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CHAPTER I

Linear wave equation: classical theory

I.1. Presentation of the equation

The linear wave equation is the equation:

(LW) ∂2t u−∆u = 0, (t, x) ∈ R× RN ,

where N ≥ 1 is the spatial dimension (in this course, we will often assume N = 3), and

∆ =

N∑
k=1

∂2

∂x2k
.

(We will use either the notations ∂y or ∂
∂y for the derivative with respect to the variable y ∈ {t, x1, . . . , xN}).

This is an evolution equation: we fix initial data at a certain time t = t0, and are interested in the evolution
of the equation over time t. Since the equation is of order 2, we actually fix an initial data for u⃗ = (u, ∂tu):

(I.1.1) u⃗↾t=t0 = (u0, u1)

where (u0, u1) is to be taken in a certain functional space.
We will consider in this course initial data with real values. The passage to complex or vector values is

immediate for most properties of the equation (LW) (by working coordinate by coordinate), but can induce
drastic changes in the nonlinear case, if the nonlinearity mixes the components.

Equation (LW) is invariant under several obvious space-time transformations. If u is a solution, it is also
the case of

µu(t− t0, λ(Rx− x0)),

where µ ∈ R, t0 ∈ R, λ > 0, R ∈ ON (R), x0 ∈ RN . It is in fact invariant under a larger group of linear
transformations, the Lorentz group (cf Exercise I.10 p. 15).

As a consequence, we can limit ourselves, without loss of generality, to the case of an initial time t0 = 0,
i.e.

(ID) u⃗↾t=0 = (u0, u1)

Furthermore, the equation is invariant under time inversion: if u is solution, it is also the case of t 7→ u(−t, x).
It is thus a reversible equation.

We will also consider the equation with a force:

(I.1.2) ∂2t u−∆u = f,

(still with an initial condition of type (ID)), whose understanding will be crucial for the study of the nonlinear
wave equation.

The Cauchy problem (LW), (ID) can be approached in at least 3 different ways:

• The classical approach which consists in finding an explicit formula to express the solution. It works
when the initial data is sufficiently regular (C3 × C2 in dimension 3 of space) and gives classical
solutions (that is to say C2 in (t, x) and satisfying (LW) in the sense of classical differentiation).

• The use of the Fourier transformation in space, which is very simple (once the Fourier transformation
is known) and particularly effective in Sobolev spaces based on L2 (which are natural spaces for the
study of the equation due to the conservation of energy and other L2-based quantities). This method
allows to obtain weak solutions with degrees of regularity lower than the previous ones, and to use
tools based on the Fourier transformation, which can be useful, for example, to prove certain dispersive
properties of the equation.

• The ”functional analysis” approach, by the theory of semi-groups, which gives the same type of
solutions as the previous method.
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In this chapter, we will detail the classical method, first by writing the explicit formula for solutions in dimension
1 of space, then in higher dimensions. We will study in the following chapter the equation in the energy space
by the Fourier transformation. This chapter is partly based on Chapter 5 of the beautiful book by Folland on
partial differential equations [7].

I.2. Explicit Formula in Dimension 1

In dimension 1, the equation (LW) can be written as:

(I.2.1) (∂2t − ∂2x)u = 0,

which can be written (∂t − ∂x)(∂t + ∂x)u = 0. We thus make the change of variables η = x + t, ξ = x − t.

Setting v(η, ξ) = u
(

η−ξ
2 , η+ξ

2

)
, or u(t, x) = v(t+ x, t− x), we have:

∂2u

∂t2
=
∂2v

∂η2
+
∂2v

∂ξ2
+ 2

∂2v

∂ξ∂η
,

and
∂2u

∂x2
=
∂2v

∂η2
+
∂2v

∂ξ2
− 2

∂2v

∂ξ∂η
,

which gives:
∂2u

∂t2
− ∂2u

∂x2
= −4

∂2v

∂η∂ξ
.

Thus, we obtain:

(LW) ⇐⇒ ∂2v

∂η∂ξ
= 0.

Let u be a C2 solution of (I.2.1), (ID). Thus, u1 ∈ C1(R) and u0 ∈ C2(R).
The equality ∂2v

∂η∂ξ = 0 shows that ∂v
∂ξ is a (class C1) function w(ξ) independent of η. Integrating with

respect to ξ for η fixed, we deduce:

v(η, ξ) =

∫ ξ

0

w(σ)dσ︸ ︷︷ ︸
φ(ξ)

+ψ(η),

for a certain function ψ, necessarily C2 since v is of class C2 and w of class C1. Thus, we necessarily have:

v(η, ξ) = φ(ξ) + ψ(η), φ, ψ ∈ C2(R2),

or equivalently:

(I.2.2) u(t, x) = φ(x− t) + ψ(x+ t).

Using the initial condition (ID), a direct calculation gives:

ψ(η) =
1

2

∫ η

0

u1(σ)dσ +
1

2
u0(η) + c,

φ(ξ) = −1

2

∫ ξ

0

u1(y)dy +
1

2
u0(ξ)− c,

where c ∈ R (the choice of this constant is irrelevant). Hence, we deduce:

(I.2.3) u(t, x) =
1

2
(u0(x+ t) + u0(x− t)) +

1

2

∫ x+t

x−t

u1(y)dy.

Conversely, it is easy to verify that formula (I.2.3) gives a C2 solution of (I.2.1), (ID). Therefore, we have
shown:

Proposition I.2.1. Let (u0, u1) ∈ C2(R)× C1(R). Then, there exists a unique solution u ∈ C2(R× R) of
(LW) satisfying the initial condition (ID). This solution satisfies formula (I.2.3).

On formula (I.2.2), we observe that a solution of the wave equation in dimension 1 is the sum of two waves:
one, φ(x− t), moving at speed 1 to the right, and the other ψ(x+ t), moving at the same speed to the left.1

It is also possible to obtain a formula for the equation with the right-hand side (I.1.2). We leave this as an
exercise to the reader. Further on, we will provide a general method giving the solution of the equation with
the right-hand side in terms of the equation without the right-hand side.

1Note that the equations (LW), (I.2.1) have been normalized, so that the speed of propagation is exactly 1.



I.4. ENERGY DENSITY. UNIQUENESS AND FINITE SPEED OF PROPAGATION 7

We can see from formula (I.2.3) that u(t, x) depends only on the values of (u0, u1) over
[
x − |t|, x + |t|

]
.

This is a first example of ”finite speed of propagation” which holds in all spatial dimensions.

I.3. Integral on the Sphere and Divergence Theorem

We denote SN−1 = {x ∈ RN , |x| = 1}, where | · | represents the Euclidean norm on RN :

|x|2 =

N∑
j=1

x2j .

More generally, SN−1
R will denote the sphere of radius R: {x ∈ RN , |x| = R}.

We denote dσ as the volume element on one of these spheres. Thus, the integral of a function f ∈ L1(SN−1
R )

(i.e., a function integrable on SN−1
R ) is written as∫

SN−1
R

f(y)dσ(y).

This integral can be calculated using spherical coordinates. In dimension 3, this writes:∫
S2
R

f(y)dσ(y) = R2

∫ 2π

0

∫ π

0

f(R sin θ cosφ,R sin θ sinφ,R sinφ) sin(θ)dθdφ.

We denote BN
R (x0) as the ball centered at x0 with radius R:

BN
R (x0) =

{
x ∈ RN , |x− x0| < R

}
and simply BN

R = BN
R (0).

We will use the following formulas:

Scaling: ∫
SN−1
R

f(y)dσ(y) = RN−1

∫
SN−1

f(Ry)dσ(y)n f ∈ L1(SN−1
R ).

Integral in radial coordinates: if f ∈ L1({|x| ≤ R}),∫
BN

R

f(x)dx =

∫ R

0

∫
SN−1
r

f(y)dσ(y)dr =

∫ R

0

∫
SN−1

f(rω)dσ(ω)rN−1dr

Divergence theorem: if F ∈ C1(BR,RN ),∫
|x|≤R

∇ · F (x)dx =

∫
SN−1
R

y

|y|
· F (y)dσ(y),

where ∇ · F =
∑N

j=1 ∂xjFj is the divergence of the vector field F .

I.4. Energy density. Uniqueness and finite speed of propagation

Before giving an explicit formula for the wave equation in dimension 3, we prove a uniqueness result valid
in any dimension:

Theorem I.4.1. Let (t0, x0) ∈ R1+N , t1 > t0, R > 0. We denote Γ =
{
(t, x) ∈ R × RN : t0 ≤ t ≤

t1, |x− x0| ≤ R − |t− t0|
}
. Let u ∈ C2(Γ) be a solution of (LW) on Γ. We suppose (u, ∂tu)(t0, x) = 0 for all

x ∈ BR(x0). Then u is identically zero on Γ.

The proof of the theorem is based on a monotonicity law that has its own interest.
We define, for (t, x) ∈ Γ, the density of energy eu as

eu(t, x) =
1

2
|∇u(t, x)|2 + 1

2
(∂tu(t, x))

2,

where |∇u|2 =
∑N

j=1(∂xj
u)2, and we consider, for t0 ≤ t ≤ t1, the local energy

Eloc(t) =

∫
BR−(t−t0)(x0)

eu(t, x)dx =

∫
|x−x0|<R−(t−t0)

eu(t, x)dx.

Lemma I.4.2. The function Eloc is decreasing on [t0, t1].



8 I. LINEAR WAVE EQUATION: CLASSICAL THEORY

The lemma immediately implies Theorem I.4.1. Indeed, if u⃗(t0) vanishes on B(x0, R), then Eloc(t0) = 0,
and thus Eloc(t) = 0 for all t ∈ [t0, t1], showing that u is zero on Γ.

Proof of Lemma I.4.2. We notice that

(I.4.1)
∂e

∂t
=

N∑
j=1

(
∂xju∂t∂xju+ ∂2xj

u∂tu
)
=

N∑
j=1

∂

∂xj

(
∂xju∂tu

)
= ∇ · (∂tu∇u) ,

where ∇u = (∂xiu)1≤i≤N Without loss of generality, we can assume that x0 = 0 and t0 = 0. By the integration
formula in radial coordinates,

Eloc(t) =

∫ R−t

0

sN−1

∫
SN−1

eu(t, sω)dσ(ω)ds.

By differentiation under the integral sign, we get that Eloc is differentiable and

E′
loc(t) = −(R− t)N−1

∫
SN−1

eu(t, (R− t)ω)dσ(ω) +

∫
BN

R−t

∂eu
∂t

(t, x)dx.

By formula (I.4.1), then the divergence formula∫
BN

R−t

∂eu
∂t

(t, x)dx =

∫
BN

R−t

∇ · (∂tu∇u) (t, x)dx =

∫
SN−1
R−t

y

|y|
∇u∂tu(t, y)dσ(y).

We thus have

E′
loc(t) = −

∫
SN−1
R−t

(
1

2
|∇u|2 + 1

2
(∂tu)

2 − y

|y|
∇u∂tu(t, y)

)
dσ(y) ≤ −1

2

∫
SN−1
R−t

(
y

|y|
∇u+ ∂tu(t, y)

)2

dσ(y).

□

I.5. Explicit formulas.

This section is devoted to explicit formulas in space dimensions N ≥ 2. In dimension N = 3, we will show
that for any initial data (u0, u1) ∈ C2 × C3, there exists a unique solution u ∈ C2(R1+3) of (LW), (ID), and
provide an explicit formula for this solution. We will also provide a formula in dimension N = 2. We refer the
reader to [7, Chapter 5B] for expressions of solutions when N ≥ 4.

5.a. The radial case in dimension 3. When the initial conditions depend only on the variable r = |x|,
the explicit formula is very simple.

We start by observing that if f depends only on the variable r, then the function f is C2 as a function on
R3 if and only if it is C2 as a function of the variable r on [0,∞[, and satisfies df

dr (0) = 0. Moreover,

∆f =
d2f

dr2
+

2

r

df

dr

(cf Exercise I.1). We notice that we can rewrite this formula as

r∆f =
d2

dr2
(rf).

Now let u be a C2 solution of (LW), (ID) with initial data (u0, u1) assumed to be radial. We also assume that
for all t, u(t) is a radial function. We will show a posteriori that this second assumption is a consequence of the
assumption on the initial data. The previous formula gives(

∂2

∂t2
− ∂2

∂r2

)
(ru) = 0.

The function (t, r) 7→ ru(t, r) is thus a solution of the wave equation in dimension 1, on Rt×]0,∞[. To obtain
a function on R2, we extend ru(t, r) to an odd function:

v(t, y) = yu(t, |y|).

One can verify (using Exercise I.1) that v is of class C2 on R2, and that(
∂2

∂t2
− ∂2

∂y2

)
v = 0.
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Formula (I.2.3) then gives:

v(t, y) =
1

2
(v0(y + t) + v0(y − t)) +

1

2

∫ y+t

y−t

v1(σ)dσ,

where (v0, v1) = v⃗↾t=0, thus

(I.5.1) u(t, r) =
1

2r

(
(r + t)u0(|r + t|) + (r − t)u0(|r − t|)

)
+

1

2r

∫ r+t

r−t

σu1(|σ|)dσ.

Notice that when t > 0 (to fix ideas),∫ r+t

r−t

σu1(|σ|)dσ =

∫ r+t

|r−t|
σu1(|σ|)dσ.

The finite speed of propagation is satisfied: the solution u(t, r) depends only on the initial condition (u0, u1) on
the ball centered at r with radius |t|.

The formula (I.5.1) defines a function u(t, r) of class C2 outside the origin x = 0, as soon as the initial
conditions (u0, u1) have the expected regularity C2 × C1. However, there is a subtle phenomenon of loss of
regularity of the solution u compared to the initial data at the origin : there exist data (u0, u1) ∈ C2 ×C1 such
that u, defined by formula (I.5.1), cannot be extended by a C2 function up to r = 0. Indeed, it can be checked
that (at fixed t),

(I.5.2) lim
r→0

u(t, r) = u0(t) + tu′0(t) + tu1(t),

which shows that if (u0, u1) are C
k×Ck−1 functions, then u(t, 0) is only Ck−1 in general (see also Exercise I.2).

We can interpret this phenomenon physically as follows: a singularity on the circle r = r0 at the initial time
0 that travels at speed 1 towards the origin will concentrate at the origin at time t = r0, causing a stronger
singularity.

The limit (I.5.2) suggests a maximal loss of regularity of a derivative with respect to the initial data, which
is indeed the case:

Proposition I.5.1. Let (u0, u1) ∈ (C3 × C2)(R3) be radial functions. Then formula (I.5.1) extended by
u(t, 0) = u0(t) + tu′0(t) + tu1(t), defines a C2 function on R × R3, radial with respect to the variable x, and
satisfying (LW), (ID).

The Proposition I.5.1 is left as an exercise to the reader. Combining with the uniqueness property (Theorem
I.4.1), we obtain that (I.5.1) gives the unique solution of (LW) with initial data (u0, u1).

The formula (I.5.1) is remarkably simple. In higher space dimensions, we also have an explicit formula for
radial solutions, which becomes more complicated as the dimension increases (see Exercise I.3). The loss of
regularity observed in dimension 3 (and absent in dimension 1) increases with dimension, as the reader can
verify on the formula obtained in Exercise I.3.

There is no simple formula in the radial case in even dimensions.
We also have explicit formulas (of course more complicated) without radiality assumptions, in all dimensions.

We will explicitly state these formulas when N = 3, then N = 2.

5.b. General solutions in dimension 3: averaging over spheres. If f ∈ C0(R3), we define

(I.5.3) (Mf )(t, x) =
1

4π

∫
S2

f(x+ ty)dσ(y) =
1

4πt2

∫
S2
|t|

f(x+ z)dσ(z).

the average of f over the sphere of radius |t| and center x. The function Mf inherits the regularity of f (cf
exercise I.5).

Theorem I.5.2. Let (u0, u1) ∈ C3(R3)×C2(R3). Then the unique C2 solution of the wave equation (LW)
with initial conditions (ID) is given by

u(t, x) = tMu1
(t, x) +

∂

∂t
(tMu0

(t, x)).

Proof. We start by verifying that tMu1(t, x) is the solution of the wave equation (LW), with initial
condition (0, u1). By the theorem of differentiation under the integral sign, if g ∈ C2(R3),

∂

∂t
(Mg(t, x)) =

1

4π

∫
S2

(y · ∇g)(x+ ty)dσ(y).
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Using the divergence formula,∫
S2

(y · ∇g)(x+ ty)dσ(y) = t

∫
|y|≤1

(∇ · (∇g)) (x+ ty)dy

= t

∫
|y|≤1

(∆g)(x+ ty)dy =
1

t2

∫ t

0

∫
S2

(∆g)(x+ sy)s2dσ(y)ds.

Thus:
∂

∂t
(tMu1

(t, x)) =Mu1
(t, x) +

1

4πt

∫ t

0

∫
S2

(∆u1)(x+ sy)dσ(y)s2ds.

and therefore

∂2

∂t2
(tMu1

(t, x)) =
1

4πt2

∫ t

0

∫
S2

(∆u1)(x+ sy)dσ(y)s2ds

− 1

4πt2

∫ t

0

∫
S2

(∆u1)(x+ sy)dσ(y)s2ds+
t

4π

∫
S2

(∆u1)(x+ ty)dσ(y) = ∆ (tMu1
(t, x)) .

This shows that tMu1
satisfies the wave equation (LW). Furthermore, since Mu1

(0, x) = u1(0, x), the initial
condition at t = 0 is indeed (0, u1).

Now let v(t, x) = tMu0
(t, x). Then, by the same reasoning, v is a solution of the wave equation (LW) with

initial condition (0, u0). We deduce that ∂tv is a solution of the wave equation with initial condition (u0, 0),
which concludes the proof. □

Notice that we can rewrite the formula of the theorem as:

(I.5.4) u(t, x) = tMu1
(t, x) +Mu0

(t, x) + tMy·∇u0
(t, x).

We now give two important consequences of the previous formula.

Corollary I.5.3 (Strong Huygens’ principle). The solution u(t, x) depends only on the values of u0, ∇u0,
and u1 on the sphere centered at x and of radius |t|.

Remark I.5.4. The strong Huygens’ principle is a stronger version of the finite speed of propagation
property, which states that u(t, x) depends only on the values of (u0, u1) on the ball centered at x and of
radius |t|. This principle remains valid in any odd dimension ≥ 3 (the number of derivatives of u0 and u1
in the statement increases with the dimension). In even dimension, solutions only satisfy the finite speed of
propagation: see §5.c. In dimension 1, as shown by formula (I.2.3), only solutions that are even in time (i.e.
with initial condition of the form (u0, 0)) satisfy the strong Huygens’ principle.

The second consequence of the explicity formula proved above is an estimate related to the dispersive nature
of the wave equation. We will denote

(I.5.5) ∥φ∥Ẇ s,p = sup
|α|=s

∥∂αxφ∥Lp(RN ) .

We prove:

Theorem I.5.5 (Dispersion inequality). Let (u0, u1) ∈ (C3 × C2)(R3), with compact support and u the
solution of (LW), (ID). Then for all t > 0,

∥u(t)∥L∞(R3) ≲
1

t
(∥u0∥Ẇ 2,1 + ∥u1∥Ẇ 1,1) .

Proof. By space translation invariance it is sufficient to bound |u(t, 0)|. We have

4πu(t, 0) = t

∫
S2

u1(ty)dσ(y) +

∫
S2

u0(ty)dσ(y) + t

∫
S2

y · ∇u0(ty)dσ(y).

By the divergence theorem (denoting by B3 the unit ball of R3),

(I.5.6) t

∫
S2

u1(ty)dσ(y) = t

∫
B3

∇ · (yu1(ty)) dy = 3t

∫
B3

u1(ty)dy + t2
∫
B3

y · ∇u1(ty)dy.

We have

(I.5.7)

∣∣∣∣∫
B3

y · ∇u1(ty)dy
∣∣∣∣ ≤ 1

t3

∫
tB3

|∇u1(y)|dy ≤ 3

t3
∥u1∥Ẇ 1,1 ,
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and

(I.5.8)

∫
B3

|u1(ty)|dy ≤ t

∫
R3

|∂x1
u1(ty)|dy ≤ 1

t2
∥u1∥Ẇ 1,1 ,

where we have used the inequality
∫
B3 |φ|dx ≲

∫
R3 |∂x1

φ|, that follows immediately from the formula φ(x1, x2, x3) =∫ x1

−∞ ∂x1
φ(s, x2, x3)ds. Combining (I.5.6), (I.5.7) and (I.5.8), we obtain

(I.5.9)

∣∣∣∣t∫
S2

u1(ty)dσ(y)

∣∣∣∣ ≲ 1

t
∥u1∥Ẇ 1,1 .

By the same proof, using also the inequality
∫
B3 |φ| ≲

∫
R3 |∂x1

∂x2
φ|, we have

(I.5.10)

∣∣∣∣∫
S2

u0(ty)dσ(y)

∣∣∣∣+ ∣∣∣∣∫
S2

y · ∇u0(ty)dσ(y)
∣∣∣∣ ≲ 1

t
∥u0∥Ẇ 2,1 .

This concludes the proof of the dispersion inequality. □

5.c. Dimension 1 + 2. A solution u of equation (LW) with N = 2 is also a solution of the same equation
with N = 3, constant with respect to the 3rd spatial coordinate. From Theorem I.5.2, one can derive an
expression of u from the initial data. This strategy is called ”descent method”.

Theorem I.5.6. Let (u0, u1) ∈ (C3 × C2)(R2). Then equation (LW) has a unique C2 solution on R× R2,
given by the formula

(I.5.11) u(t, x) =
1

2π

[
∂

∂t

(
t

∫
|y|≤1

u0(x+ ty)√
1− |y|2

dy

)
+ t

∫
|y|≤1

u1(x+ ty)√
1− |y|2

dy

]
.

Proof. Uniqueness follows from Theorem I.4.1. Moreover, as in the proof of Theorem I.5.2, the formula for
even solutions in time (with initial condition (u0, 0)) can be easily deduced from the formula for odd solutions
in time (with initial condition (0, u1)). So we only consider this second case.

Let u be a C2 solution of (LW) on R× R2, with initial data (u, ∂tu)(0) = (0, u1), where u1 ∈ C2(R2). By
Theorem I.5.2, considering u as a solution on R× R3, we obtain:

u(t, x1, x2) =
t

4π

∫
S2

ũ1((x1, x2, 0) + ty)dσ(y)dy,

where by definition ũ1(x1, x2, x3) = u1(x1, x2). Passing to spherical coordinates, we get∫
S2

ũ1((x1, x2, 0) + ty)dσ(y)

=

∫ 2π

0

∫ π

0

u1(x1 + t sin θ cosφ, x2 + t sin θ sinφ) sin θdθdφ

= 2

∫ 2π

0

∫ π/2

0

u1(x1 + t sin θ cosφ, x2 + t sin θ sinφ) sin θdθdφ.

The announced formula then follows from the change of variable y1 = t sin θ cosφ, y2 = t sin θ sinφ. □

It can be seen from the formula in Theorem I.5.6 that the strong Huygens principle is not verified in
dimension 1 + 2: the solution u(t, x) depends on the values of the initial condition over the entire ball B2

|t|(x),

not just on the sphere {y ∈ R2 : |x− y| = |t|}.

I.6. Conservation Laws

The energy of a solution u on R× RN is defined as:

E(u⃗(t)) =

∫
RN

eu(t, x)dx =
1

2

∫
RN

(
(∂tu(t, x))

2 + |∇u(t)|2
)
dx.

This is the global version of the local energy considered in §I.4. The energy of a solution is conserved over time.

Theorem I.6.1. Let u ∈ C2(R1+N ) be a solution of (LW), (ID). Assume (u0, u1) has finite energy. Then
for any t, E(u⃗(t)) is finite and E(u⃗(t)) = E(u0, u1).
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Proof. One might be tempted to write

d

dt
(E(u⃗(t))) =

∫
∂teu(t, x)dx =

∫
∇ · (∂tu∇u)dx = 0,

but the last equality, obtained by integration by parts ignoring the ”boundary” term (i.e., when |x| → ∞) is
purely formal. To justify the preceding calculation, we can use the decay of the local energy (Lemma I.4.2).
For R > 0, we define:

E<R(u⃗(t)) =

∫
|x|<R

eu(t, x)dx.

Notice that this quantity is finite as soon as u ∈ C1(R1+N ). Fix t > 0. By Lemma I.4.2, for any R > t,

E<R−t(u⃗(t)) ≤ E<R(u⃗(0)) ≤ E(u0, u1).

As we let R tend to +∞, we obtain that E(u⃗(t)) is finite, and

E(u⃗(t)) ≤ E(u0, u1).

Reversing the direction of time, we also obtain the inequality

E(u0, u1) ≤ E(u⃗(t)).

We have shown that the energy is conserved for t ≥ 0. By applying this result to the solution (t, x) 7→ u(−t, x),
we obtain energy conservation for t ≤ 0, which concludes the proof. □

There exists another (vectorial) conserved quantity, the momentum, defined as

P (u⃗(t)) =

∫
∂tu(t, x)∇u(t, x)dx ∈ RN .

Proposition I.6.2. Let u ∈ C2(R1+N ) be a solution of (LW) with finite energy. Then

∀t ∈ R, P (u⃗(t)) = P (u0, u1).

The proof of this proposition is left as an exercise (see Exercise I.7).

I.7. Equation with a source term

We now consider the equation with a source term (I.1.2). We will express the solution of this equation in
terms of the propagator of the free equation (LW). For (u0, u1) ∈ C3 × C2(R3), let SL(t)(u0, u1) denote the
solution of (LW) with initial data (u0, u1) at t = 0. We denote S(t)u1 = SL(t)(0, u1), so that

SL(t)(u0, u1) =
∂

∂t
(S(t)u0) + S(t)u1.

For u1 ∈ C2, we recall that

(S(t)u1)(x) = tMu1
(t, x) = t

∫
S2

u1(x+ ty)dσ(y).

Theorem I.7.1 (Duhamel’s Formula). Let (u0, u1) ∈ (C2×C3)(R3) and f ∈ C2(R×R3). Then the equation
(I.1.2), (ID) has a unique C2 solution, given by the formula:

u(t) = SL(t)(u0, u1) +

∫ t

0

S(t− s)f(s)ds.

Remark I.7.2. The Duhamel term
∫ t

0
S(t− s)f(s)ds can be explicited, see (I.7.1).

Proof of Theorem I.7.1. Uniqueness follows immediately from Theorem I.4.1, since the difference of
2 solutions of (I.1.2) with the same source term f is a solution of (LW). For existence, taking into account
Theorem I.5.2, it is sufficient to check that the function

U : (t, x) 7→
∫ t

0

S(t− s)f(s)ds

is C2 and satisfies equation (I.1.2) with zero initial conditions.
We have:

(I.7.1) U(t, x) =
1

4π

∫ t

0

(t− s)

∫
S2

f(s, x+ (t− s)y)dσ(y)ds,

and the fact that U is C2 follows from the theorem on differentiation under the integral sign.
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Furthermore, using that S(0)g = 0 for any function g,

∂U

∂t
=

∫ t

0

∂

∂t

(
S(t− s)f(s)

)
ds.

Upon further differentiation, we obtain

∂2U

∂t2
=

∂

∂t

(
S(t− s)f(s)

)
↾s=t

+

∫ t

0

∂2

∂t2

(
S(t− s)f(s)

)
ds = f(t) +

∫ t

0

∆
(
S(t− s)f(s)

)
ds = f(t) + ∆U.

where we used that ∂
∂t (S(t)g)↾t=0 = g for any function g of class C2. □

Remark I.7.3. Duhamel’s formula is certainly not specific to dimension 3, as shown by the calculation
leading to this formula, which is completely independent of dimension. The reader is invited to explicitly
rewrite the solution of equation (I.1.2) when N = 1 and N = 2.

From Duhamel’s formula, we deduce the energy inequality:

Proposition I.7.4. Let u be a C2 solution of (I.1.2) with N = 3 with initial data (u0, u1), such that
f ∈ C2(R1+3). Suppose furthermore that (u0, u1) has finite energy, and for all T > 0,∫

[−T,+T ]

√∫
R3

|f(t, x)|2dxdt <∞.

Then for all t > 0, √
2E(u⃗(t)) ≤

√
2E(u0, u1) +

∫ t

0

√∫
R3

|f(s, x)|2dxds.

Proof. To lighten notations, we will denote:

∥u⃗(t)∥2
Ḣ1×L2 =

∫
R3

|∇u(t, x)|2dx+

∫
R3

|∂tu(t, x)|2dx, ∥f∥L1(I,L2) =

∫
I

∥f(t)∥L2(R3)dt

(∥ · ∥Ḣ1 is the norm defining the homogeneous Sobolev space Ḣ1(R3), see Section II.2 below). From Duhamel’s
formula and the conservation of energy for the free equation (LW), it suffices to verify that for all t > 0,

(I.7.2)

∥∥∥∥(∫ t

0

S(t− s)f(s)ds, ∂t

∫ t

0

S(t− s)f(s)ds

)∥∥∥∥
Ḣ1×L2

≤ ∥f∥L1([0,t],L2)

By conservation of energy (Theorem I.6.1), we have∥∥∥ (S(t− s)f(s), ∂t(S(t− s)f(s)))
∥∥∥
Ḣ1×L2

= ∥f(s)∥L2 ,

which implies directly (I.7.2) □

I.8. Exercises

Exercice I.1. Let f : RN → R (N ≥ 1). Suppose f is radial (i.e. That it depends only on the variable

r = |x| =
√
x21 + x22 + . . .+ x2N ). Denote f(x) = g(|x|), where g : [0,∞[→ R.

(1) Show that f is continuous on RN if and only if g is continuous on [0,∞[.
(2) Show that f is C1 on RN if and only if g is C1 on [0,∞[ and g′(0) = 0.
(3) Show that for any k ≥ 2, f is Ck on RN if and only if g is Ck on RN and g(j)(0) = 0 for all odd

integers j ≤ k.
(4) Assuming f is C1, compute ∂f

∂xj
in terms of g′, j = 1, . . . , N . Compute g′(r) in terms of ∇f .

(5) Assuming f is C2 on RN , prove the formula

∆f(x) = g′′(|x|) + N − 1

|x|
g′(|x|).

To lighten notation, we use the same notation (f) for functions f and g, and denote g′ = df
dr , etc...

Exercice I.2 (Loss of regularity for the radial wave equation in dimension 1+3). Let k ≥ 0 and f ∈ Ck(R3)
be a radial function. Define a function u on R× (R3 \ {0}), radial with respect to the space variable, by

u(t, x) =
1

2r

(
(r + t)f(|r + t|) + (r − t)f(|r − t|)

)
,

where r = |x|. Note that this defines a function of class Ck on R×
(
R3 \ {0}

)
.
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(1) Suppose that f is supported in the annulus { 1
2 ≤ |x| ≤ 2} and is such that for |η − 1| ≤ 1/10,

f(η) =

{
2− η if η > 1

η if η < 1
.

Calculate limr→0 u(t, r) when t = 1, t > 1, and t < 1 (close to 1). Conclude that u cannot be extended
to a continuous function on R× R3.

(2) Similarly, give an example of a C2 function f such that u cannot be extended to a C2 function on
R× R3.

(3) Assume f is C3. Show that u defines a C2 function on R× R3.
(4) Let g be a C2 radial function on R3. Show that

u(t, r) =
1

2r

∫ r+t

r−t

σg(|σ|)dσ,

extends to a C2 function on R3.

Exercice I.3 (Explicit solutions of the radial wave equation in odd space dimension). Let N ≥ 3 be an
odd integer, written as N = 2k + 1. Let Tk be the operator defined by

Tkϕ =

(
r−1 d

dr

)k−1 (
r2k−1ϕ(r)

)
.

(1) Show that

Tkφ =

k−1∑
j=0

cjr
j+1ϕ(j)r,

for some cj ∈ R. Determine c0 and ck−1.
(2) Show that for any function φ ∈ Ck+1([0,+∞[),

d2

dr2
(Tkφ) =

(
r−1 d

dr

)k

(r2kφ′(r)).

Hint: You can start by verifying that the formula is true when φ(r) = rm for any integer m.
(3) Consider a solution u(t, x) of the linear wave equation in space dimension N , radial with respect to

the space variable. Suppose u is Ck+1 on R1+N . Show prove

(∂2t − ∂2r )(Tku) = 0.

Deduce an expression of Tku in terms of u0 and u1.
(4) Express u(t, r) in terms of u0 and u1 when N = 5. What regularity of u0 and u1 is required for u to

be C2 on R1+5?

****************

Exercice I.4. Let u be a solution of the wave equation (LW) in spce dimension N ≥ 3, radial with respect

to the space variable. Recall that ∆u = d2

dr2 + N−1
r

d
dr . Suppose u ∈ C2(R1+N ), with compactly supported

initial data. Let

v(t, r) =

∫ ∞

r

ρ∂tu(t, ρ)dρ.

Show that v defines a radial solution, of class C2, to the wave equation in space dimension N − 2.

Exercice I.5. Let f ∈ Ck(R3). Show that the function Mf , defined by (I.5.3), is also of class Ck.

Exercice I.6. Let u ∈ C2(R× RN ) be a solution of (LW) with finite energy. Show

∀ε > 0, ∃R > 0, ∀t ∈ R,
∫
|x|>R+|t|

eu(t, x)dx ≤ ε.

Exercice I.7 (Conservation of momentum). (1) Let u be a C2 solution of (LW) on R × RN , and
j ∈ 1, . . . N . Let pj,u(t, x) = ∂xj

u(t, x)∂tu(t, x). Show

∂pj,u
∂t

=
1

2

∂

∂xj

(
(∂tu)

2 − |∇u|2
)
+∇ · V,

where V is a certain C1 vector field to be specified.
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(2) Assume that (u0, u1) has finite energy. Justify that

Pj(u⃗(t)) =

∫
RN

pj,u(t, x)dx

is defined for all times. Show that this quantity is independent of time. You can start by considering
a local version of the momentum∫

[−R,R]N
pj,u(t, x)dx or

∫
RN

pj,u(t, x)φ
( x
R

)
dx

then let R tend to +∞. Here φ denotes a C2 function with compact support equal to 1 in a neigh-
borhood of the origin.

Exercice I.8. (1) Let u1 ∈ C2(R3) such that

∀t ≥ 0, ∀x ∈ R3, u1(x) ≥ 0.

Assume u0 = 0. Let u be the corresponding solution of (LW). Prove

∀t ≥ 0, ∀x ∈ R3, u(t, x) ≥ 0.

(2) Suppose now N = 1 or N = 2. Let u be the solution of (LW), (ID), with (u0, u1) ∈ C3×C2 (if N = 2)
or C2 × C1 (if N = 1).

Show that if u1 ≥ 0 and u0 = 0 then u(t, x) has the sign of t for all x and t ̸= 0.
When N = 1, give a weaker sufficient condition on (u0, u1) such that:

∀t ≥ 0, ∀x ∈ R, u(t, x) ≥ 0.

Exercice I.9. Assume N = 1 or N = 2. Let u be a solution of (I.1.2), with u0 = u1 = 0, and f of class
C1 (if N = 1) or C2 (if N = 2). Express u in terms of f .

Exercice I.10. The Minkowski spacetime of dimension N is the space R1+N , equipped with the quadratic
form of signature (1, N):

g(X) = x20 −
N∑
j=1

x2j = t2 − |x|2 = tXJX,

where tX is the transpose of X,

X = (x0, x1, . . . , xN ), t = x0, x = (x1, . . . , xN ),

and J = [Jµ,ν ]0≤µ ν≤N is the matrix such that J0,0 = 1, Jℓ,ℓ = −1 if ℓ ∈ 1, . . . , N , and Jµ,ν = 0 if µ ̸= ν.
The Lorentz group O(1, N) is the group of real square matrices P of size 1 +N which leave the quadratic

form g invariant, i.e., such that g(PX) = g(X) for all X in R1+N . In other words, if P is a (1 +N)× (1 +N)
matrix,

P ∈ O(1, N) ⇐⇒ tPJP = J.

(1) Prove that a function v of class C2 on R1+N satisfies the wave equation (LW) if and only if Tr(Jv′′) = 0,
where v′′ is the Hessian matrix

[
∂xµ

∂xνv

]
0≤µ

ν≤N
.

(2) Let P ∈ O(1, N), v ∈ C2(R1+N ), and w(X) = v(PX). Then

(∂2t −∆)v = 0 ⇐⇒ (∂2t −∆)w = 0.

(3) Prove that the space rotations: [
1 0
0 R

]
, R ∈ O(N)

and the Lorentz boosts

Rσ =

[
Rσ 0
0 IN−1.

]
, Rσ =

[
cosh(σ) sinh(σ)
sinh(σ) cosh(σ)

]
,

where IN−1 denotes the identity matrix (N − 1)× (N − 1) and σ ∈ R are Lorentz transformations. In
these formulas, 0 always denotes the zero matrix of appropriate size.

Exercice I.11. In all Chapter I, we considered the Cauchy problem with initial conditions on a hyperplane
in R1+N of the form {t = t0}. We now seek to solve the same problem by prescribing an initial condition on
other hyperplanes. Therefore, we consider a hyperplane of the form

Π = {X ∈ R1+N : tAX = 0}
where A ∈ R1+N \ {0}, A = (a0, a1, . . . , aN ) = (a0, a).
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(1) Prove that if |a0| > |a|, there exists a transformation P ∈ O(1, N) such that

Π = P
(
{(0, x), x ∈ RN}

)
.

Hint: use compositions of transformations defined in Question (3) of Exercise I.10.
(2) If the condition |a0| > |a| is satisfied, we can therefore reduce the Cauchy problem with an initial

condition
u↾Π = u0, A · ∇u↾Π = u1,

to a Cauchy problem with initial conditions at t = 0 as treated above. The hyperplane Π is called
timelike when A = (a0, a) with a0 ∈ R, A ∈ RN , and |a0| > |a|.

Prove that Π is timelike if and only if the restriction of the quadratic form g to Π is negatively
defined.

(3) Under what condition on A does there exist B = (b0, b1, . . . , bN ) ∈ RN+1 such that the function

eA·X+iB·X

is a solution of (LW)?
(4) Now assume that the hyperplane Π is not timelike. Let Y /∈ Π. Construct a sequence of solutions

(un)n of (LW) such that un(X) = 0 on Π, such that for any differential operator D =
∏N

j=1 ∂
α1
x1
. . . ∂αN

xN

(of arbitrarily large order), there exists C > 0 such that |Dun(X)| ≤ Ce−n on Π, but |un(Y )| → +∞
as n→ ∞.



CHAPTER II

The linear equation in Sobolev spaces

II.1. Reminders on the Fourier transform

Here, we recall the definition and basic properties of the Fourier transform on RN , in the most general
framework possible, that of tempered distributions. We omit the proofs. For more details, one can consult, for
example, the foundational writings of Laurent Schwartz [12], the course of Jean-Michel Bony [3], as well as [1,
Section 1.2] for a quick introduction, and [10] for a more in-depth exposition (the first two references are in
French).

We begin by introducing a notation: a multi-index is an element α = (α1, . . . , αN ) of NN . The order of α

is |α| =
∑N

j=1 αj . The derivative with respect to α of a function f of class C |α| on RN is then defined by:

∂αx f =

N∏
j=1

∂αj
xj
f.

1.a. Fourier Transform on S.

Definition II.1.1. The Schwartz space S(RN ) is the space of functions f of class C∞ on RN such that for
every p ∈ N,

Np(f) := sup
x∈RN |α|≤p

(1 + |x|)p|∂αx f(x)| <∞.

It can be observed that each Np is a norm on S(RN ), but Np is not complete for any of these norms.
We equip S(RN ) with the distance function

(II.1.1) d(φ,ψ) =
∑
p≥0

1

2p
min

(
Np(φ− ψ), 1

)
.

Notice that d(φn, φ) tends to 0 as n tends to infinity if and only if Np(φn − φ) tends to 0 for every p.
The metric space (S, d) is complete.1

The Fourier transform of an element φ of S is defined by the formula

(II.1.2) φ̂(ξ) = Fφ(ξ) =
∫
RN

e−ix·ξφ(x)dx.

One easily checks that F is a continuous application from S into S.
Fubini’s theorem immediately implies the duality formula:

(II.1.3)

∫
RN

φ̂(ξ)ψ(ξ)dξ =

∫
RN

φ(x)ψ̂(x)dx,

for φ,ψ ∈ S(RN ).
The Fourier transformation is a bijection of S: by defining

(II.1.4) F(ψ)(x) =
1

(2π)N

∫
RN

eix·ξψ(ξ)dξ =
1

(2π)N
ψ̂(−x),

we have the Fourier inversion formula: for all φ ∈ S(RN ),

(II.1.5) FFφ = FFφ = φ.

1Such a vector space, equipped with a countable family of semi-norms, and which is complete as a metric space (where the
distance function is defined as in (II.1.1)), is called a Fréchet space. It is a natural generalization of a Banach space when a unique

norm is not sufficient to ensure completeness.

17
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By combining the Fourier inversion formula (II.1.5) and the duality formula (II.1.3), we obtain the Plancherel
theorem: for all φ,ψ in S,

(II.1.6)

∫
RN

φ(x)ψ(x)dx =
1

(2π)N

∫
RN

φ̂(ξ)ψ̂(ξ)dξ.

The Fourier transform exchanges multiplication by powers of x with differentiation. For all φ ∈ S(RN )

(II.1.7) ∀α ∈ NN , F∂αxφ = i|α|ξαφ̂(ξ), F(xαφ) = i|α|∂αξ φ̂(ξ).

1.b. Fourier Transform of Tempered Distributions.

Definition II.1.2. The space S ′(RN ) of tempered distributions is the topological dual of S(RN ), i.e., the
vector space of continuous linear forms on S.

In the definition, continuity must be interpreted in the sense of the topology induced by the distance d
defined by (II.1.1). Using the definition of this topology, one sees that a linear form f on S is an element of S ′

if and only if:

∃p ∈ N, ∀φ ∈ S, |⟨f, φ⟩| ≤ CNp(φ).

We equip S ′ with the topology of pointwise convergence: a sequence (fn)n of elements of S ′ converges to f in
S ′ if and only if

∀φ ∈ S, lim
n→∞

⟨fn, φ⟩ = ⟨f, φ⟩ .

Several function spaces continuously embed into S ′(RN ) in the following manner. If f is a measurable, locally
integrable function on f such that

∀R > 0,

∫
|x|≤R

|f(x)|dx ≤ C(1 +R)C

for some constant C > 0, we define an element Lf of S ′(RN ) by

⟨Lf , φ⟩ =
∫
RN

f(x)φ(x)dx.

The preceding application is injective, i.e., Lf is null if and only if f is null almost everywhere on RN . We
then identify f with the linear form Lf , also denoted f . The preceding identification allows us to consider S,
Lebesgue spaces Lp(RN ) (1 ≤ p ≤ ∞), Ck

b (the space of Ck functions on RN that are bounded along with all
their derivatives up to order k) as subspaces of S ′.

Examples of tempered distributions that are not functions are given by the (improperly named) Dirac delta
function at a, denoted δa and defined by ⟨δa, φ⟩ = φ(a), as well as the surface measure σ on the sphere SN−1,
defined by:

⟨σ, φ⟩ =
∫
SN−1

φ(y)dσ(y).

By duality, several actions can be defined on the elements of S ′.
Differentiation. Let α ∈ NN and f ∈ S ′. The derivative of f of order α is the element ∂αx of S ′ defined by:

∀φ ∈ S, ⟨∂αx f, φ⟩ = (−1)|α| ⟨f, ∂αxφ⟩ .

The integration by parts formula shows that if f ∈ C
|α|
b , its derivative of order α in the sense of distributions

coincides with its derivative in the classical sense.
Multiplication by a Function. We denote by P = P(RN ) the space of C∞ functions with slow growth, i.e.,

such that

(II.1.8) ∀α, ∃M,C > 0 ∀x ∈ RN , |∂αx g(x)| ≤ C(1 + |x|)M .

It is easy to check that the multiplication by an element of P defines a continuous mapping from S into S. We
then define, for f ∈ S ′ and g ∈ P, the product fg by:

⟨fg, φ⟩ = ⟨f, gφ⟩ .

The product fg is an element of S ′. Fixing g ∈ P, f 7→ fg is a continuous mapping from S ′ into S ′.
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Fourier Transform. We define the Fourier transform of an element f of S ′ by

∀φ ∈ S,
〈
f̂ , φ

〉
= ⟨f, φ̂⟩

The duality formula (II.1.3) shows that if f ∈ S, its Fourier transform according to formula (II.1.2) and its
Fourier transform in the sense of S ′ coincide.

We recall that L1(RN ) and L2(RN ) are identified with subspaces of S ′(RN ). The Fourier transform on
S ′ thus applies to elements of these two spaces. On L1(RN ), we recover the Fourier transform in the classical
sense.

Proposition II.1.3 (Fourier Transform in L1). Let f ∈ L1(RN ), and f̂ be its Fourier transform in S ′.

Then f̂ can be identified with the continuous function given by the formula:

f̂(ξ) =

∫
RN

e−ix·ξf(x)dx.

The second proposition immediately follows from the Plancherel theorem:

Proposition II.1.4 (Fourier Transform in L2). Let f ∈ L2(RN ) then f̂ ∈ L2(RN ) and

∥f∥L2 =
1

(2π)N/2
∥f̂∥L2 .

Indeed, the Fourier inversion formula in S ′ (see below) implies that f 7→ 1
(2π)N/2 f̂ is an isometry of L2(RN ).

The properties of the Fourier transform on S are transmitted by duality to the Fourier transform:

• We define the inverse Fourier transform F of an element f of S ′ by〈
Ff, φ

〉
=
〈
f, Fφ

〉
.

Then we have the Fourier inversion formula:

∀f ∈ S ′, FFf = FFf = f.

• Property (II.1.7) remains valid for φ ∈ S ′.

II.2. Sobolev Spaces

2.a. Definition. (cf [1, Section 1.3]) We mainly focus on Sobolev spaces on RN , of Hilbert type (i.e. based

on L2 spaces). In this section, we consider homogeneous Sobolev spaces Ḣσ. We refer to the exercise sheet for
classical Sobolev spaces Hσ.

The Hilbertian Sobolev spaces on RN are easily defined using the Fourier transform:

Definition II.2.1. Let σ ∈ R. The Sobolev space Ḣσ(RN ) is the set of f ∈ S ′(RN ) such that f̂ can be
identified with a function in L1(K) for every compact set K, such that the following quantity is finite:

∥f∥2
Ḣσ =

1

(2π)N

∫
RN

|ξ|2σ|f̂(ξ)|2dξ.

The space Ḣσ, equipped with the inner product:

(f, g)Ḣσ =
1

(2π)N

∫
RN

|ξ|2σ f̂(ξ)ĝ(ξ)dξ

is a pre-Hilbert space.

Theorem II.2.2. The space Ḣσ(RN ) is complete if and only if σ < N/2. In this case, the vector space S0

of functions in S whose Fourier transform vanishes in a neighborhood of 0 is dense in Ḣσ(RN ).

Note that Ḣ0 is exactly the space L2.
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2.b. Sobolev Inequalities. We have the following Sobolev embedding on RN .

Theorem II.2.3. Let σ ∈]0, N/2[, and p ∈ (2,∞) such that 1
p = 1

2 − σ
N . Then Ḣσ(RN ) is contained in Lp

with continuous embedding.

The result is well-known. We give a proof based on the Fourier transform, which yields a slightly stronger
result that we will use later.

By the density result in Theorem II.2.2, it suffices to show that there exists a constant C > 0 such that

(II.2.1) ∀f ∈ S(RN ), ∥f∥Lp(RN ) ≤ C∥f∥Ḣσ(RN ).

Let f ∈ S. We denote2

∥f∥2
Ḃσ = sup

k∈Z

1

(2π)N

∫
2k≤|x|≤2k+1

|ξ|2σ|f̂(ξ)|2dξ,

and observe that ∥f∥Ḃσ ≤ ∥f∥Ḣσ . We will prove the following result, which implies (II.2.1):

Theorem II.2.4 (Improved Sobolev Inequality). Let σ and p be as in the previous theorem. Then there
exists a constant C > 0 such that

∀f ∈ S(RN ), ∥f∥pLp ≤ ∥f∥p−2

Ḃσ
∥f∥2

Ḣσ .

Notation II.2.5. Let φ be a function on RN . For u ∈ S ′(RN ), we denote

φ(D)u = F (φ(ξ)û(ξ)) .

The operator φ(D) is called Fourier multiplier (with symbol φ).

The tempered distribution φ(D)u is not well-defined for all functions φ and u ∈ S ′: we need φ û to define

a tempered distribution. This is for example the case if φ ∈ L∞ and u ∈ Ḣσ (in this case φ(D)u ∈ Ḣσ), or if
φ ∈ P(RN ) (the space of C∞ functions with slow growth i.e. that satisfy (II.1.8)).

Proof. We use a method introduced by Chemin and Xu in [5]. We fix a parameter A > 0 and decompose
f into a high-frequency part f>A and a low-frequency part f<A:

f>A = F
(
11|ξ|>Af̂(ξ)

)
= 11|D|>Af, f<A = 11|D|<Af = 1− f.

Let k(A) be the largest integer such that 2k(A) ≤ A. By using the Cauchy-Schwarz inequality, then the fact
that σ < N/2, we obtain:

|f<A(x)| =
1

(2π)N

∣∣∣∣∣
∫
|ξ|<A

eix·ξ f̂(ξ)dξ

∣∣∣∣∣ ≤ 1

(2π)N

∑
k≤k(A)

∫
2k≤|ξ|≤2k+1

|f̂(ξ)|dξ

≤ 1

(2π)N

∑
k≤k(A)

2k(N/2−σ)

(∫
2k≤|ξ|≤2k+1

|ξ|2σ|f̂(ξ)|2dξ

)1/2

≤ CNA
N/2−σ∥f∥Ḃσ ,

where CN depends only on the dimension N . Then we write (using Fubini’s equality):

∥f∥pLp =

∫
|f(x)|pdx =

∫
RN

p

∫ |f(x)|

0

λp−1dλdx = p

∫ +∞

0

λp−1
∣∣∣{x ∈ RN : |f(x)| ≥ λ

}∣∣∣ dλ,
where |S| denotes the Lebesgue measure of the measurable subset S of RN . Let A(λ) be such that

CNA(λ)
N
2 −σ∥f∥Ḃσ = λ/2.

For any x in RN ,

|f<A(λ)(x)| ≤
λ

2
.

Thus |f(x)| > λ =⇒ |f>A(λ)(x)| > λ/2. Hence:

∥f∥pLp ≤ p

∫ ∞

0

λp−1
∣∣∣ {x ∈ RN : |f>A(λ)(x)| > λ/2

} ∣∣∣dλ
By integrating |f>A(λ)|2 over the set

{
x ∈ RN : |f>A(λ)(x)| > λ/2

}
, we get∣∣∣ {x ∈ RN : |f>A(λ)(x)| > λ/2

} ∣∣∣ ≤ 4

λ2
∥f>A(λ)∥2L2 .

2This norm defines the Besov space Ḃσ
2,∞. See [1, Section 2.3] for the definition of general Besov spaces.
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Combining with the Plancherel theorem, then Fubini’s theorem, we obtain

∥f∥pLp ≤ 4p

(2π)N

∫ ∞

0

λp−3

∫
|ξ|>A(λ)

|f̂(ξ)|2dξdλ

=
4p

(2π)N

∫
RN

∣∣∣f̂(ξ)∣∣∣2 ∫ c(f,ξ)

0

λp−3dλdξ = Cp,N

∫
RN

∣∣∣f̂(ξ)∣∣∣2 c(f, ξ)p−2dξ,

where c(f, ξ) = 2CN∥f∥Ḃσ |ξ|
N
2 −s, and Cp,N depends only on N and p. It can be easily verified that (N2 −

σ)(p− 2) = 2σ, which proves the announced inequality. □

We will focus more particularly on the case s = 1. According to the above, the Sobolev space Ḣ1(RN ),

N ≥ 3, is a Hilbert space, contained in L
2N

N−2 , which can be defined as the closure of the space S(RN ) (or

C∞
0 (RN )) for the Ḣ1(RN )-norm. We can characterize this norm with the first-order partial derivatives of f .

Indeed,

∥f∥2
Ḣ1 =

1

(2π)N

∫
|ξ|2
∣∣f̂(ξ)∣∣2dξ = N∑

j=1

∫ ∣∣ξj f̂(ξ)∣∣2dξ,
which shows by Plancherel’s theorem and formula (II.1.7)

∥f∥2
Ḣ1 =

∫
|∇f(x)|2dx.

The attentive reader will have noticed that the space Ḣ1(RN ) is not the set of φ ∈ S ′(RN ) such that for all j,

∂xjφ ∈ L2(RN ): indeed, nonzero constant functions are in this space, but not in Ḣ1(RN ) (the Fourier transform
ĉ of a nonzero constant function is the multiple of a Dirac function, which does not satisfies the assumption of
local integrability in the definition of Ḣ1).

The density result of Theorem II.2.2 implies that Ḣ1(RN ) is the closure of C∞
0 (RN ) for the norm ∥ · ∥2

Ḣ1 .
An other characterization, using the Sobolev inequality, is given by

(II.2.2) Ḣ1(RN ) =
{
f ∈ L

2N
N−2 (RN ), |∇f | ∈ L2(RN )

}
.

The proof of (II.2.2) is left to the reader.

II.3. The wave equation in the Schwartz space

Let (u0, u1) ∈ S(RN ). We will write the solution u of (LW), (ID) using the Fourier transformation. We
start with a formal calculation, assuming that u(t) ∈ S for all t (which we will prove later). We denote û(t) as
the Fourier transform of u with respect to the spatial variable, i.e.,

û(t, ξ) =

∫
RN

e−ix·ξu(t, x)dx.

Thus, we have

∆̂u(t, ξ) = −|ξ|2û(t, ξ),
and the wave equation (LW) is formally equivalent to the linear differential equation

∂2t û(t, ξ) + |ξ|2û(t, ξ) = 0,

where the variable ξ is considered as a parameter. The solution to this equation, with initial conditions
(û(0), ∂tû(0)) = (u0, u1), yields

û(t, ξ) = cos(t|ξ|)û0(ξ) +
sin(t|ξ|)

|ξ|
û1(ξ),

or, with the previously introduced notation,

(II.3.1) u(t) = cos(t|D|)u0 +
sin(t|D|)

|D|
u1.

Theorem II.3.1. Let (u0, u1) ∈ S(RN )2. Then u defined by (II.3.1) is an element of C∞(R × RN ). It is
the unique C2 solution of (LW), (ID).
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Proof. Uniqueness follows from Theorem I.4.1. Hence, it suffices to prove that u, defined by (II.3.1), is
C∞ and satisfies (LW), (ID). We have

u(t, x) =
1

(2π)N

∫
RN

eix·ξ
(
cos(t|ξ|)û0(ξ) +

sin(t|ξ|)
|ξ|

û1(ξ)

)
dξ.

By writing
sin(t|ξ|)

|ξ|
= t

∑
k≥0

(−1)k(t|ξ|)2k

(2k + 1)!
,

we see that it is a C∞ function of (t, ξ). Moreover,
|∂j

t sin(t|ξ|)|
|ξ| ≤ |t||ξ|j . Similarly, (t, ξ) 7→ cos(t|ξ|) is C∞ and∣∣∣∂jt cos(t|ξ|)∣∣∣ ≤ |ξ|j . Using the fact that û0 and û1 are elements of S(RN ), by the theorem of differentiation

under the integral sign, we obtain that u is C∞ and satisfies (LW). The Fourier inversion formula shows that
u also satisfies the initial conditions (ID). □

II.4. The wave equation in Sobolev spaces

4.a. The equation in general homogeneous Sobolev spaces. Let (u0, u1) ∈ Ḣσ × Ḣσ−1, σ < N/2.
We define as before u by (II.3.1). We also define the formal derivative of u with respect to time:

u′(t, x) = cos(t|D|)u1 − |D| sin(t|D|)u0.

Then u and u′ satisfy the following properties:

Claim II.4.1. u ∈ C0(R, Ḣσ), u′ ∈ C0(R, Ḣσ−1), u(0) = u0, u
′(0) = u1.

Proof. Using that û0 ∈ L2(|ξ|2σdξ) and û1 ∈ L2(|ξ|2σ−2dξ), it is easy to see that

(II.4.1) û ∈ C0(R, L2(|ξ|2σdξ)), û′ ∈ C0(R, L2(|ξ|2σ−2dξ)),

which yields the announced continuity property. The facts that u(0) = u0 and u′(0) = u1 follow immediately
from the definition. □

Claim II.4.2. ∀t, ∥(u(t), u′(t))∥Ḣσ×Ḣσ−1 = ∥(u0, u1)∥Ḣσ×Ḣσ−1 .

Proof.∫
RN

|û(t, ξ)|2|ξ|2σdξ +
∫
RN

û′(t, ξ)|ξ|2σ−2dξ

=

∫
RN

∣∣∣∣cos(t|ξ|)û0(ξ) + sin(t|ξ|)
|ξ|

û1(ξ)

∣∣∣∣2 |ξ|2σdξ
+

∫
RN

∣∣∣− |ξ| sin(t|ξ|)û0(ξ) + cos(t|ξ|)û1(ξ)
∣∣∣2|ξ|2σ−2dξ

=

∫
RN

(
|û0(ξ)|2 + |û1(ξ)|2|ξ|−2

)
|ξ|2σdξ,

which gives the desired property. □

Claim II.4.3. Let (u0,n, u1,n) ∈ (S0(RN ))2 such that (u0,n, u1,n) converges to (u0, u1) in Ḣσ × Ḣσ−1. Let
un be the solution of (LW) with data (u0,n, u1,n). Then

lim
n→∞

sup
t∈R

∥un(t)− u(t)∥Ḣσ + ∥∂tun(t)− u′(t)∥Ḣσ−1 = 0.

Proof. It follows immediately from the preceding claim, applied to (u− un, u
′ − ∂tun). □

Claim II.4.4. One can identify u with a distribution on R × RN , and it satisfies the wave equation (LW)
in the distributional sense. Furthermore u′ = ∂tu in the sense of distribution.

Proof. We first give a “concrete” proof of these facts for the reader which is not familiar with the theory
of distributions, assuming that σ is large enough so that the object considered are all functions on R× RN .

Let σ ≥ 0. We let un be as in Claim II.4.3. Using that un is a C∞ solution of (LW) and integrating by
parts, we obtain ∫∫

un(t, x)(∂
2
t −∆)φdxdt = 0.
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Using the Sobolev embedding Ḣσ ⊂ Lp, 1
p = 1

2 − σ
N , and the point (II.4.3), we see that

lim
n→∞

∥u− un∥Lp(K) = 0,

for all compact K of RN . This implies

0 = lim
n→∞

∫∫
un(t, x)(∂

2
t −∆)φdxdt = lim

n→∞

∫∫
u(t, x)(∂2t −∆)φdxdt,

and thus

∀φ ∈ C∞
0 (R× RN ),

∫∫
u(∂2t −∆)φdtdx = 0,

which is precisely the meaning of ∂2t u−∆u = 0 in the distributional sense.
Let σ ≥ 1. The equality

∂tun = −|D| sin(t|D|)u0,n + cos(t|D|)u1,n.
holds by differentiation below the integral sign. By integration by parts,

∀φ ∈ C∞
0 (R× RN ),

∫∫
∂tunφdtdx = −

∫∫
un∂tφdtdx,

Letting n→ ∞, we obtain

∀φ ∈ C∞
0 (R× RN ),

∫∫
u′φdtdx = −

∫∫
u∂tφdtdx,

which means that u′ = ∂tu in the distributional sense.
The proof for general σ is essentially the same, and can be skipped by the reader who is not familiar with

distributions.
If φ ∈ C∞

0 (R × RN ) (the space of smooth functions with compact support on R × RN ), one defines the
action of u on φ by

⟨u, φ⟩ =
∫ +∞

−∞
⟨u(t), φ(t)⟩S′,S dt,

where φ(t) is the function t 7→ φ(t, ·). It is a straightforward exercise to prove that u is well-defined and that
is is a distribution on R×RN . The facts that u satisfies the wave equation in the distributional sense and that
u′(t) = ∂tu(t) follow immediately from Claim II.4.3, that implies that limun = u in the distributional sense,
where un is a in Claim II.4.3. This last fact is an immediate consequence of Claim II.4.3. □

From now on, we will use the formula (II.1.2) as the definition of the solution u of (LW), (ID) with

(u0, u1) ∈ Ḣσ × Ḣσ−1. The preceding claims show that such a u is a limit of smooth, classical solutions of
(LW), (ID), and that it satisfies (LW) in a weak sense. Also, we have

∂tu = −|D| sin(t|D|)u0 + cos(t|D|)u1
in the sense of distribution. In the sequel, we will always use the notation ∂tu to denote this quantity.

4.b. The wave equation in the energy space. Of particular interest for us is the case s = 1. We will
call “finite energy solutions” the weak solutions with initial data Ḣ1×L2 given by the preceding subsection in the

case s = 1, N ≥ 3. We will focus on the case N = 3. We note that if (u0, u1) ∈ (C3×C2)(R3)∩
(
Ḣ1 × L2

)
(R3),

we have two ways of defining the solution u: by integrals on spheres, as in Theorem I.5.2, and using the Fourier
transform, i.e. by formula (II.3.1). Let us prove that these two definitions coincide:

Proposition II.4.5. Let u ∈ C2(R×R3) be a solution of (LW), (ID). Assume furthermore u0 = u(0) ∈ Ḣ1,
u1 = ∂tu(0) ∈ L2. Then

u(t) = cos(t|D|)u0 +
sin(t|D|)

|D|
u1, ∂tu(t) = −|D| sin(t|D|)u0 + cos(t|D|)u1.

Proof. Let (u0,n, u1,n) ∈
(
S(RN )

)2
with

lim
n→∞

∥u0,n − u0∥Ḣ1 + ∥u1,n − u1∥L2 = 0.

Let un be the corresponding solution of (LW) given by (II.3.1) (note that by uniqueness it is also the solution
given by Theorem I.5.2). Since u− un is a C2, finite energy solution of (LW), Theorem I.6.1 yields

∀t, ∥u(t)− un(t)∥2Ḣ1 + ∥∂tu(t)− ∂tun(t)∥2L2 = ∥u0 − u0,n∥2Ḣ1 + ∥u1 − u1,n∥2L2 ,
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which tends to 0 as n goes to infinity. This proves the result, since un(t) converges to cos(t|D|)u0 + sin(t|D|)
|D| u1

in Ḣ1(R3) and ∂tun(t) converges to −|D| sin(t|D|)u0 + cos(t|D|)u1 in L2 by Claim II.4.3. □

Using the approximation of finite energy solutions by solutions with initial data in S, we can transfer several
results of Chapter I to general finite energy solutions. This is the case of the decay of energy on past wave
cones, which imply finite speed of propagation. If u is a finite energy solution (in any dimension N ≥ 3) and
R > 0, x0 ∈ RN , t0 ∈ R, we denote by

Eloc(t) =

∫
|x−x0|<R−|t−t0|

eu(t, x)dx.

Then

Theorem II.4.6. Eloc(t) is nonincreasing for t ≥ t0.

Proof. From Theorem I.4.1, this quantity is nonincreasing when (u0, u1) ∈ S. Considering the approxi-
mation given by Claim II.4.3, we obviously have, as a consequence of this claim,

∀t, lim
n→∞

∫
|x−x0|<R−|t−t0|

eun
(t, x)dx =

∫
|x−x0|<R−|t−t0|

eu(t, x)dx.

This gives the desired monotonicity property. □

We note that for general finite energy solution the integration by parts used in the proof of Theorem I.4.1
is no longer valid (since the boundary terms are not always well-defined).

4.c. Equation with a source term. We next consider the wave equation with a source term (I.1.2). By
linearity, it is sufficient to study the equation with zero initial data:

(II.4.2) ∂2t u−∆u = f, u⃗↾t=0 = (0, 0).

Proposition II.4.7. Assume f ∈ C0
(
R,S(RN )

)
. Then u defined by

(II.4.3) u(t) =

∫ t

0

sin ((t− s)|D|)
|D|

f(s)ds

is the unique solution of (II.4.2).

Proof. The uniqueness follows as usual by Theorem I.4.1. It is thus sufficient to check that u defined by
(II.4.3) is of class C2, and is a solution of (II.4.2). We consider F the function defined on R× R× RN by

F (t, s, x) =

(
sin
(
(t− s)|D|

)
|D|

f(s)

)
(x).

Thus

F (t, s, x) =
1

(2π)N

∫
RN

eix·ξ
sin
(
(t− s)|ξ|

)
|ξ|

f̂(s, ξ)dξ

Using that f̂ ∈ C0
(
R,S(RN )

)
, it is easy to check that F is continuous and C∞ with respect to the variable

(t, x), and that one can differentiate below the integral sign. The result follows since by integration by parts in
the ξ variable,

∆F (t, s, x) = − 1

(2π)N

∫
|ξ|2eix·ξ

sin
(
(t− s)|ξ|

)
|ξ|

f̂(s, ξ)dξ

□

We note that Duhamel formula (II.4.3) is still valid when f ∈ L1([−T,+T ], Ḣσ−1) for all T , where σ is

a fixed real number (assumed to be < N/2 for simplicity), and that it yields a function u ∈ C0(R, Ḣσ) with

∂tu ∈ C0(R, Ḣσ−1),

(II.4.4) ∂tu =

∫ t

0

cos
(
(t− s)|D|

)
f(s)ds,

in the sense of distribution, and such that

(II.4.5) ∥u⃗(t)∥Ḣσ×Ḣσ−1 ≤
∫ t

0

∥f(s)∥Ḣσ−1ds.

Note that (II.4.5) is exactly the energy inequality proved in Chapter I when σ = 1.
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We can approximate such an f by a sequence of functions (fn) with

fn ∈ C0(R,S), ∀t, lim
n→∞

∫ +T

−T

∥f(s)− fn(s)∥Ḣσ−1ds = 0.

The corresponding solutions un defined by

un(t) =

∫ t

0

sin
(
(t− s)|D|

)
|D|

fn(s)ds

are C2 solutions of (II.4.2) and satisfy

(II.4.6) sup
−T≤t≤T

∥u⃗n(t)− u⃗(t)∥Ḣσ×Ḣσ−1 −→
n→∞

0.

As in the case of the free wave equation (LW) with nonzero initial data, this proves that u satisfies (LW) in
the sense of distribution. In this situation, we will take the formula (II.4.3) as a definition of the solution u of
(LW).

Exercice II.1. Assume that σ = 1. Let f defined on R×RN , such that f ∈ L1([−T,+T, L2(RN )). Prove
that there exists a sequence of functions fn ∈ C∞

0 (R× RN ) such that

∀T > 0, lim
n→∞

∥fn − f∥L1([−T,+T ],L2(RN )) = 0.

Exercice II.2. Let u be a C2 solution of (LW) for some f ∈ C0(R×RN ). Assume that f ∈ L1([−T,+T ], L2(RN ))
for all T > 0. Show that u satisfies (II.4.3).





CHAPTER III

Strichartz inequalities

III.1. Introduction

In view of Plancherel theorem and the Fourier representation formulas for the wave equation, it is natural
to study the wave equation in L2(RN ) or in L2 based spaces such as the Sobolev spaces Ḣs considered in
the preceding chapter. However, this is not sufficient for the study of nonlinear wave equations. Indeed since
∥|f |p∥L2(RN ) = ∥f∥2pL2p , the appearance of Lebesgue spaces Lq with q ̸= 2 is unavoidable. A first way to deal
with this issue is to use Sobolev inequalities. For example, if one wants to consider solutions in the energy
spaces for the equation

(III.1.1) ∂2t u−∆u = u3, x ∈ R3,

the energy inequality will yields terms of the form1 ∥u3∥L1([0,T ],L2) = ∥u∥3L3([0,T ],L6) ≲ T∥u∥L∞([0,T ],Ḣ1), which

is sufficient to prove the existence and uniqueness of finite energy solutions for (III.1.1). However this strategy
will not work for higher order nonlinearities, and in particular the quintic one which we will focus on in several
chapters of this course. In this chapter I will introduce the celebrated Strichartz inequalities, that use the
dispersive properties of the wave equation to improve over Sobolev type inequalities. This type of inequalities
was introduced by Robert Strichartz in an article published in 1977 [14], and generalized later by several
authors. See e.g. [9] or the book [13].

The original inequalities of Strichartz were formulated in terms of Lebesgue spaces Lq(R×RN ) on the whole
space time R × RN . Having in minds applications to nonlinear wave equations, it is useful to consider more
general spaces where the Lebesgue exponents in space and times are distinct. If I is an interval, we will define
Lp(I, Lq(RN )) as the set of integrable function f : I 7→ Lq(RN ) such that

(III.1.2) ∥u∥Lp(R,Lq(RN )) =
∥∥∥∥u(·)∥Lq(RN )

∥∥∥
Lp(R)

=

(∫
R
∥u(t)∥pLqdt

)1/p

.

if finite (with the usual modification if p = ∞). The notion of integrable functions with values in a Banach space
can be rigorously defined by the theory of Bochner’s integration, see e.g. section 1.2 in the book [4]. An element
of Lp(I, Lq(RN )) can be identified with a (class) of measurable function on I ×RN . With the identification, we
can use the density of C∞

0 (RN ) in Lq(RN ), q < ∞, to prove that C∞
0 (I × RN ) is dense in Lp(I, Lq) if q and p

are finite. Using this fact, we will mainly work on LpLq norms of smooth functions, for which the definition of
(III.1.2) is clear.

We will often write Lp(I, Lq) instead of Lp(I, Lq(RN )) to lighten notations. When I = R, we will also use
the notation LpLq.

We will use the generalized Hölder inequality in these spaces:

Proposition III.1.1. Let p, q, p1, q1, p2, q2 in [1,∞] with

1

p
=

1

p1
+

1

p2
,

1

q
=

1

q1
+

1

q2
.

Let f ∈ Lp1Lq1 and g ∈ Lp2Lq2 . Then fg ∈ LpLq and

∥fg∥LpLq ≤ ∥f∥Lp1Lq1 ∥g∥Lp2Lq2 .

The proof of Proposition III.1.1, using the standard Hölder inequality, is left as an exercise to the reader.
We will also use the following consequence of Hölder inequality:

Exercice III.1. Let θ ∈ [0, 1], p, q, p1, q1, p2, q2 in [1,∞] with

1

p
=

θ

p1
+

1− θ

p2
,

1

q
=

θ

q1
+

1− θ

q2
.

1See below for the notations Lp(I, Lq)

27
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Let f ∈ Lp1Lq1 ∩ Lp2Lq2 . Prove that f ∈ LpLq and

∥f∥LpLq ≤ ∥f∥θLp1Lq1 ∥f∥1−θ
Lp2Lq2 .

III.2. Statement of the estimate

The Strichartz inequalities in space dimension 3 with initial data in the energy space read as follows:

Theorem III.2.1. Let (u0, u1) ∈ (Ḣ1 × L2)(R3) and f ∈ L1(R× L2(R3)). Let

(III.2.1) u(t) = cos(t|D|)u0 +
sin(t|D|)u1

|D|
+

∫ t

0

sin
(
(t− s)|D|

)
|D|

f(s)ds.

Then for any (p, q) with p > 2,

(III.2.2)
1

p
+

3

q
=

1

2
,

one has u ∈ Lp(R, Lq(R3)) and

∥u∥Lp(R,Lq) ≤ C
(
∥(u0, u1)∥Ḣ1×L2 + ∥f∥L1(R,L2)

)
.

for a constant C > 0 depending only on p.

Remark III.2.2. If I is an interval with 0 ∈ I, f ∈ L1(I, L2(RN )), and u satisfies (III.2.1) for t ∈ I, then
u ∈ Lp(I, Lq(R3)) and

(III.2.3) ∥u∥Lp(I,Lq) ≤ C
(
∥(u0, u1)∥Ḣ1×L2 + ∥f∥L1(I,L2)

)
.

This follows immediately from the Theorem, extending f by f(t) = 0 if t /∈ I.

Remark III.2.3. We recall that in the setting of Theorem III.2.1, we also have u⃗ ∈ C0
(
R, Ḣ1 × L2

)
, and

the energy inequality
∥u⃗(T )∥Ḣ1×L2 ≤ ∥u⃗(0)∥Ḣ1×L2 + ∥f∥L1([0,T ],L2),

for any T > 0, which can be easily checked using the space Fourier transform of formula (III.2.1)

We have focused on solutions with initial data Ḣ1 × L2 in space dimension 3, in view of application to the
quintic wave equation in space dimension 3. Analogs of Theorem III.2.1 exist in all space dimensions N ≥ 2,
with more general assumptions on the initial data (u0, u1) and the right hand-side f . The condition (III.2.2) is

necessary by the scaling of the equation. For solutions in space dimension N with initial data in Ḣσ × Ḣσ−1,
it becomes

1

p
+
N

q
=
N

2
− σ.

Let us mention that there is in general another condition on p and q. This condition does not appear in Theorem
III.2.1 as it is implied by the scaling condition (III.2.2).

Of particular interest is the case σ = 1/2 in space dimension 3, which was considered by R. Strichartz in
his article [14], and which is useful to solve the cubic wave equation. We state this inequality and will leave
some of the details of the proof to the reader:

Theorem III.2.4. Let u be defined by (III.2.1) with

(u0, u1) ∈ Ḣ1/2(R3)× Ḣ−1/2(R3), f ∈ L4/3(R× R3).

Then u ∈ L4(R× R3), u⃗ ∈ C0
(
R, Ḣ1/2 × Ḣ−1/2(R3)

)
and

sup
t∈R

∥u⃗(t)∥
Ḣ

1
2 ×Ḣ− 1

2
+ ∥u∥L4(R×R3) ≤ C

(
∥f∥L4/3(R×R3) + ∥(u0, u1)∥

Ḣ
1
2 ×H− 1

2

)
.

In the sequel of this chapter we will prove Theorem III.2.1 for p ≥ 4, which will be sufficient for our
applications to the nonlinear equations below.

We will use the following notations. If A and B are positive quantities, we will write A ≲ B when there
exists a constant C, independent of the parameters, such that A ≤ CB, and A ≡ B when A ≲ B and B ≲ A.

By the energy inequality and Sobolev embedding, we have for all t.

∥u(t)∥L6 ≲ ∥u(t)∥Ḣ1 ≲ ∥(u0, u1)∥Ḣ1×L2 + ∥f∥L1(R,L2),

which solves the case p = ∞, q = 6. Next, we notice that by Hölder inequality, if p and q satisfy (III.2.2) with
p ∈ (4,∞), we have

(III.2.4) ∥u∥LpLq ≲ ∥u∥1−θ
L∞L6∥u∥θL4L12
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where θ = 4
p . Thus the inequality (III.2.3) for this pair (p, q) will follows from the same equality for p = 4,

q = 12. We are just reduced to prove the estimate (III.2.3) for p = 4, q = 12. By density, we can assume

(u0, u1) ∈
(
C∞

0 (R3)
)2
, f ∈ C∞

0 (R× R3).
The inequality will follow from the dispersion inequality (Theorem I.5.5) proved in Chapter I.
To deduce the Strichartz inequality from the dispersion inequality a few tools from harmonic analysis are

needed. These tools, that include Hardy-Littlewood-Sobolev inequality, dyadic decomposition, Littlewood-
Paley theory and interpolation of Lebesgue spaces, are recalled in Section III.3. In Section III.4, we prove the
Strichartz inequality for the “half-wave equation”, which is an order 1 equation related to the wave equation.
Section III.5 is devoted to the end of the proof of Theorem III.2.1.

III.3. Some tools from harmonic analysis

We first recall an interpolation Theorem for a linear operator between Lp space.

Theorem III.3.1 (Riesz–Thorin interpolation Theorem). Let (X,µ), (Y, ν) be measure spaces. Let

θ ∈]0, 1[, (p0, p1, q0, q1, p, q) ∈ [1,∞]6

with

(III.3.1)
1

p
=

θ

p0
+

1− θ

p1
,

1

q
=

θ

q0
+

1− θ

q1
.

Let A be a linear operator defined on Lp0(X) + Lp1(X) which is bounded from Lp0(X) to Lq0(Y ) and from
Lp1(X) to Lq1(Y ). Then A is a bounded linear operator from Lp(X) to Lq(Y ), and

∥A∥Lp(X)→Lq(Y ) ≤ ∥A∥θLp0 (X)→Lq0 (Y )∥A∥
1−θ
Lp1 (X)→Lq1 (Y ).

In the theorem, ∥A∥E→F denotes the operator norm of the bounded operator A : E → F , where E and F
are Banach spaces.

We next recall Young’s inequality for the convolution

Theorem III.3.2. Let f ∈ Lq(RN ), g ∈ Lr(RN ) with 1/q+1/r ≥ 1, and p defined by 1
p +1 = 1

q +
1
r . Then

f ∗ g(x) =
∫
f(x− y)g(y)dy

is defined for almost every x ∈ RN and

(III.3.2) ∥f ∗ g∥Lp ≤ ∥f∥Lq∥g∥Lr ,

Exercice III.2. Prove Young’s inequality. Hint: start with the cases (q, r) = (1, 1), (q, r) = (∞, 1),
(q, r) = (1,∞) and use the interpolation theorem III.3.1.

When N = 1 and θ ∈]0, 1[, the function t 7→ 1/tθ, is not in L1/θ due to a logarithmic divergence at 0 and
∞. The Hardy-Littlewood-Sobolev inequality says that this function behaves as a L1/θ function from the point
of view of convolution. We will use this inequality in the particular case θ = 1/2, p = 4/3, q = 4. We refer e.g.
to [1, Theorem 1.7] for the proof.

Theorem III.3.3 (Hardy Littlewood Sobolev). Let θ ∈]0, 1[, (p, q) ∈]1,∞[2 satisfy

1

p
+ θ = 1 +

1

q
.

Let f ∈ Lp(RN ). Let, for t ∈ R,

(III.3.3) g(t) =

∫
R
f(s)

1

|t− s|θ
ds.

Then the integral defining g converges for almost every t, and

∥g∥Lq(R) ≲ ∥f∥Lp(R).

We next give a few elements of Littlewood-Paley theory, which is a useful tool to study Lp spaces with
p ̸= 2 by Fourier transformation. What follows is by no mean a complete account on Littlewood-Paley theory:
we will just state the needed results, and will give only some of the proofs. We refer to [1, Chapter 2] for a
complete introduction to the subject.

We start with some inequalities on frequency localized function.



30 III. STRICHARTZ INEQUALITIES

Theorem III.3.4 (Berstein-type estimates). Let ψ ∈ C∞
0 (RN ). Then if 1 ≤ q ≤ p ≤ ∞

(III.3.4) ∀f ∈ S(RN ), ∀λ > 0, ∥ψ(λD)f∥Lp ≲ λ(
N
p −N

q )
∥∥∥f∥∥∥

Lq

Assume furthermore ψ(ξ) = 0 for ξ close to 0. Then, if s ∈ R and p ∈ [1,∞],

(III.3.5) ∀f ∈ S(RN ), ∀λ > 0,
∥∥∥|D|sψ(λD)f

∥∥∥
Lp

≈ λ−s
∥∥∥ψ(λD)f

∥∥∥
Lp
.

Moreover, if s ∈ N,

(III.3.6) ∀f ∈ S(RN ), ∀λ > 0, sup
|α|=s

∥∥∥∂αx (ψ(λD)f)
∥∥∥
Lp

≈ λ−s
∥∥∥ψ(λD)f

∥∥∥
Lp
.

In the theorem, the implicit constants might depend on ψ, but of course not on f and λ > 0.

Proof. Step 1.
We first prove (III.3.4) for λ = 1. We have

(III.3.7) ψ(D)u = (Fψ) ∗ u,

where f ∗ g is the convolution of f and g. This is a classical property of the Fourier transform, which can be
checked by an explicit computation of F(ψ(D)u). Note that Fψ ∈ S ⊂

⋂
1≤p≤∞ Lp. Using Young’s inequality

we obtain that (III.3.4) holds for λ = 1, i.e. that there exists C > 0 such that

∀f ∈ S(RN ), ∥ψ(D)f∥Lp ≤ ∥f∥Lq .

Step 2: rescaling. Denote by Tλu(x) = u(λx). By a simple change of variable, one can prove

Ψ(D)(Tλu) = Tλ (ψ(λD)u)

Thus by Step 1,

∥Tλ (ψ(λD)u)∥Lp ≲ ∥Tλu∥Lq .

Since ∥Tλf∥Lp = 1
λN/p ∥f∥Lp , we obtain (III.3.4) for any λ > 0.

Step 3: proof of (III.3.5).
Let χ ∈ C∞

0 (Rd \ {0}), such that χ(ξ) = 1 if ξ ∈ supp(ψ). Then

|D|sψ(λD)u = |D|sχ(λD)ψ(λD)u =
1

λs
Ξ(λD)ψ(λD)u,

where Ξ(ξ) = |ξ|sχ(ξ). Using (III.3.4) with p = q, we obtain

(III.3.8)
∥∥|D|sψ(λD)u

∥∥
Lp ≲

1

λs
∥∥ψ(λD)u

∥∥
Lp .

Using (III.3.8), with s replaced by −s and u replaced by |D|sχ(λD)u, we obtain∥∥ψ(λD)u
∥∥
Lp =

∥∥|D|−sψ(λD)|D|su
∥∥
Lp ≲ λs

∥∥ψ(λD)|D|su
∥∥
Lp .

This concludes the proof of (III.3.5).
Step 4: proof of (III.3.6). First, we have

(III.3.9)
∥∥∥ψ(λD)∂αx f

∥∥∥
Lp

=
∥∥∥∂αxχ(λD)ψ(λD)f

∥∥∥
Lp

=
1

|λ||α|
∥∥∥Ξα(λD)ψ(λD)f

∥∥∥
Lp
,

where χ is as above and Ξα(ξ) = (iξ)αχ(ξ). The estimate ≲ in (III.3.6) then follows from (III.3.4) with q = p.
Next, if s is even, we have |D|s = (−∆)s/2, which shows that (III.3.5) implies the other estimate in (III.3.6).
If s is odd, we write∥∥∥ψ(λD)|D|sf

∥∥∥ = ∥ψ(λD)|D|s+1 1

|D|
f∥Lp ≲ sup

|α|=s+1

∥∥∂αx |D|−1ψ(λD)f
∥∥
Lp

≈ 1

λ
sup

|α|=s+1

∥∂αxψ(λD)f∥Lp ,

and we conclude with (III.3.9) that the inequality ≳ in (III.3.6) holds in this case also. □
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The Littlewood-Paley theory is based on a dyadic decomposition of a distribution f ∈ S ′(RN ). We fix once
and for all a radial function φ ∈ C∞

0 (RN ) with φ(ξ) = 1 if |ξ| ≤ 1/2, and φ(x) = 0 if |x| ≥ 1. We let

Θj(ξ) = φ

(
ξ

2j+1

)
− φ

(
ξ

2j

)
= Θ

(
ξ

2j

)
, Θ(ξ) = φ(ξ/2)− φ(ξ).

We have

suppΘj ⊂
{
2j−1 ≤ |ξ| ≤ 2j+1

}
,

+∞∑
j=−∞

Θj(ξ) = 1, (ξ ̸= 0),

where the sum is, for any fixed ξ, a finite sum. We denote

∆jf = Θj(D),

so that (at least formarly) f =
∑

j∈Z Θj(D)f (Dyadic decomposition of f in frequencies). If f ∈ S0, it is easy
to prove that this sum converges in S.

We have the inequality

(III.3.10) ∀ξ ̸= 0,
1

2
≤
∑
j∈Z

Θ2
j (ξ) ≤ 1.

Exercice III.3. Prove (III.3.10). Hint: Let

A(ξ) =
∑
j odd

Θj(ξ), B(ξ) =
∑

j even

Θj(ξ).

Check that if ξ ̸= 0,

A(ξ) +B(ξ) = 1, A2(ξ) =
∑
j odd

Θ2
j (ξ), B2(ξ) =

∑
j even

Θ2
j (ξ).

Combining with Plancherel identity, it follows that if f ∈ S(RN ),

(III.3.11) ∥f∥2L2(RN ) ≈
∑
j∈Z

∥∆jf∥2L2(RN ),

and more generally,

(III.3.12) ∥f∥2
Ḣs ≈

∑
j∈Z

∥∆j |D|sf∥2L2 ≈
∑
j∈Z

(22j)s∥∆jf∥2L2 .

The situation is more complicated for p ̸= 2. Nevertheless, we have the following estimates:

Theorem III.3.5. For all p ∈ (1, 2], for any f ∈ S

(III.3.13)
∑
j∈Z

∥∆jf∥2Lp ≲ ∥f∥2Lp

For all p ∈ [2,∞), for any f ∈ Lp,

(III.3.14) ∥f∥2Lp ≲
∑
j∈Z

∥∆jf∥2Lp .

We omit the proof refering the interested reader to [1, Theorem 2.40].

Exercice III.4. Prove:

• For all p ∈ [1, 2], for any f ∈ S

(III.3.15) ∥f∥pLp ≲
∑
j∈Z

∥∆jf∥pLp

• For all p ∈ [2,∞], for any f ∈ Lp,

(III.3.16)
∑
j ∈Z

∥∆jf∥pLp ≲ ∥f∥pLp

(where the sum has to be interpreted as supj ∥∆jf∥L∞ when p = ∞).

Hint: Start with the cases p = 1 and p = 2 for (III.3.15) and p = ∞ and p = 2 for (III.3.16), then use an
interpolation argument.
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The two estimates of Exercise III.4 complete the estimates of Theorem III.3.5. The proofs are simpler than
the proof of Theorem III.3.5, but are not detailed here since we will not need these estimates below.

Note that there is no perfect equivalence between the norm ∥f∥Lp and a norm defined as a ℓq norm of the
sequence (∥∆jf∥Lp)j if p ̸= 2.

Let us mention that the quantities

(III.3.17) ∥f∥q
Ḃ0

p,q

=
∑
j∈Z

∥∆jf∥qLp

appearing in (III.3.13), (III.3.14), (III.3.15) and (III.3.16) defines the norm of the so-called Besov space Ḃ0
p,q.

See Sections 2.3, 2.4 and 2.5 of [1] for more details on Besov spaces.

III.4. A Strichartz inequality for the half wave equation

It is sometimes useful to decompose the wave equation in two first-order equations in the time-variable. This
is particularly the case when dealing with Fourier analysis tools. We thus introduce the half-wave equations

∂tu+ i|D|u = 0, ∂tu− i|D|u = 0,

and their solutions (given in term of Fourier representations) e−it|D|φ and eit|D|φ. Note that the solution to
the usual wave equation (LW), (ID) is given by

2u(t) = eit|D|u0 + e−it|D|u0 +
eit|D|

i|D|
u1 −

e−it|D|

i|D|
u1

Note also that if v(t) = eit|D|φ, then e−it|D|u0 = v(−t), thus it is sufficient to consider only the solution eit|D|φ.
The function eit|ξ| is not smooth at ξ = 0, so that eit|D| does not map S(RN ) to S(RN ). However it maps
S0(RN ) to S0(RN ) (where as before S0(RN ) is the space of functions φ in S(RN ) such that φ̂ is identically 0 in
a neighborhood of the origin).

In this Section, we will prove

Proposition III.4.1. There exists C > 0 such that

(III.4.1) ∀φ ∈ S(RN ),

∥∥∥∥ei·|D|

|D|
φ

∥∥∥∥
L4(R,L12)

≲ ∥φ∥L2 ,

where as usual ei·|D|φ denotes (t, x) 7→
(
eit|D|φ

)
(x).

Proof. Step 1: frequency-localized dispersion estimate.
We will use the Littlewood-Paley decomposition of φ, φ =

∑
j∈Z ∆jφ. In this step we prove the following

frequency localized version of the dispersion inequality for the wave equation

(III.4.2) ∀j,
∥∥∥∥eit|D|

|D|
∆jφ

∥∥∥∥
L∞

≲
2j

t
∥∆jφ∥L1 .

We let φj = ∆jφ. By the dispersion inequality for the full wave equation and Theorem III.3.4, we have∥∥∥∥ sin(t|D|)
|D|

φj

∥∥∥∥
L∞

≲
1

|t|
∥φj∥Ẇ 1,1 ≈ 2j

|t|
∥φj∥L1

and ∥∥∥∥cos(t|D|)
|D|

φj

∥∥∥∥
L∞

≈ 1

2j
∥cos(t|D|)φj∥L∞ ≲

1

2j |t|
∥φj∥Ẇ 2,1 ≈ 2j

|t|
∥φj∥L1 .

Step 2. A L4/L4/3 dispersion inequality

We next introduce ∆̃jf = ∆j−1f + ∆jf + ∆j+1f . Noting that Θj−1 + Θj + Θj+1 = 1 on the support

of Θj , we see that ∆̃j∆jf = ∆jf . For fixed t > 0 and j, consider the operator eit|D||D|−1∆̃j . By Step 1, it
is a bounded operator from L1 to L∞, with operator norm ≲ 2j/t. By Plancherel and Theorem III.3.4, it is
bounded from L2 to L2 with operator norm ≲ 2−j . Using the interpolation Theorem III.3.1, we obtain that

eit|D||D|−1∆̃j is a bounded operator from L4/3 to L4 with operator norm ≲ t−1/2. Using that ∆̃j∆j = ∆j , we
deduce ∥∥∥∥eit|D| 1

|D|
∆jφ

∥∥∥∥
L4

≲
1

|t|1/2
∥∆jφ∥L4/3 .

Taking the square and summing up, we deduce (using Theorem III.3.5)

(III.4.3)

∥∥∥∥eit|D| 1

|D|
φ

∥∥∥∥
L4

≲
1

|t|1/2
∥φ∥L4/3 .
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Step 3. Strichartz inequality.
Next, we consider the operator T defined by

(Tφ)(t, x) =
(
eit|D||D|−1/2φ

)
(x)

In this step we prove that T extends to a bounded operator from L2(R3) to L4(R×R3), with an operator norm
that is independent of j, i.e.

(III.4.4) ∀φ ∈ S(R3),
∥∥∥eit|D||D|−1/2φ

∥∥∥
L4(R×R3)

≲ ∥φ∥L2 .

We will use a so-called TT ∗ argument to reduce the proof of (III.4.4) to the proof of the boundedness of an
operator acting on functions on R× R3.

The inequality (III.4.4) is equivalent to the following statement:

∀φ ∈ S(R3), ∀g ∈ C∞
0 (R× R3),

∣∣∣∣∫∫ (Tφ)gdxdt

∣∣∣∣ ≲ ∥φ∥L2(R3)∥g∥L4/3(R×R3).

Using Plancherel equality in the space variable for every t ∈ R, we obtain∫∫
(Tφ)gdxdt =

∫
φ(x)(T ∗g)(x)dx,

where the (formal) adjoint T ∗ of T is defined by

T ∗g(x) =

∫
R
e−it|D||D|−1/2g(t)dt.

We are thus reduced to prove

(III.4.5) ∀g ∈ C∞
0 (R× R3), ∥T ∗g∥L2(R3) ≲ ∥g∥L4/3(R×R3).

We have

(III.4.6) ∥T ∗g∥2L2 =

∫
R3

T ∗gT ∗gdx =

∫∫
R×R3

TT ∗ggdxdt,

and (III.4.5) would follow from the inequality

(III.4.7) ∥TT ∗g∥L4(R×R3) ≲ ∥g∥L4/3(R×R3).

We have

TT ∗g(t, x) =

∫
R
ei(t−s)|D||D|−1g(s)ds.

Using the L4/L4/3 dispersion inequality of Step 2, we obtain at fixed t,

∥(TT ∗g)(t)∥L4(R3) ≲
∫
R

1

|t− s|1/2
∥g(s)∥L4/3(R3) ds

By Hardy Littlewood Sobolev inequality, we deduce

∥TT ∗g∥L4(R×R3) ≲ ∥g∥L4/3(R×R3),

which yields (III.4.7) and thus concludes the proof of (III.4.4).

Step 4. The L4L12 Strichartz inequality. We next conclude the proof of Proposition III.4.1 by proving that
for φ ∈ S,

(III.4.8)
∥∥∥eit|D|φ

∥∥∥
L4(R,L12(R3))

≲ ∥φ∥Ḣ1 .

The inequality (III.4.8) follows from (III.4.4) (applied to |D|φ) and the Sobolev inequality

(III.4.9) ∀f ∈ S, ∥f∥L12(R3) ≲
∥∥∥|D|1/2f

∥∥∥
L4(R3)

.

To illustrate the tools introduce in the preceding section, we give a proof that does not use (III.4.9), but rather
Theorems III.3.4 and III.3.5. By the preceding step, applied to ∆j |D|φ, we have

(III.4.10) 2j
∥∥∥ei·|D|∆jφ

∥∥∥2
L4(R×R3)

≤ ∥∆j |D|φ∥2L2 .

By Theorem III.3.4 (Bernstein inequalities), at fixed t,

∥eit|D|∆jφ∥L12 ≲ 2j/2
∥∥∥eit|D|∆jφ

∥∥∥
L4(R3)

.
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Taking the L4 norm in time, then summing up the squares, we obtain

(III.4.11)
∑
j

∥ei·|D|∆jφ∥2L4L12 ≲
∑
j

2j
∥∥∥eit|D|∆jφ

∥∥∥2
L4(R×R3)

≲
∑
j

∥∆j |D|φ∥2L2 ,

where we have used (III.4.10) to obtain the last inequality. The right-hand side of (III.4.11) is ≈ ∥φ∥2
Ḣ1 by

Plancherel equality (see (III.3.11)). We must prove that the left-hand side dominates
∥∥eit|D|φ

∥∥
L4L12 . Let

u = eit|D|φ and uj = ∆ju. By Minkowski inequality (i.e. the triangle inequality for the L2(R) norm), we see
that ∑

j∈Z
∥uj∥2L4L12 =

∑
j∈Z

∥∥∥∥uj(t)∥2L12(R3)

∥∥∥
L2(R)

≥

∥∥∥∥∥∥
∑
j∈Z

∥uj(t)∥2L12

∥∥∥∥∥∥
L2(R)

By Theorem III.3.5, at fixed t,

∥u(t)∥2L12 ≲
∑
j∈Z

∥uj(t)∥2L12 .

This shows ∑
j∈Z

∥uj∥2L4L12 ≳
∥∥∥∥u(t)∥2L12(R3)

∥∥∥
L2(R)

= ∥u∥1/2L4L12 ,

which together with (III.4.11) concludes the proof of Proposition III.4.1.
□

Remark III.4.2. An alternative, somehow simpler approach is to sum up over j the frequency localized
dispersion inequality of Step 2 of the preceding proof. Using Theorem III.3.5, one obtains a L4/L4/3 dispersion
inequality for the half-wave equation: ∥∥∥eit|D||D|−1φ

∥∥∥
L4

≲
1

|t|1/2
∥φ∥L4/3 .

It is then possible to forget about frequency cut-off and run the preceding arguments to obtain Strichartz
inequalities for the half-wave equation directly.

III.5. Proof of the Strichartz estimate for the full wave equation

We are now ready to prove Theorem III.2.1. We can treat separately the terms

uL(t) = cos(t|D|)u0 +
sin(t|D|)u1

|D|
and

(III.5.1) (Bf)(t) =

∫ t

0

sin
(
(t− s)|D|

)
|D|

f(s)ds.

Using that cos(t|D|) = 1
2

(
eit|D| + e−it|D|), sin(t|D|) = 1

2i

(
eit|D| − e−it|D|), we obtain immediately from Propo-

sition III.4.1
∥uL∥L4(R×R3) ≲ ∥u0∥Ḣ1 + ∥u1∥L2 .

The other term is more delicate. We first consider

ua(t) =

∫ ∞

0

ei(t−s)|D|

|D|
f(s)ds = eit|D|F, F =

∫ ∞

0

e−is|D|

|D|
f(s)ds

and

ub(t) =

∫ ∞

0

e−i(t−s)|D|

|D|
f(s)ds

Using that e−is|D|/|D| is a bounded operator from L2 to Ḣ1, we obtain that F ∈ Ḣ1 with

∥F∥Ḣ1 ≲ ∥f∥L1(R,L2(R3)).

By the Strichartz estimate for the half-wave equation, Proposition III.4.1, we deduce

∥ua∥L4(R,L12(R3)) ≲ ∥f∥L1(R,L2(R3)).

Similarly
∥ub∥L4(R,L12(R3)) ≲ ∥f∥L1(R,L2(R3)).

Combining, we obtain

(III.5.2) ∥Af∥L4(R,L12(R3)) ≲ ∥f∥L1(R,L2(R3)),
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where A is the operator defined by

Af(t) =

∫ ∞

0

sin
(
(t− s)|D|

)
|D|

f(s)ds.

Note that Af is analogous to Bf defined above, the only difference between the two being that the integral
defining Af is on [0,∞), whereas the integral defining Bf is on [0, t[. An important functional analysis result,
due to Michael Christ and Alexander Kiselev [6], shows that the boundedness of A implies the boundedness of
B. We state this result in a version that was proposed by Christopher Sogge:

Lemma III.5.1. Let X and Y be Banach spaces. Let 1 ≤ p < q ≤ ∞. Let K a continuous function from R2

to the space of bounded linear operators from X to Y . Let

(Af)(t) =

∫ ∞

−∞
K(t, τ)f(τ)dτ,

and assume that A is a bounded operator from Lp(R, X) to Lq(R, Y ), with operator norm C. Define the operator
B by

(Bf)(t) =

∫ t

−∞
K(t, τ)f(τ)dτ.

Then B extends to a bounded operator from Lp(R, X) to Lq(R, Y ), with operator norm ≤ 2Cθ2

1−θ , where θ = 2
1
q−

1
p .

Applying Christ and Kiselev Lemma to

(III.5.3) K(t, τ) = 11τ>0

sin
(
(t− τ)|D|

)
|D|

χ(ε|D|),

where χ ∈ C∞
0 (R3) is equal to 1 close to 0, one obtains

∀ε > 0, ∀f ∈ L1(R, L2), ∥χ(εD)Bf∥L4L12 ≲ ∥f∥L1L2 ,

where Bf is as in (III.5.1). Letting ε→ 0 we obtain the desired result.

Exercice III.5. Justify this last argument.





CHAPTER IV

Cauchy theory for the non-linear equation

In this chapter we will consider the nonlinear wave equation with a power-like nonlinearity

(NLW) ∂tu
2 −∆u = σup,

on I × RN , where N is an interval, where the power p is an integer ≥ 2 and σ is nonzero real parameter.
Considering the unknown λu instead of u for a suitable choice of λ > 0, we see that we can assume

σ ∈ {±1}.
We will briefly consider the general case, then restrict to the quintic case p = 5 in space dimension 3. We will
also comment on the cubic case p = 3, in the same space dimension.

IV.1. Scaling invariance. Critical Sobolev space

Let u be a (nonzero) C2 solution of (NLW) on (a, b)×RN , where a < b. Let uλ(t, x) = λαu(λt, λx), where
λ > 0 and α = α(p,N) will be specified later. We have

∂2t uλ −∆uλ = λα+2−αpσupλ.

Thus, if α = 2
p−1 , we see that uλ is a solution of (NLW) on

(
a
λ ,

b
λ

)
× RN . We will assume that α has this

particular value in the sequel, denoting

uλ(t, x) = λ
2

p−1u(λt, λx).

Let
Ḣs = Ḣs(RN )× Ḣs−1(RN ).

The critical Sobolev exponent is by definition the unique s such that

∥u⃗λ(0)∥Ḣsc = ∥u⃗(0)∥Ḣsc .

Since by explicit computation

(IV.1.1) ∥u⃗λ(0)∥Ḣs = λ
2

p−1+s−N/2∥u⃗(0)∥Ḣs .

We see that

sc =
N

2
− 2

p− 1
.

We observe that sc grows with p, and is always strictly smaller than N/2.
Consider a solution u of (NLW) defined on a finite interval [0, T [. The corresponding solution uλ is defined

on [0, T/λ[. Growing λ has the effect of decreasing the time of existence. If s > sc, the Ḣs norm of u⃗λ(0)
becomes larger with λ. If s < sc it becomes smaller. Thus in the case where s < sc, the effect of scaling is to
simultaneously decrease the norm of the initial data in Ḣs, s < sc and shrinking its interval of existence. This
is contrary to the intuition that for smaller solutions, the effect of the nonlinearity is weaker, and the solution
should behave in a linear way (and in particular has a long time of existence). This leads to an informal
conjecture that sc is a threshold for local well-posedness. It turns out that this conjecture is true for the wave
equation: the equation (NLW) is locally well-posed1 in Ḣs for s ≥ sc, and ill-posed if Ḣs for s < sc.

We will focus on the quintic case p = 5 in space dimension N = 3:

(W5) (∂2t −∆)u = σu5.

In this case the critical Sobolev case is Ḣ1, and the equation is called “energy critical”. We will also sometimes
consider the cubic equation

(W3) (∂2t −∆)u = σu3,

1By “well-posed in X”, we mean that there is existence and uniqueness of solutions with initial data in X and a reasonable
stability theory. We will not give a more rigorous definition of local well-posedness. See e.g. Definition 3.4, Remark 3.5 of T. Tao’s

book [15]

37
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in dimension 1 + 3, for which sc = 1/2. As usual, we will take initial data, say at t = t0:

(ID) (u, ∂tu)t=t0 = (u0, u1).

In all the sequel, we fix N = 3.

IV.2. Definition of solutions

As for the linear wave equation, the notion of classical (C2) solution is too restrictive for the equation (W5),
and we will define the following weaker notion of solution, based on Duhamel’s formulation of the equation:

Definition IV.2.1. A finite energy solution of (W5), (ID) on an interval I with t0 ∈ I is a function
u ∈ L5

loc(I, L
10) such that ∀t ∈ I,

(IV.2.1) u(t) = cos
(
(t− t0)|D|

)
u0 +

sin
(
(t− t0)|D|

)
|D|

u1 +

∫ t

t0

sin
(
(t− s)|D|

)
|D|

u5(s)ds,

where (u0, u1) ∈ Ḣ1.

In the definition, by u ∈ L5
loc(I, L

10(R3)), we mean that u ∈ L5(J, L10) for any compact interval J ⊂ I.
Note that if u is a finite-energy solution in the above sense, one has u5 ∈ L1

loc(I, L
2(R3)), and thus by

energy estimates (see Remark III.2.3),

u⃗ ∈ C0(I, Ḣ1).

Also, by Chapter II, u satisfies the equation (W5) in the sense of distribution on I × R3.
The solutions given by the Duhamel formula as in Definition IV.2.1 are called “strong” solutions in the

book of Terence Tao [15], by opposition to the weaker notion of distributional solutions (that do not impose
continuity in time) and the stronger notion of classical solutions (that are C2 and satisfy the equation in a
classical sense). Note however that this terminology is not universal. For example the solutions of Definition
IV.2.1 are called . . . “weak” solutions in the book [13] of Christopher Sogge.

We refer to Section 3.2 of [15] “What is a solution?”, for a discussion on different types of solutions.
In the sequel, by “solution to (W5)” we will always mean (unless specified otherwise) a solution in the sense

of Definition IV.2.1.

Exercice IV.1. Check that the definition of finite energy solutions above does not depend on the choice
of the initial time. In other words, if u is a solution of (W5) on I and t1 ∈ I, then for all t ∈ I,

u(t) = cos
(
(t− t1)|D|

)
u(t1) +

sin
(
(t− t1)|D|

)
|D|

∂tu(t1) +

∫ t

t1

sin
(
(t− s)|D|

)
|D|

u5(s)ds.

IV.3. Existence and uniqueness

3.a. A local statement. We introduce the following notations:

SL(t)u⃗0 = cos (t|D|)u0 +
sin(t|D|)

|D|
u1, S⃗L(t)u⃗0 = (SL(t)u⃗0, ∂tSL(t)u⃗0) ,

where u⃗0 = (u0, u1). We start with the following local statement:

Theorem IV.3.1. There exists δ0 > 0 with the following property. Let I be an interval with t0 ∈ I. Let
u⃗0 ∈ Ḣ1. Assume

(IV.3.1) ∥SL(· − t0)u⃗0∥L5(I,L10) = δ ≤ δ0.

Then there exists a unique solution u of (W5), (ID) on I. Furthermore

(IV.3.2) sup
t∈I

∥∥∥u⃗(t)− S⃗L(t− t0)u⃗0

∥∥∥
Ḣ1

+ ∥u− SL(· − t0)u⃗0∥L5(I,L10) ≲ δ5.

In the Theorem, SL(· − t0)u⃗0 denotes the map t 7→ SL(t− t0)u⃗0.
Theorem IV.3.1 has two important consequences:

Local well-posedness: Note that (5, 10) is a Ḣ1-admissible couple in dimension 3 (it satisfies (III.2.2)).

By Theorem III.2.1, if u⃗0 ∈ Ḣ1, then SL(·)u⃗0 ∈ L5(R, L10(R3)). Thus if T > 0 is small enough, then

∥u⃗0∥L5([−T,+T ],L10) ≤ δ0,

and Theorem IV.3.1 implies that there exists a solution to (W5), (ID) on [−T,+T ].



IV.3. EXISTENCE AND UNIQUENESS 39

Small data global well-posedness: If u⃗0 ∈ Ḣ1 and ∥u0∥Ḣ1 ≤ δ0/CS , where CS is the constant in
the Strichartz inequality (III.2.3) with p = 5, q = 10, then ∥SL(·)u⃗0∥L5(R,L10) ≤ δ0, and one can use

Theorem IV.3.1 with I = R. This shows that the corresponding solution u is globally defined, and
that u ∈ L5(R, L10).

Proof of Theorem IV.3.1. Assume without generality that t0 = 0. We use the Banach fixed point
theorem, proving that the operator A, defined by

(IV.3.3) Av (t) = SL(t)u⃗0 +Bv (t), Bv (t) =

∫ t

0

sin
(
(t− s)|D|

)
|D|

v5(s)ds,

is a contraction on X defined by

X =
{
v ∈ L5(I, L10), ∥v∥L5(I,L10) ≤ 2δ0

}
.

We first prove that A maps X into X. Indeed, If v ∈ X, then by Theorem III.2.1 (see Remark III.2.2),

∥Bv(t)∥L5(I,L10) ≤ CS

∥∥v5∥∥
L1(I,L2)

≤ CS ∥v∥5L5(I,L10) ≤ CSδ
5
0 ≤ δ0,

assuming δ0 ≤ C
−1/4
S . Thus Av ∈ X.

We next prove that A is a contraction on X. Let v, w ∈ X. Using w5 − v5 = (w − v)(w4 + w3v + w2v2 +
wv3 + v4) and Young’s inequality ab ≤ ap/p+ bq/q, 1/p+ 1/q = 1, one obtains

|v5 − w5| ≤ 5

2
|v − w| (v4 + w4).

Combining with Hölder’s inequality, we obtain

(IV.3.4)
∥∥v5 − w5

∥∥
L1(I,L2)

≤ 5

2
∥v − w∥L5(I,L10)

(
∥v∥4L5(I,L10) + ∥w∥4L5(I,L10)

)
.

By Strichartz estimates

∥Av −Aw∥L5(I,L10) = ∥Bv −Bw∥L5(I,L10) ≤ CS

∥∥v5 − w5
∥∥
L1(I,L2)

≤ 5CS∥v − w∥L5(I,L10)δ
4
0 .

If δ0 is small enough (δ0 = (10CS)
−1/4

works), one has

∥Av −Aw∥L5(I,L10) ≤
1

2
∥v − w∥L5(I,L10).

This shows that A is a contraction on X.
Let u be the only fixed point of A in X. Since u = Au and u ∈ L5(I, L10) we see that u is a solution of

(W5) on I.2 Using

u− SL(·)u⃗0 = Bu,

and ∥Bu∥L5(I,L10) ≤ δ5, and Strichartz inequality, we obtain (IV.3.2). It remains to prove the uniqueness

statement. From the contraction argument, we see that u is the unique solution of (W5) such that ∥u∥L5(I,L10) ≤
δ0. We prove a stronger statement, Lemma IV.3.2 below, that will conclude the proof. □

Lemma IV.3.2. Let u, v be two solutions of (W5) on an interval I with t0 ∈ I. Assume u⃗(t0) = v⃗(t0).
Then u = v.

Proof. Assume again t0 = 0 to simplify notations. Let δ0 > 0 be as in Theorem IV.3.1. We let K = [a, b]
be a compact subinterval of I such that t0 ∈ K. We will prove that u(t) = v(t) for t ∈ K. Since K is compact,
we have by Definition IV.2.1,

u ∈ L5(K,L10), v ∈ L5(K,L10).

We can thus divide K into p subintervals [τj , τj+1], 0 ≤ j ≤ p− 1, with τ0 < τ1 < . . . < τp, such that

∀j ∈ {0, . . . , J − 1}, max
(
∥u∥L5([τj ,τj+1],L10), ∥v∥L5([τj ,τj+1],L10)

)
≤ δ0.

Let j0 be an index such that 0 ∈ [τj0 , τj0+1]. By the proof of Theorem III.2.1, with I = [τj0 , τj0+1], noting that
u and v are in X, we obtain u(t) = v(t) for t ∈ [τj0 , τj0+1]. This implies

u⃗(τj0) = v⃗(τj0) and u⃗(τj0+1) = v⃗(τj0+1).

We can then iterate the preceding arguments on the intervals [τj , τj+1], j = j0 + 1, j = j0 + 2 until j = J − 1,
and j = j0 − 1, j = j0 − 2 until j = 0 to obtain that u(t) = v(t) for t ∈ K, concluding the proof. □

2Recall that “solution” is to be taken in the sense of Definition IV.2.1.
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3.b. Maximal solution. Using the above local existence theorem, we can now glue the solutions above
to construct a maximal solution of (W5).

Corollary IV.3.3. Let u⃗0 ∈ Ḣ1 and t0 ∈ R. Then there is a unique maximal solution of (W5), (ID).
Denoting by Imax = (T−, T+) its interval of existence, we have the following blow-up criteria:

(IV.3.5) T+ <∞ =⇒ u /∈ L5([t0, T+[, L
10), T− > −∞ =⇒ u /∈ L5(]T−, t0], L

10).

The phrase “maximal solution” in the theorem means that if v is another solution of (W5), (ID) defined
on an interval I with t0 ∈ I, then I ⊂ Imax and u(t) = v(t) for all t ∈ I.

Proof. Let J be the set of all open intervals I such that t0 ∈ I, and there exists a solution v of (W5),
(ID) on I. Let

Imax =
⋃
I∈J

I.

By Theorem IV.3.1, J is nonempty. Thus Imax is an open interval containing t0. If t ∈ Imax, there exists an
interval I and a solution v of (W5), (ID) on I. By the uniqueness Lemma IV.3.2, the value v(t) does not depend
on the choice of I. We denote by u(t) this common value. Let K be a compact subinterval of Imax. We next
prove:

(IV.3.6) u ∈ L5(K,L10).

Indeed, for all t ∈ K, there exist an open interval I ∈ J such that t ∈ I and u is a solution of (W5) on I. This
implies in particular that u ∈ L5([t− ε, t+ ε], L10) if ε = ε(t) is small enough. Using the compactness of K, we
can cover K by a finite numbers of interval ]t− ε(t), t+ ε(t)[, and thus we obtain (IV.3.6).

If t ∈ Imax, by the definition of Imax and the uniqueness Lemma IV.3.2, we have that

u(t) = SL(t)u⃗0 +

∫ t

0

sin
(
(t− s)|D|

)
|D|

u5(s)ds,

which concludes the proof that u is a solution of (W5), (ID) on Imax. The maximality of u is a direct consequence
of the definition of Imax and Lemma IV.3.2. □

Let us mention that it is not possible to improve the blow-up criterion to

T+ <∞ =⇒ lim sup
t→∞

∥u⃗(t)∥Ḣ1 = +∞.

Indeed, it was proved by Krieger, Schlag and Tataru [11] that there exist solutions of (W5) with σ = 1, with
finite time of existence T+ and such that

lim sup
t→T+

∥u⃗(t)∥Ḣ1 <∞.

Exercice IV.2. Consider the cubic nonlinear wave equation (W3), (ID) with initial data (u0, u1) in the

critical space Ḣ1/2, in space dimension 3. Define a concept of “solution” for this equation analogous to the one
of Definition IV.2.1. Prove the analogs of Theorem IV.3.1 and Corollary IV.3.3. Hint : use the L4(I×R3) norm
instead of the L5(I, L10(R3)) norm, and the Strichartz inequality of Theorem III.2.4.

IV.4. Finite speed of Propagation

Remark IV.4.1. The proof of Theorem III.2.1 implies that if I is an interval, t0 ∈ I, and u is a solution of
(W5), (ID) on I such that ∥u∥L5(I,L10) ≤ δ0/2, then u is the limit, in L5(I, L10), of the sequence un defined by

u0 = 0, un = Aun, where A is the operator defined in the proof. Indeed, by Strichartz estimates,

∥SL(· − t0)u⃗0∥L5(I,L10) ≤ ∥u∥L5(I,L10) + CS∥u∥5L5(I,L10) ≤
δ0
2

+ CSδ
5
0/32 ≤ δ0.

Thus u⃗0 satisfies the assumption of Theorem III.2.1 and the conclusion follows from the fact that u is a fixed
point of the contraction A.

This remark will be used at least twice in this course to obtain properties of the solution u. We will first
use it to prove the finite speed of propagation property for the nonlinear equation:

Theorem IV.4.2. Let (t0, x0) ∈ R1+3, t1 > t0, R > 0. We denote Γ =
{
(t, x) ∈ R×RN : t0 ≤ t ≤ t1, |x−

x0| ≤ R− |t− t0|
}

Let u and v be two solutions of (W5) on [t0, t1]. We suppose (u, ∂tu)(t0, x) = (v, ∂tv)(t0, x)

for all x ∈ BR(x0). Then u(t, x) = v(t, x) for almost all (t, x) ∈ Γ.
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Proof. Dividing the interval [t0, t1] into subintervals [τj , τj+1], 0 ≤ j ≤ J − 1, t0 = τ0 < τ1 < . . . < τJ ,
such that

∀j ∈ {0, . . . , J − 1}, max
(
∥u∥L5([τj ,τj+1],L10(R3)), ∥v∥L5([τj ,τj+1],L10(R3))

)
≤ δ0/2,

we see that it is sufficient to prove the theorem with the additional assumption

max
(
∥u∥L5([t0,t1],L10(R3)), ∥v∥L5([t0,t1],L10(R3))

)
≤ δ0/2.

Thus u = limn→∞ un, v = limn→∞ vn in L5(I, L10), I = [t0, t1], where u
n and vn are defined by

u0 = v0 = 0, un+1 = Aun, vn+1 = Ãvn,

where A is as in the proof of Theorem IV.3.1 (see (IV.3.3)), and Ã is the analog of A for the initial data of v:

Ãw(t) = SL(t)v⃗(0) +

∫ t

0

sin
(
(t− s)|D|

)
|D|

w5(s)ds.

(As usual, we assume t0 = 0 to simplify notations).
We prove by induction on n that un(t, x) = vn(t, x) for almost every (t, x) ∈ Γ. This is true for n = 0, since

u0 = v0 = 0.
Next, we assume that un(t, x) = vn(t, x) for almost every (t, x) ∈ Γ. We have

un+1(t)− vn+1(t) = SL(t)(u⃗(0)− v⃗(0)) +

∫ t

0

(sin(t− s)|D|)
|D|

(un(s)− vn(s)) ds.

By finite speed of propagation for the linear wave equation and the assumption that u⃗0(x) = v⃗0(x) for |x−x0| <
R, we obtain that SL(t)(u⃗(0)− v⃗(0)) = 0 for almost all (t, x) ∈ Γ. On the other hand, if s ∈ [0, t], the inductive
hypothesis implies that un(s, x) = vn(s, x) for |x − x0| < R − s. Combining with finite speed of propagation,
we see that

(sin(t− s)|D|)
|D|

(un(s)− vn(s)) = 0

for almost every (t, x) with |x− x0| < R− s− (t− s) = R− t, i.e. for almost every (t, x) ∈ Γ.
Thus un = vn almost everywhere on Γ. Passing to the limit, we obtain un = vn on Γ. □

IV.5. Stability

We now prove that the flow of the equation (W5) is continuous in Ḣ1, i.e. that if the initial data of two
solutions u and v are close in this space, then u⃗(t) and v⃗(t) are close for all times t in their domain of existence.
In the statement, we must take into account the fact that the solutions u and v might have different maximal
interval of existence.

Theorem IV.5.1. Let t0 ∈ R, u⃗0 = (u0, u1) ∈ Ḣ1. Let u be the solution of (W5), (ID). Let I be a compact

interval such that t0 ∈ I ⊂ Imax(u⃗0). Let (u⃗k0)k be a sequence in Ḣ1 such that limn u⃗
k
0 = u⃗0 in Ḣ1. Let uk be

the corresponding solutions. Then for large k, I ⊂ Imax(u⃗
k
0), and

lim
k→∞

(
sup
t∈I

∥∥u⃗k(t)− v⃗k(t)
∥∥
Ḣ1 + ∥uk − vk∥L5(I,L10)

)
= 0.

Proof. We will consider T > 0 such that

(IV.5.1) ∥u∥L5([0,T ],L10) ≤ δ0

(where δ0 is a small parameter), and prove that T+(uk) > T for large k and

(IV.5.2) ∥u− uk∥L5([0,T ],L10) + sup
0≤t≤T

∥∥u⃗(t)− u⃗k(t)
∥∥
Ḣ1 −→

k→∞
0.

The conclusion of the theorem will then follow by iteration, dividing as above the interval I into subintervals
where the L5L10 norm of u is small.

We have

(IV.5.3) u(t)− uk(t) = SL(t)(u⃗0 − u⃗k0) +

∫ t

0

sin
(
(t− s)|D|

)
|D|

(
u5(s)− (uk)5(s)

)
ds.

As in (IV.3.4), we have∥∥u5 − (uk)5
∥∥
L1([0,t],L2)

≤ 5

2

∥∥u− uk
∥∥
L5([0,t],L10)

(
∥u∥4L5([0,t],L10) +

∥∥uk∥∥4
L5([0,t],L10)

)
.
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Using the triangle inequality, and (IV.5.1), we deduce∥∥u5 − (uk)5
∥∥
L1([0,t],L2)

≤ 5

2

∥∥u− uk
∥∥
L5([0,t],L10)

(
2δ40 +

∥∥u− uk
∥∥4
L5([0,t],L10)

)
.

Thus, by (IV.5.3) and Strichartz estimate, we have that for all t ∈ [0, T ]

ak(t) ≤ C
(
εk + δ40ak(t) + ak(t)

5
)
,

where ak(t) =
∥∥u− uk

∥∥
L5([0,t],L10)

, εk =
∥∥u⃗0 − u⃗k0

∥∥
Ḣ1 −→

k→∞
0, and C is a constant. Taking δ0 small (so that

Cδ40 ≤ 1/2), we deduce

(IV.5.4) ak(t) ≤ 2Cεk + 2Cak(t)
5.

We temporarily fix k, large enough so that 2C(4Cεk)
5 ≤ Cεk, and prove

(IV.5.5) ∀t ∈ [0, T ], ak(t) ≤ 3Cεk.

Indeed, (IV.5.5) is true for small t > 0, since a is continuous and a(0) = 0. If (IV.5.5) does not hold, using
again the continuity of a, we see that there exists a t ∈ [0, T ] such that 3Cεk < ak(t) ≤ 4Cεk. By (IV.5.4), and
the smallness of εk we see that ak(t) ≤ 3Cεk. This is a contradiction, concluding the proof of (IV.5.5). This
type of reasoning is called a bootstrap argument. By (IV.5.5),

lim
k→∞

ak(T ) = 0

Using (IV.5.3) and Strichartz estimate again, we deduce

sup
t∈[0,T ]

∥∥u⃗(t)− uk(t)
∥∥
Ḣ1 −→

k→∞
0,

which concludes the proof. □

IV.6. Persistence of regularity, conservation of the energy

The energy of a solution u of (W5) is defined as

(IV.6.1) E(u⃗(t)) =
1

2

∫
(∂tu(t, x))

2dx+
1

2

∫
|∇u(t, x)|2dx− σ

6

∫
(u(t, x))6dx,

where all integrals are taken over R3. Multiplying the equation (W5) by ∂tu(t, x), integrating on R3 and
integrating by part, we would obtain that the derivative of the energy is 0, and thus that it is independent
of time. However this computation is purely formal. To make it rigorous, we need to work on more regular
solutions. The key ingredient for this is the persistence of regularity property:

Theorem IV.6.1. Let u⃗0 = (u0, u1) ∈ Ḣ1, u be the solution of (W5), (ID) given by Corollary IV.3.3, and

Imax its maximal interval of existence. Let ℓ ≥ 2 be an integer. Assume u⃗0 ∈ Ḣℓ. Then

(IV.6.2) u⃗ ∈ C0
(
Imax, Ḣℓ ∩ Ḣ1

)
, ∂2t u ∈ C0

(
Imax, Ḣ

ℓ−2 ∩ L2
)

In particular, if ℓ ≥ 4, u ∈ C2
(
Imax × R3

)
Remark IV.6.2. We leave as an exercise to the reader the proof of the following fact: if s1 <

N
2 and s2 ∈ R,

the space Ḣs1 ∩ Ḣs2 , endowed with the norm defined by

∥f∥2
Ḣs1∩Ḣs2

= ∥f∥2
Ḣs1

+ ∥f∥2
Ḣs2

is a Hilbert space. This is the case of the spaces Ḣℓ ∩ Ḣ1 and Ḣℓ−1 ∩ L2 that appear in the statement of the
preceding theorem.

Proof. We prove the result for ℓ = 2. The proof for ℓ ≥ 3 is very close and left to the reader. As usual,
we assume t0 = 0. We note that the property of ∂2t u in (IV.6.2) follows from u ∈ C0(Imax, Ḣ

ℓ), the equation

∂2t u = ∆u+ σu5 and Sobolev embedding (which implies that Ḣℓ ∩ Ḣ1(R3) is an algebra for ℓ ≥ 2. We are thus

left to prove u⃗ ∈ C0
(
Imax, Ḣℓ

)
.

Step 1.
We first consider a small T > 0. By the proof of Theorem IV.3.1, the restriction of u to [−T,+T ] is the

limit, in L5([−T,+T ), L10), of the sequence un defined as above by u0 = 0, un+1 = Aun, where A is defined by
(IV.3.3). Let j ∈ {1, 2, 3}. We have

(IV.6.3) ∂xj (u
n+1) = SL(t)∂xj u⃗0 + 5

∫ t

0

sin
(
(t− s)|D|

)
|D|

(un(s))
4
∂xju

n(s)ds,
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where ∂xj is the distributional derivative with respect to xj , and we have used the formula ∂xj (v
5) = 5v4∂xjv,

which is valid for v ∈ Ḣ2 (this can be checked easily using that the functions in Ḣ2 are continuous3.

We prove by induction on n that (un, ∂tu
n) ∈ C0([−T,+T ], Ḣ2) with

(IV.6.4) sup
−T≤t≤T

∥(un, ∂tun)∥Ḣ2 ≤ 2M, sup
|α|≤1

∥∂αx un∥L5([−T,+T ],L10) ≤ 2δ0,

where M = ∥u⃗0∥Ḣ2 , and we have chosen T small enough, so that

(IV.6.5) sup
|α|≤1

∥SL(·)∂αx u⃗0∥L5([−T,+T ],L10) ≤ δ0.

The case n = 0 is trivial since u0 = 0.

Next we assume that
−→
un ∈ C0

(
[−T,+T ], Ḣ2

)
and satisfies (IV.6.4). Then by Strichartz estimates, the

definition of un+1, the inductive hypothesis, (IV.6.5) and the smallness of δ0:

(IV.6.6) sup
|α|≤1

∥∂αx un∥L5([−T,+T ],L10) ≤ δ0 + Cδ50 ≤ 2δ0.

The same argument, together with the definition of M yields that (un(t), ∂tu
n(t)) ∈ C0([−T,+T ], Ḣ2) and

(IV.6.7) sup
−T≤t≤T

∥(un(t), ∂tun(t))∥Ḣ2 ≤M + Cδ50 ≤ 2M.

This shows that (IV.6.4) holds for all n as announced.

Step 2. Fixing j ∈ {1, 2, 3} we will prove that (∂xju
n)n is a Cauchy sequence in C0([−T,+T ], Ḣ1) and

L5([−T,+T ], L10). Indeed,∣∣(un)4∂xj
un − (un−1)4∂xj

un−1
∣∣

=
∣∣∣((un)4 − (un−1)4

)
∂xj

un +
(
∂xj

un−1 − ∂xj
un
)
(un)

4
∣∣∣

≲
∣∣un − un−1

∣∣ ∣∣∂xju
n
∣∣ (|un|3 + |un−1|3

)
+
∣∣∂xju

n−1 − ∂xju
n
∣∣ ((un)4 + (un−1)4

)
.

Which yields, by (IV.6.6)∥∥(un)4∂xj
un − (un−1)4∂xj

un−1
∥∥
L1([−T,+T ],L2)

≲ δ40
∥∥∂xj

(un − un−1)
∥∥
L5([−T,+T ],L10)

+ δ40
∥∥un − un−1

∥∥
L5([−T,+T ],L10)

By Strichartz estimates and the definition of un, letting

cn = sup
|α|≤1

∥∥∂αx (un − un−1)
∥∥
L5([−T,+T ],L10)

dn = sup
−T≤t≤T

∥(un(t)− un−1(t), ∂tu
n(t)− ∂tu

n−1(t))∥Ḣ1∩Ḣ2 ,

we obtain, for n ≥ 1, choosing δ0 small enough,

cn+1 ≤ 1

99
cn, dn+1 ≲ cn.

This proves that (∂αx u
n)n is a Cauchy sequence, and thus has a limit, in L5([−T,+T ], L10) and in C0([−T,+T ], Ḣ1).

By a similar proof, one obtains that (∂tu
n)n has a limit in C0([−T,+T ], Ḣ1). By uniqueness of limits (for ex-

ample in L1
loc), we obtain

u⃗ ∈ C0([−T,+T ], Ḣ1 ∩ Ḣ2), ∀j, ∂xj
u ∈ L5((−T, T ), L10).

Step 3. Maximal interval of existence. We next consider

τ+ = sup

{
τ < T+, sup

|α|≤1

∥∂αx u∥L5([0,τ ],L10) <∞

}
,

where T+ is the maximal time of existence of u as a Ḣ1 solution, defined in Corollary IV.3.3. In this step we
prove that τ+ = T+.

Assume that τ+ < T+. Thus u ∈ L5([0, τ+], L
10). We let τ0 ∈ [0, τ+[ such that

∥u∥L5([τ0,τ+],L10) = δ ≪ 1.

3The reader which is not familiar with the theory of distribution can assume in all this proof that u⃗0 ∈ C3 ×C2: all functions

un will then by also of class C2, and differentiation can be understood in the classical sense.
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Using Strichartz estimates and the formula

∂xj
u = SL(t)∂xj

u⃗0 + 5

∫ t

0

sin
(
(t− s)|D|

)
|D|

(u(s))
4
∂xj

u(s)ds,

we see that u⃗ ∈ C0([0, τ ], Ḣ2) for all τ < τ+. As a consequence of Strichartz estimates, we also obtain, for all
τ < τ+,

∀j,
∥∥∂xj

u
∥∥
L5([τ0,τ ],L10)

≲
∥∥SL(· − τ0)∂xj

u⃗(τ0)
∥∥
L5([τ0,τ ],L10)

+ Cδ4∥∂xj
u∥L5([τ0,τ ],L10).

Hence for all τ < τ+,

∀j,
∥∥∂xj

u
∥∥
L5([τ0,τ ],L10)

≲
∥∥SL(· − τ0)∂xj

u⃗(τ0)
∥∥
L5([τ0,τ+],L10)

,

This shows that ∂xju ∈ L5([0, τ+], L
10). Using the energy inequality, we see that u⃗ ∈ C0([0, τ+], Ḣ1∩Ḣ2). Thus

u⃗(τ+) ∈ Ḣ2, which is a contradiction with the definition of τ+, since by Steps 1 and 2, ∂αx u⃗ ∈ L5([τ+−ε, τ++ε])
if ε is small ε > 0.

This concludes the proof for ℓ = 2. The proof for ℓ ≥ 3 is mostly identical, considering all ∂αx u with
|α| ≤ ℓ− 1 instead of |α| ≤ 1. □

Remark IV.6.3. If T+ <∞, then

lim
t→T+

∥u⃗(t)∥Ḣ1∩Ḣ2 = +∞.

This is an immediate consequence of the embedding Ḣ2 ∩ Ḣ1 and the blow-up criterion in L5L10.

Corollary IV.6.4. Let u be a solution with initial data (u0, u1) ∈ (C∞
0 (R3))2. Then the corresponding

solution u of (W5), (ID) is in C∞(Imax × R3), where Imax = Imax(u⃗0) is the maximal interval of existence of
u.

Proof. The corollary follows immediately from Theorem IV.6.1, using that

(IV.6.8) C∞
0 (R3) ⊂

⋂
s≥1

Ḣs ⊂ C∞.

□

Exercice IV.3. Prove (IV.6.8). Hint : use the Fourier representation of u:

u(x) =
1

(2π)3/2

∫
R3

eix·ξû(ξ)dξ.

We are now in position to prove rigorously the conservation of the energy:

Theorem IV.6.5. Let the energy E be defined by (IV.6.1). Let u⃗ be a solution of (W5). Then E(u⃗(t)) is
independent of t ∈ Imax(u).

Proof. Let t0, t1 ∈ Imax(u). Let u⃗
n
0 = (un0 , u

n
1 ) ∈

(
C∞

0 (R3)
)2

such that

(IV.6.9) lim
n→∞

∥u⃗n0 − u⃗(t0)∥Ḣ1 = 0.

Let un be the solution of (W5) with initial data un(0) = un0 , ∂tu
n(0) = un1 . By the stability theorem IV.5.1,

[t0, t1] is included in the maximal interval of existence of un for large n.
By Corollary IV.6.4, un ∈ C∞([t0, t1] × R3). Since it satisfies (W5) in the sense of distribution, it must

also satisfy this equation in the classical sense. By finite speed of propagation un(t) is a compactly supported
function (in space) for all t ∈ [t0, t1]. We have∫

∂2t u
n∂tu

n −
∫

∆un∂tu
n − σ

∫
(un)5∂tu

n = 0

Since
∫
∆un∂tu

n =
∫ ∑

j=1,2,3 ∂xj
un∂t∂xj

un, we deduce

d

dt
E(u⃗n(t)) = 0, t0 ≤ t ≤ t1.

Thus E(u⃗n(t0)) = E(u⃗n(t1)). Passing to the limit n→ ∞ and using Theorem IV.5.1, we deduce

E(u⃗(t0)) = E(u⃗(t1)),

concluding the proof. We have used that by the Sobolev embedding Ḣ1(R3) ⊂ L6(R3), the convergence in Ḣ1

implies the convergence in L6. □
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In the case σ = −1, all the terms in the definitions of the energy are positive, and we have

u⃗(t) ≤ 2E(u⃗(t)).

This implies that the Ḣ1 norm of any solution u of (W5) is bounded on its maximal interval of existence. This
is not sufficient to ensure global existence. We will see however that in this case, all solutions are indeed global.

Definition IV.6.6. The equation (W5) or the corresponding nonlinearity is called defocusing (or repulsive)
when σ = −1 and focusing (or attractive) when σ = 1.

Let us mention that we can also construct classical solutions of (W5) (or of any equation of the form (NLW)
with p ∈ N, p ≥ 2, in space dimension 3), without Strichartz estimates, using the representation formulas of
Chapter 1 and a fixed point argument. These solutions coincide with the finite energy solutions of Definition
IV.2.1 when u⃗0 ∈ C3

0 (R3) × C2
0 (R3) for example. This is an alternative approach to obtain Corollary IV.6.4.

We refer to [13, Section I.5] for the details.
One can also prove persistence of regularity of the cubic wave equation:

Theorem IV.6.7. Let u be the solution of (W3), (ID) with initial data u⃗0 ∈ Ḣ1/2∩Ḣk, for k ≥ 1 such that

2k is an integer4. Then u⃗ ∈ C0
(
Imax, Ḣk

)
, where Imax is the maximal interval of existence of u. Furthermore

the energy of u:

1

2

∫
(∂tu(t, x))

2dx+
1

2

∫
|∇u(t, x)|2dx− σ

4

∫
|u(t, x)|4dx

is conserved.

Exercice IV.4. Prove Theorem IV.6.7.

IV.7. Blow-up in finite time

In the focusing case σ = 1, there exists solutions blowing-up in finite time:

Theorem IV.7.1. Let T > 0. There exists a solution u of (W5), with C∞, compactly supported initial data
u⃗0 at t = 0, such that T+(u⃗0) = T .

Proof. By scaling invariance, it is sufficient to construct one solution of (W5) blowing-up in finite time,
with compactly supported, smooth initial data.

Let Y be a solution of the ODE Y ′′ = Y 5 defined on [0, 1[, and blowing-up at t = 1. For example
Y (t) = c(1− t)−1/2, where 3

4 = c4. Note that Y is a solution of (W5) (in the classical sense).

Let φ ∈ C∞
0 (R3) such that φ(x) = 1 for |x| ≤ 2. Let u be the solution of (LW) with initial data

(φY (0), φY ′(0)). Let T+ be the maximal time of existence of u. By finite speed of propagation,

u(t, x) = Y (t), |x| ≤ 2− t, t ∈ [0, T+[.

If T+ > 1, we have ∫ 1

0

(∫
|x|≤1

u10(t, x)dx

)1/2

dt = c5
∫ 1

0

1

(1− t)5/2
dt = +∞,

a contradiction with the fact that u must be in L5([0, 1], L10). Thus T+ ≤ 1, concluding the proof. □

The preceding proof is not completely rigorous: we have used finite speed of propagation for the equation
(W5) outside of the framework of Theorem IV.4.2, since Y is not a solution of (W5) in the sense of Definition
IV.2.1. We thus need the analog of IV.7.2 for classical solutions:

Theorem IV.7.2. Let (t0, x0) ∈ R1+3, t1 > t0, R > 0. We denote by Γ =
{
(t, x) ∈ R × RN : t0 ≤

t ≤ t1, |x − x0| ≤ R − |t − t0|
}

Let u, v ∈ C2(Γ) be two classical solutions of (W5) on Γ. We suppose

(u, ∂tu)(t0, x) = (v, ∂tv)(t0, x) for all x ∈ BR(x0). Then u(t, x) = v(t, x) all (t, x) ∈ Γ.

We leave the proof of Theorem IV.7.2 as an exercise to the reader:

4See Exercise IV.2
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Exercice IV.5. Let u and v be as in Theorem IV.7.2. Assume t0 = 0, x0 = 0. Let

V (t) =
1

2

∫
|x|<R−t

(u(t, x)− v(t, x))2dx+
1

2

∫
|x|<R−t

(∂tu(t, x)− ∂tv(t, x))
2dx

+
1

2

3∑
j=1

∫
|x|<R−t

(∂xj
u(t, x)− ∂xj

v(t, x))2dx.

(1) Prove that V ′(t) ≤ CV (t) for t ∈ [0, t1].
(2) Prove that V (t) = 0 for all t ∈ [0, t1].



CHAPTER V

Examples of dynamics

In this chapter, we give examples of dynamics of (W5). Section V.1 concerns global solutions which behave
asymptotically as solutions of the linear wave equation. In Section V.2, we will consider stationary solutions
and traveling waves.

V.1. Scattering

1.a. Definition and characterization.

Definition V.1.1. The solution u of (W5) is said to scatter in the future to a linear solution if T+(u) = +∞
and there exists v⃗0 ∈ Ḣ1(R3) such that

(V.1.1) lim
t→∞

∥∥∥S⃗L(t)v⃗0 − u⃗(t)
∥∥∥
Ḣ1

= 0.

In the remainder of this section, we will simply say that a solution as in Definition V.1.1 scatters or is a
scattering solution. We next give a characterization of scattering solutions:

Proposition V.1.2. The solution u of (W5), (ID) scatters if and only if u ∈ L5([0, T+), L
10), where T+

is the maximal time of existence of u.

Proof. Let u be a solution such that u ∈ L5([0, T+), L
10). By the blow-up criterion, we already know that

T+(u) = +∞. Let v⃗0 ∈ Ḣ1. Since S⃗L(t) conserves the Ḣ1 norm, we have

(V.1.1) ⇐⇒ lim
t→∞

∥∥∥v⃗0 − S⃗L(−t)u⃗(t)
∥∥∥
Ḣ1

= 0.

We are thus reduced to prove that S⃗L(−t)u⃗0(t) has a limit in Ḣ1. Since u is a solution in the sense of Definition
IV.2.1, we have

S⃗L(−t)u⃗(t) = u⃗0 +

∫ t

0

S⃗L(−s)(0, u5(s))ds.

Using u ∈ L5([0,+∞, L10) and ∥∥∥S⃗L(−s)(0, u5(s))
∥∥∥
Ḣ1

=
∥∥u5(s)∥∥

L2 = ∥u(s)∥5L10 ,

we see that ∫ ∞

0

∥∥∥S⃗L(−s)(0, u5(s))
∥∥∥
Ḣ1
ds = ∥u∥5L5([0,∞),L10) <∞.

Thus
∫ t

0
S⃗L(−s)(0, u5(s))ds converges in Ḣ1 as t goes to ∞, which shows that u scatters to a linear solution.

End of the course April 2nd.
Next, we consider a solution u of (W5) that scatters to a linear solution. Thus T+(u) = ∞, and there exists

v⃗0 ∈ Ḣ1 such that

lim
t→∞

∥∥∥u⃗(t)− S⃗L(t)v⃗0

∥∥∥
Ḣ1

= 0.

Fix T0 ≥ 0 such that

∥SL(·)v⃗0∥L5([T0,∞[,L10) ≤ δ0/2,

where δ0 is given by the local well-posedness theory (Theorem IV.3.1). Let T ≥ T0. Then, by Strichartz
estimates

∥SL(·)u⃗(T )∥L5([0,∞[,L10) ≤ ∥SL(·)v⃗0∥L5([T,∞[,L10) + CS

∥∥∥u⃗(T )− S⃗L(T )v⃗0

∥∥∥
Ḣ1

≤ δ0

for large T . By Theorem IV.3.1 and the uniqueness Lemma IV.3.2,

u ∈ L5([T,+∞), L10)

which concludes the proof. □

47
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Combining Theorem IV.3.1, Strichartz estimates and Proposition V.1.2, we obtain:

Corollary V.1.3 (Small data scattering). There exists a constant ε > 0 such that for all u⃗0 ∈ Ḣ1 with
∥u⃗0∥Ḣ1 ≤ ε, the solution of (W5), (ID) scatter in both time directions.

Two natural questions arise:

Existence of wave operators: Given v⃗0 ∈ Ḣ1, does there exist a solution u of (W5) with T+(u) = +∞
and

(V.1.2) lim
t→∞

∥∥∥u⃗(t)− S⃗L(t)v⃗0

∥∥∥
Ḣ1

= 0?

Asymptotic completeness: Do all solutions of (W5) scatter?

It turns out that the answer to the first question is always positive, independently of the sign σ in (W5). The
asymptotic completeness is a much more delicate issue. We already know that it is not true in the focusing case
σ = 1, since there exist solutions blowing-up in finite time (see Section IV.7). On the other hand, the asymptotic
completeness holds in the defocusing case σ = −1 (see [2]). We will prove this fact for radial solutions. The
general proof is more complicated but relies on the same type of arguments.

1.b. Existence of wave operators.

Theorem V.1.4. Let v⃗0 ∈ Ḣ1. Then there exists a solution u of (W5) with T+(u) = +∞ and such that
(V.1.2) holds.

Proof. Let v⃗0 ∈ Ḣ1. Let u be a scattering solution of (W5) such that (V.1.2) holds. Letting t → ∞ in
the equality

S⃗L(−t)u⃗(t) = u⃗0 + σ

∫ t

0

S⃗L(−s)
(
0, u5(s)

)
ds,

we obtain

(V.1.3) v⃗0 = u⃗0 + σ

∫ ∞

0

S⃗L(−s)
(
0, u5(s)

)
ds.

Note that the integral is convergent in Ḣ1 by conservation of the energy for the linear wave equation and since
u ∈ L5([0,∞[, L10). In view of (V.1.3), we can rewrite Duhamel’s formula as

(V.1.4) u(t) = SL(t)v⃗0 − σ

∫ ∞

t

SL(t− s)
(
0, u5(s)

)
ds.

This shows that the problem of existence of wave operator can be interpreted as a Cauchy problem with initial
data at time infinity. To solve this problem, we fix t0 large such that

∥SL(·)v⃗0∥L5([t0,∞),L10) ≤ δ0,

for some small δ0 > 0 and we prove that the operator A defined by

Av(t) = SL(t)v⃗0 − σ

∫ ∞

t

SL(t− s)
(
0, v5(s)

)
ds

is a contraction of the metric space X defined by

X =
{
v ∈ L5([t0,∞), L10), ∥v∥L5([t0,∞),L10) ≤ 2δ0

}
The details are very close to the ones of the proof of Theorem IV.3.1 and are left to the reader. □

1.c. Asymptotic completeness in the radial defocusing case. We next prove:

Theorem V.1.5. Let u be a solution of (W5) with σ = −1 and radial initial data. Then u scatters.

This proof is due to J. Ginibre, A. Soffer, G. Velo (see [8]). We divide it into a few Lemmas.

Lemma V.1.6 (Morawetz inequality). There exists C > 0 with the following property. Let u be a solution
of (W5). Assume that u⃗0 is radial, compactly supported and smooth. Let E be the energy of u and Imax its
maximal interval of existence. Then ∫

Imax

∫
R3

1

|x|
|u(t, x)|6dxdt ≤ CE.
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Proof. By persistence of regularity and finite speed of propagation, the solution u is C∞ on Imax × R3,
and there exists R > 0 such that |x| ≤ R+ |t| on the support of u.

Let

M(t) =

∫ ∞

0

∂tu(t, r)∂ru(t, r)r
2dr +

∫ ∞

0

∂tu(t, r)u(t, r)rdr.

Then

M ′(t) =

∫ ∞

0

∂2t u(u+ r∂ru)rdr +

∫ ∞

0

∂tu∂r(∂tu)r
2dr +

∫ ∞

0

(∂tu)
2rdr︸ ︷︷ ︸

=0

,

where we use a straightforward integration by parts to prove that the two last terms cancel each other. Using
the equation, we have

M ′(t) =

∫ ∞

0

(
∂2ru+

2

r
∂ru− u5

)
(u+ r∂ru) rdr

=

∫ ∞

0

1

2

∂

∂r
(u+ r∂ru)

2
dr −

∫ ∞

0

u5(u+ r∂ru)rdr

= −1

2
u2(t, 0)−

∫ ∞

0

u6rdr −
∫ ∞

0

1

6

∂

∂r
u6 r2dr = −1

2
u2(t, 0)− 2

3

∫ +∞

0

u6rdr.

Next, we notice that M(t) ≲ E. Indeed, this follows easily by the Cauchy-Schwarz inequality and Hardy’s
inequality

(V.1.5)

∫ ∞

0

u2dr ≤ 4

∫ ∞

0

(∂ru)
2r2dr,

which follows from Cauchy-Schwarz and the equality

2

∫ ∞

0

u∂rurdr =

∫ ∞

0

∂r(u
2)rdr = −

∫ ∞

0

u2dr.

Integrating the bound M ′(t) ≤ − 2
3

∫∞
0
u6rdr between two times a and b, with T− < a < b < T+, and letting

b→ T+ and a→ T− we obtain the desired conclusion. □

We next prove

Lemma V.1.7 (Bound of the L8 norm). Let u be a radial solution of (W5) with σ = −1. Then

(V.1.6) ∥u∥L8(Imax×R3) ≲ E1/4.

Remark V.1.8. The pair (8, 8) is Ḣ1-Strichartz admissible for the wave equation in space dimension 3.

Proof.

Step 1. We prove the bound when u⃗0 is C∞, compactly supported. For this we use the Morawetz estimate
of Lemma V.1.6 and the radial Sobolev inequality:

(V.1.7) u2(t, r) ≤ 1

r

∫ ∞

r

(∂ρu(t, ρ))
2ρ2dρ ≲

1

r
E.

This last inequality can be proved with the fundamental theorem of calculus and Cauchy-Schwarz inequality:

|u(r)| =
∣∣∣∣∫ ∞

r

∂ρu(ρ)dρ

∣∣∣∣ ≤
√∫ ∞

r

(∂ρu(ρ))2ρ2dρ

√∫ ∞

r

ρ−2dρ.

Combining Lemma V.1.6 with (V.1.7), we obtain∫
Imax

u8(t, r)r2drdt ≲ E

∫
Imax

∫ ∞

0

u6(t, r)rdrdt ≲ E2,

which give (V.1.6) in this case.

Step 2. To prove the bound for general solutions, we use a density argument. We consider a sequence of
initial data (u⃗n0 )n with u⃗n0 ∈ (C∞

0 )
2
, radial, such that limn u⃗

n
0 = u⃗0 in Ḣ1. Let K ⊂ Imax(u⃗0) compact. By

continuity of the flow (Theorem IV.5.1), K ⊂ Imax(u⃗
n
0 ) for large n and

lim
n→∞

∥un − u∥L∞(K,L6) + ∥un − u∥L5(K,L10) = 0.
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Since Hölder inequality implies L5(K,L10(R3)) ∩ L∞(K,L6(R3)) ⊂ L8(K × R3) with the bound

∥f∥8L8(K×R3) ≤ ∥f∥3L∞(K,L6)∥f∥
5
L5(K,L10),

we deduce

(V.1.8) lim
n→∞

∥∥un − u0
∥∥
L8(K×R3)

= 0.

By Step 1,
∥un∥8L8(K×R3) ≲ (E(u⃗n0 ))

2 −→
n→∞

E2,

which concludes the proof.

□

We are now ready to end the proof of Theorem V.1.5

Proof of Theorem V.1.5. We fix u⃗0 ∈ Ḣ1. By Lemma V.1.7, we have u ∈ L8(Imax×R3). By Proposition
V.1.2, and since u ∈ L5(K,L10) for all K ∈ Imax it is sufficient to prove u ∈ L5([τ, T+[, L

10) for some τ ∈ Imax.
We fix τ ∈ Imax such that

(V.1.9) ∥u∥L8([τ,T+[×R3) ≤ ε,

where the small parameter ε > 0 is will be specified later. For t ∈ [τ, T+[, we have by Hölder’s inequality

(V.1.10) ∥u∥L5([τ,t],L10(R3)) ≤ ∥u∥2/5L8([τ,t]×R3)∥u∥
3/5
L4([τ,t],L12(R3)).

Thus it is sufficent to prove u ∈ L4([τ, T+[, L
12). For this we use Strichartz estimate, (V.1.10) and (V.1.9):

∥u∥L4([τ,t,L12) ≤ CS∥u⃗(τ)∥Ḣ1 + CS∥u∥5L5([t0,t],L10) ≤ 2CS

√
E + CSε

2∥u∥3L4([t0,t],L12).

We prove by a bootstrap argument:

(V.1.11) ∀t ∈ [τ, T+[, ∥u∥L4([τ,t],L12) ≤ 3CS

√
E.

Indeed if (V.1.11) holds for some t, we have

∥u∥L4([τ,t[,L12) ≤ 2CS

√
E + CSε

2(3CS

√
E)3 ≤ 5

2
CS

√
E,

where we have chosen ε so small that ε2(3CS)
3E ≤ 1

2 . This proves (V.1.11) by the intermediate value theorem.

By the same proof in a neighborhood of T−, we obtain, u ∈ L5(Imax, L
10), which concludes the proof that

u scatters in both time directions. □

Exercice V.1. In the setting of Theorem V.1.5, prove

(V.1.12) ∥u∥L4(R,L12) ≤ C
(
E(u0, u1)

)2
.
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[12] Schwartz, L. Théorie des distributions. Nouv. éd., entièrement corr., ref. + augm. (Nouv. tirage). Paris: Hermann. 436 p.

(1984)., 1984.
[13] Sogge, C. D. Lectures on nonlinear wave equations. Monographs in Analysis, II. International Press, Boston, MA, 1995.

[14] Strichartz, R. S. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke

Math. J. 44, 3 (1977), 705–714.
[15] Tao, T. Nonlinear dispersive equations, vol. 106 of CBMS Regional Conference Series in Mathematics. Published for the

Conference Board of the Mathematical Sciences, Washington, DC, 2006. Local and global analysis.

51


