected subgroups.
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