CP2i2. Mathématiques. Travaux dirigés du 28/01/2022. Révision espaces euclidiens et trigonalisation

Exercice 1. Soit f une fonction continue sur $[1, +\infty)$ telle que l'intégrale $\int_1^{+\infty} f^2(t)dt$ converge. Montrer que l'intégrale $\int_1^{+\infty} \frac{1}{t} f(t)dt$ converge.

Exercice 2. Soit $E=\mathbb{R}^{\mathbb{N}}$ (l'espace vectoriel des suites réelles), F le sous-ensemble de E formé des suites nulles à partir d'un certain rang et $\ell^2(\mathbb{N})$ le sous ensemble de E des suites $(a_k)_{k\in\mathbb{N}}$ telles que la série $\sum_{k\geq 0}a_k^2$ converge. Pour $a=(a_k)_{k\in\mathbb{N}}\in\ell^2(\mathbb{N})$, on pose

 $||a_k||_2 = \sqrt{\sum_{k \ge 0} a_k^2}.$

a. Montrer que $\|\cdot\|_2$ est une norme euclidienne sur F. Quel est le produit scalaire associé?

b. Montrer que $\ell^2(\mathbb{N})$ est un espace vectoriel et que $\|\cdot\|_2$ est une norme euclidienne sur $\ell^2(\mathbb{N})$. Déterminer le produit scalaire associé.

c. Soit $a=(a_k)_{k\in\mathbb{N}}\in\ell^2(\mathbb{N})$. Soit s>1/2. Montrer que la série $\sum_{k\geq 0}\frac{1}{k^s}a_k$ converge.

Exercice 3. On munit \mathbb{R}^3 du produit scalaire usuel. Soit E le plan de \mathbb{R}^3 d'équation $x_1 + 2x_2 + 3x_3 = 0$.

a. Déterminer une base de l'orthogonal de E.

b. Déterminer une base orthonormale de E.

c. Déterminer la matrice de la projection orthonormale P sur E.

d. Soit $u = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. Calculer la projection orthogonale de u sur E, et d(u, F).

Exercice 4. Soit $E = C^0([-1,1],\mathbb{R})$. Pour $(f,g) \in E^2$, on pose

$$\langle f, g \rangle = \int_{-1}^{+1} f(t)g(t)dt.$$

a. Justifier rapidement que c'est un produit scalaire sur E.

b. Soit F le sous-espace vectoriel de E formé des fonctions paires, et G le sous-espace vectoriel de E formé des fonctions impaires. Montrer que F et G sont orthogonaux pour le produit scalaire précédent. Montrer que

$$E = F \oplus G$$
.

et déterminer la projection orthogonale d'un élément f de E sur F (respectivement sur G).

Exercice 5. Sur l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes réels de degrés au plus 2, on introduit

$$\langle P, Q \rangle = P(-1)Q(-1) + P(0)Q(0) + P(1)Q(1).$$

a. Justifier rapidement que c'est un produit scalaire sur $\mathbb{R}_2[X]$.

b. En utilisant le procédé d'orthogonalisation de Gram-Schmidt, déterminer une base orthonormale de $\mathbb{R}_2[X]$ pour ce produit scalaire.

Exercice 6. On considère la matrice

$$A = \begin{pmatrix} -10 & 15 & 12 \\ -4 & 7 & 4 \\ -5 & 6 & 7 \end{pmatrix}.$$

- a. Calculer le polynôme caractéristique de ${\cal A}.$
- b. Déterminer les sous-espaces propres de A.
- c. La matrice A est-elle trigonalisable? Diagonalisable? Déterminer une matrice P telle que $P^{-1}AP$ est triangulaire supérieure.

Exercice 7. Mêmes questions que dans l'exercice précédent avec

$$M = \begin{pmatrix} 3 & -4 & -3 \\ 3 & -4 & -2 \\ 1 & -1 & -2 \end{pmatrix}.$$