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CHAPTER I

Linear wave equation: classical theory

I.1. Presentation of the equation

The linear wave equation is the equation:

(LW) ∂2t u−∆u = 0, (t, x) ∈ R× RN ,

where N ≥ 1 is the spatial dimension (in this course, we will often assume N = 3), and

∆ =

N∑
k=1

∂2

∂x2k
.

(We will use either the notations ∂y or ∂
∂y for the derivative with respect to the variable y ∈ {t, x1, . . . , xN}).

This is an evolution equation: we fix initial data at a certain time t = t0, and are interested in the evolution
of the equation over time t. Since the equation is of order 2, we actually fix an initial data for u⃗ = (u, ∂tu):

(I.1.1) u⃗↾t=t0 = (u0, u1)

where (u0, u1) is to be taken in a certain functional space.
We will consider in this course initial data with real values. The passage to complex or vector values is

immediate for most properties of the equation (LW) (by working coordinate by coordinate), but can induce
drastic changes in the nonlinear case, if the nonlinearity mixes the components.

Equation (LW) is invariant under several obvious space-time transformations. If u is a solution, it is also
the case of

µu(t− t0, λ(Rx− x0)),

where µ ∈ R, t0 ∈ R, λ > 0, R ∈ ON (R), x0 ∈ RN . It is in fact invariant under a larger group of linear
transformations, the Lorentz group (cf Exercise I.10 p. 15).

As a consequence, we can limit ourselves, without loss of generality, to the case of an initial time t0 = 0,
i.e.

(ID) u⃗↾t=0 = (u0, u1)

Furthermore, the equation is invariant under time inversion: if u is solution, it is also the case of t 7→ u(−t, x).
It is thus a reversible equation.

We will also consider the equation with a force:

(I.1.2) ∂2t u−∆u = f,

(still with an initial condition of type (ID)), whose understanding will be crucial for the study of the nonlinear
wave equation.

The Cauchy problem (LW), (ID) can be approached in at least 3 different ways:

• The classical approach which consists in finding an explicit formula to express the solution. It works
when the initial data is sufficiently regular (C3 × C2 in dimension 3 of space) and gives classical
solutions (that is to say C2 in (t, x) and satisfying (LW) in the sense of classical differentiation).

• The use of the Fourier transformation in space, which is very simple (once the Fourier transformation
is known) and particularly effective in Sobolev spaces based on L2 (which are natural spaces for the
study of the equation due to the conservation of energy and other L2-based quantities). This method
allows to obtain weak solutions with degrees of regularity lower than the previous ones, and to use
tools based on the Fourier transformation, which can be useful, for example, to prove certain dispersive
properties of the equation.

• The ”functional analysis” approach, by the theory of semi-groups, which gives the same type of
solutions as the previous method.
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In this chapter, we will detail the classical method, first by writing the explicit formula for solutions in dimension
1 of space, then in higher dimensions. We will study in the following chapter the equation in the energy space
by the Fourier transformation. This chapter is partly based on Chapter 5 of the beautiful book by Folland on
partial differential equations [4].

I.2. Explicit Formula in Dimension 1

In dimension 1, the equation (LW) can be written as:

(I.2.1) (∂2t − ∂2x)u = 0,

which can be written (∂t − ∂x)(∂t + ∂x)u = 0. We thus make the change of variables η = x + t, ξ = x − t.

Setting v(η, ξ) = u
(

η−ξ
2 , η+ξ

2

)
, or u(t, x) = v(t+ x, t− x), we have:

∂2u

∂t2
=
∂2v

∂η2
+
∂2v

∂ξ2
+ 2

∂2v

∂ξ∂η
,

and
∂2u

∂x2
=
∂2v

∂η2
+
∂2v

∂ξ2
− 2

∂2v

∂ξ∂η
,

which gives:
∂2u

∂t2
− ∂2u

∂x2
= −4

∂2v

∂η∂ξ
.

Thus, we obtain:

(LW) ⇐⇒ ∂2v

∂η∂ξ
= 0.

Let u be a C2 solution of (I.2.1), (ID). Thus, u1 ∈ C1(R) and u0 ∈ C2(R).
The equality ∂2v

∂η∂ξ = 0 shows that ∂v
∂ξ is a (class C1) function w(ξ) independent of η. Integrating with

respect to ξ for η fixed, we deduce:

v(η, ξ) =

∫ ξ

0

w(σ)dσ︸ ︷︷ ︸
φ(ξ)

+ψ(η),

for a certain function ψ, necessarily C2 since v is of class C2 and w of class C1. Thus, we necessarily have:

v(η, ξ) = φ(ξ) + ψ(η), φ, ψ ∈ C2(R2),

or equivalently:

(I.2.2) u(t, x) = φ(x− t) + ψ(x+ t).

Using the initial condition (ID), a direct calculation gives:

ψ(η) =
1

2

∫ η

0

u1(σ)dσ +
1

2
u0(η) + c,

φ(ξ) = −1

2

∫ ξ

0

u1(y)dy +
1

2
u0(ξ)− c,

where c ∈ R (the choice of this constant is irrelevant). Hence, we deduce:

(I.2.3) u(t, x) =
1

2
(u0(x+ t) + u0(x− t)) +

1

2

∫ x+t

x−t

u1(y)dy.

Conversely, it is easy to verify that formula (I.2.3) gives a C2 solution of (I.2.1), (ID). Therefore, we have
shown:

Proposition I.2.1. Let (u0, u1) ∈ C2(R)× C1(R). Then, there exists a unique solution u ∈ C2(R× R) of
(LW) satisfying the initial condition (ID). This solution satisfies formula (I.2.3).

On formula (I.2.2), we observe that a solution of the wave equation in dimension 1 is the sum of two waves:
one, φ(x− t), moving at speed 1 to the right, and the other ψ(x+ t), moving at the same speed to the left.1

It is also possible to obtain a formula for the equation with the right-hand side (I.1.2). We leave this as an
exercise to the reader. Further on, we will provide a general method giving the solution of the equation with
the right-hand side in terms of the equation without the right-hand side.

1Note that the equations (LW), (I.2.1) have been normalized, so that the speed of propagation is exactly 1.
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We can see from formula (I.2.3) that u(t, x) depends only on the values of (u0, u1) over
[
x − |t|, x + |t|

]
.

This is a first example of ”finite speed of propagation” which holds in all spatial dimensions.

I.3. Integral on the Sphere and Divergence Theorem

We denote SN−1 = {x ∈ RN , |x| = 1}, where | · | represents the Euclidean norm on RN :

|x|2 =

N∑
j=1

x2j .

More generally, SN−1
R will denote the sphere of radius R: {x ∈ RN , |x| = R}.

We denote dσ as the volume element on one of these spheres. Thus, the integral of a function f ∈ L1(SN−1
R )

(i.e., a function integrable on SN−1
R ) is written as∫

SN−1
R

f(y)dσ(y).

This integral can be calculated using spherical coordinates. In dimension 3, this writes:∫
S2
R

f(y)dσ(y) = R2

∫ 2π

0

∫ π

0

f(R sin θ cosφ,R sin θ sinφ,R sinφ) sin(θ)dθdφ.

We denote BN
R (x0) as the ball centered at x0 with radius R:

BN
R (x0) =

{
x ∈ RN , |x− x0| < R

}
and simply BN

R = BN
R (0).

We will use the following formulas:

Scaling: ∫
SN−1
R

f(y)dσ(y) = RN−1

∫
SN−1

f(Ry)dσ(y)n f ∈ L1(SN−1
R ).

Integral in radial coordinates: if f ∈ L1({|x| ≤ R}),∫
BN

R

f(x)dx =

∫ R

0

∫
SN−1
r

f(y)dσ(y)dr =

∫ R

0

∫
SN−1

f(rω)dσ(ω)rN−1dr

Divergence theorem: if F ∈ C1(BR,RN ),∫
|x|≤R

∇ · F (x)dx =

∫
SN−1
R

y

|y|
· F (y)dσ(y),

where ∇ · F =
∑N

j=1 ∂xjFj is the divergence of the vector field F .

I.4. Energy density. Uniqueness and finite speed of propagation

Before giving an explicit formula for the wave equation in dimension 3, we prove a uniqueness result valid
in any dimension:

Theorem I.4.1. Let (t0, x0) ∈ R1+N , t1 > t0, R > 0. We denote Γ =
{
(t, x) ∈ R × RN : t0 ≤ t ≤

t1, |x− x0| ≤ R − |t− t0|
}
. Let u ∈ C2(Γ) be a solution of (LW) on Γ. We suppose (u, ∂tu)(t0, x) = 0 for all

x ∈ BR(x0). Then u is identically zero on Γ.

The proof of the theorem is based on a monotonicity law that has its own interest.
We define, for (t, x) ∈ Γ, the density of energy eu as

eu(t, x) =
1

2
|∇u(t, x)|2 + 1

2
(∂tu(t, x))

2,

where |∇u|2 =
∑N

j=1(∂xj
u)2, and we consider, for t0 ≤ t ≤ t1, the local energy

Eloc(t) =

∫
BR−(t−t0)(x0)

eu(t, x)dx =

∫
|x−x0|<R−(t−t0)

eu(t, x)dx.

Lemma I.4.2. The function Eloc is decreasing on [t0, t1].



8 I. LINEAR WAVE EQUATION: CLASSICAL THEORY

The lemma immediately implies Theorem I.4.1. Indeed, if u⃗(t0) vanishes on B(x0, R), then Eloc(t0) = 0,
and thus Eloc(t) = 0 for all t ∈ [t0, t1], showing that u is zero on Γ.

Proof of Lemma I.4.2. We notice that

(I.4.1)
∂e

∂t
=

N∑
j=1

(
∂xju∂t∂xju+ ∂2xj

u∂tu
)
=

N∑
j=1

∂

∂xj

(
∂xju∂tu

)
= ∇ · (∂tu∇u) ,

where ∇u = (∂xiu)1≤i≤N Without loss of generality, we can assume that x0 = 0 and t0 = 0. By the integration
formula in radial coordinates,

Eloc(t) =

∫ R−t

0

sN−1

∫
SN−1

eu(t, sω)dσ(ω)ds.

By differentiation under the integral sign, we get that Eloc is differentiable and

E′
loc(t) = −(R− t)N−1

∫
SN−1

eu(t, (R− t)ω)dσ(ω) +

∫
BN

R−t

∂eu
∂t

(t, x)dx.

By formula (I.4.1), then the divergence formula∫
BN

R−t

∂eu
∂t

(t, x)dx =

∫
BN

R−t

∇ · (∂tu∇u) (t, x)dx =

∫
SN−1
R−t

y

|y|
∇u∂tu(t, y)dσ(y).

We thus have

E′
loc(t) = −

∫
SN−1
R−t

(
1

2
|∇u|2 + 1

2
(∂tu)

2 − y

|y|
∇u∂tu(t, y)

)
dσ(y) ≤ −1

2

∫
SN−1
R−t

(
y

|y|
∇u+ ∂tu(t, y)

)2

dσ(y).

□

I.5. Explicit formulas.

This section is devoted to explicit formulas in space dimensions N ≥ 2. In dimension N = 3, we will show
that for any initial data (u0, u1) ∈ C2 × C3, there exists a unique solution u ∈ C2(R1+3) of (LW), (ID), and
provide an explicit formula for this solution. We will also provide a formula in dimension N = 2. We refer the
reader to [4, Chapter 5B] for expressions of solutions when N ≥ 4.

5.a. The radial case in dimension 3. When the initial conditions depend only on the variable r = |x|,
the explicit formula is very simple.

We start by observing that if f depends only on the variable r, then the function f is C2 as a function on
R3 if and only if it is C2 as a function of the variable r on [0,∞[, and satisfies df

dr (0) = 0. Moreover,

∆f =
d2f

dr2
+

2

r

df

dr

(cf Exercise I.1). We notice that we can rewrite this formula as

r∆f =
d2

dr2
(rf).

Now let u be a C2 solution of (LW), (ID) with initial data (u0, u1) assumed to be radial. We also assume that
for all t, u(t) is a radial function. We will show a posteriori that this second assumption is a consequence of the
assumption on the initial data. The previous formula gives(

∂2

∂t2
− ∂2

∂r2

)
(ru) = 0.

The function (t, r) 7→ ru(t, r) is thus a solution of the wave equation in dimension 1, on Rt×]0,∞[. To obtain
a function on R2, we extend ru(t, r) to an odd function:

v(t, y) = yu(t, |y|).

One can verify (using Exercise I.1) that v is of class C2 on R2, and that(
∂2

∂t2
− ∂2

∂y2

)
v = 0.
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Formula (I.2.3) then gives:

v(t, y) =
1

2
(v0(y + t) + v0(y − t)) +

1

2

∫ y+t

y−t

v1(σ)dσ,

where (v0, v1) = v⃗↾t=0, thus

(I.5.1) u(t, r) =
1

2r

(
(r + t)u0(|r + t|) + (r − t)u0(|r − t|)

)
+

1

2r

∫ r+t

r−t

σu1(|σ|)dσ.

Notice that when t > 0 (to fix ideas),∫ r+t

r−t

σu1(|σ|)dσ =

∫ r+t

|r−t|
σu1(|σ|)dσ.

The finite speed of propagation is satisfied: the solution u(t, r) depends only on the initial condition (u0, u1) on
the ball centered at r with radius |t|.

The formula (I.5.1) defines a function u(t, r) of class C2 outside the origin x = 0, as soon as the initial
conditions (u0, u1) have the expected regularity C2 × C1. However, there is a subtle phenomenon of loss of
regularity of the solution u compared to the initial data at the origin : there exist data (u0, u1) ∈ C2 ×C1 such
that u, defined by formula (I.5.1), cannot be extended by a C2 function up to r = 0. Indeed, it can be checked
that (at fixed t),

(I.5.2) lim
r→0

u(t, r) = u0(t) + tu′0(t) + tu1(t),

which shows that if (u0, u1) are C
k×Ck−1 functions, then u(t, 0) is only Ck−1 in general (see also Exercise I.2).

We can interpret this phenomenon physically as follows: a singularity on the circle r = r0 at the initial time
0 that travels at speed 1 towards the origin will concentrate at the origin at time t = r0, causing a stronger
singularity.

The limit (I.5.2) suggests a maximal loss of regularity of a derivative with respect to the initial data, which
is indeed the case:

Proposition I.5.1. Let (u0, u1) ∈ (C3 × C2)(R3) be radial functions. Then formula (I.5.1) extended by
u(t, 0) = u0(t) + tu′0(t) + tu1(t), defines a C2 function on R × R3, radial with respect to the variable x, and
satisfying (LW), (ID).

The Proposition I.5.1 is left as an exercise to the reader. Combining with the uniqueness property (Theorem
I.4.1), we obtain that (I.5.1) gives the unique solution of (LW) with initial data (u0, u1).

The formula (I.5.1) is remarkably simple. In higher space dimensions, we also have an explicit formula for
radial solutions, which becomes more complicated as the dimension increases (see Exercise I.3). The loss of
regularity observed in dimension 3 (and absent in dimension 1) increases with dimension, as the reader can
verify on the formula obtained in Exercise I.3.

There is no simple formula in the radial case in even dimensions.
We also have explicit formulas (of course more complicated) without radiality assumptions, in all dimensions.

We will explicitly state these formulas when N = 3, then N = 2.

5.b. General solutions in dimension 3: averaging over spheres. If f ∈ C0(R3), we define

(I.5.3) (Mf )(t, x) =
1

4π

∫
S2

f(x+ ty)dσ(y) =
1

4πt2

∫
S2
|t|

f(x+ z)dσ(z).

the average of f over the sphere of radius |t| and center x. The function Mf inherits the regularity of f (cf
exercise I.5).

Theorem I.5.2. Let (u0, u1) ∈ C3(R3)×C2(R3). Then the unique C2 solution of the wave equation (LW)
with initial conditions (ID) is given by

u(t, x) = tMu1
(t, x) +

∂

∂t
(tMu0

(t, x)).

Proof. We start by verifying that tMu1(t, x) is the solution of the wave equation (LW), with initial
condition (0, u1). By the theorem of differentiation under the integral sign, if g ∈ C2(R3),

∂

∂t
(Mg(t, x)) =

1

4π

∫
S2

(y · ∇g)(x+ ty)dσ(y).
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Using the divergence formula,∫
S2

(y · ∇g)(x+ ty)dσ(y) = t

∫
|y|≤1

(∇ · (∇g)) (x+ ty)dy

= t

∫
|y|≤1

(∆g)(x+ ty)dy =
1

t2

∫ t

0

∫
S2

(∆g)(x+ sy)s2dσ(y)ds.

Thus:
∂

∂t
(tMu1

(t, x)) =Mu1
(t, x) +

1

4πt

∫ t

0

∫
S2

(∆u1)(x+ sy)dσ(y)s2ds.

and therefore

∂2

∂t2
(tMu1

(t, x)) =
1

4πt2

∫ t

0

∫
S2

(∆u1)(x+ sy)dσ(y)s2ds

− 1

4πt2

∫ t

0

∫
S2

(∆u1)(x+ sy)dσ(y)s2ds+
t

4π

∫
S2

(∆u1)(x+ ty)dσ(y) = ∆ (tMu1
(t, x)) .

This shows that tMu1
satisfies the wave equation (LW). Furthermore, since Mu1

(0, x) = u1(0, x), the initial
condition at t = 0 is indeed (0, u1).

Now let v(t, x) = tMu0
(t, x). Then, by the same reasoning, v is a solution of the wave equation (LW) with

initial condition (0, u0). We deduce that ∂tv is a solution of the wave equation with initial condition (u0, 0),
which concludes the proof. □

Notice that we can rewrite the formula of the theorem as:

(I.5.4) u(t, x) = tMu1
(t, x) +Mu0

(t, x) + tMy·∇u0
(t, x).

We now give two important consequences of the previous formula.

Corollary I.5.3 (Strong Huygens’ principle). The solution u(t, x) depends only on the values of u0, ∇u0,
and u1 on the sphere centered at x and of radius |t|.

Remark I.5.4. The strong Huygens’ principle is a stronger version of the finite speed of propagation
property, which states that u(t, x) depends only on the values of (u0, u1) on the ball centered at x and of
radius |t|. This principle remains valid in any odd dimension ≥ 3 (the number of derivatives of u0 and u1
in the statement increases with the dimension). In even dimension, solutions only satisfy the finite speed of
propagation: see §5.c. In dimension 1, as shown by formula (I.2.3), only solutions that are even in time (i.e.
with initial condition of the form (u0, 0)) satisfy the strong Huygens’ principle.

The second consequence of the explicity formula proved above is an estimate related to the dispersive nature
of the wave equation. We will denote

(I.5.5) ∥φ∥Ẇ s,p = sup
|α|=s

∥∂αxφ∥Lp(RN ) .

We prove:

Theorem I.5.5 (Dispersion inequality). Let (u0, u1) ∈ (C3 × C2)(R3), with compact support and u the
solution of (LW), (ID). Then for all t > 0,

∥u(t)∥L∞(R3) ≲
1

t
(∥u0∥Ẇ 2,1 + ∥u1∥Ẇ 1,1) .

Proof. By space translation invariance it is sufficient to bound |u(t, 0)|. We have

4πu(t, 0) = t

∫
S2

u1(ty)dσ(y) +

∫
S2

u0(ty)dσ(y) + t

∫
S2

y · ∇u0(ty)dσ(y).

By the divergence theorem (denoting by B3 the unit ball of R3),

(I.5.6) t

∫
S2

u1(ty)dσ(y) = t

∫
B3

∇ · (yu1(ty)) dy = 3t

∫
B3

u1(ty)dy + t2
∫
B3

y · ∇u1(ty)dy.

We have

(I.5.7)

∣∣∣∣∫
B3

y · ∇u1(ty)dy
∣∣∣∣ ≤ 1

t3

∫
tB3

|∇u1(y)|dy ≤ 3

t3
∥u1∥Ẇ 1,1 ,
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and

(I.5.8)

∫
B3

|u1(ty)|dy ≤ t

∫
R3

|∂x1
u1(ty)|dy ≤ 1

t2
∥u1∥Ẇ 1,1 ,

where we have used the inequality
∫
B3 |φ|dx ≲

∫
R3 |∂x1

φ|, that follows immediately from the formula φ(x1, x2, x3) =∫ x1

−∞ ∂x1
φ(s, x2, x3)ds. Combining (I.5.6), (I.5.7) and (I.5.8), we obtain

(I.5.9)

∣∣∣∣t∫
S2

u1(ty)dσ(y)

∣∣∣∣ ≲ 1

t
∥u1∥Ẇ 1,1 .

By the same proof, using also the inequality
∫
B3 |φ| ≲

∫
R3 |∂x1

∂x2
φ|, we have

(I.5.10)

∣∣∣∣∫
S2

u0(ty)dσ(y)

∣∣∣∣+ ∣∣∣∣∫
S2

y · ∇u0(ty)dσ(y)
∣∣∣∣ ≲ 1

t
∥u0∥Ẇ 2,1 .

This concludes the proof of the dispersion inequality. □

5.c. Dimension 1 + 2. A solution u of equation (LW) with N = 2 is also a solution of the same equation
with N = 3, constant with respect to the 3rd spatial coordinate. From Theorem I.5.2, one can derive an
expression of u from the initial data. This strategy is called ”descent method”.

Theorem I.5.6. Let (u0, u1) ∈ (C3 × C2)(R2). Then equation (LW) has a unique C2 solution on R× R2,
given by the formula

(I.5.11) u(t, x) =
1

2π

[
∂

∂t

(
t

∫
|y|≤1

u0(x+ ty)√
1− |y|2

dy

)
+ t

∫
|y|≤1

u1(x+ ty)√
1− |y|2

dy

]
.

Proof. Uniqueness follows from Theorem I.4.1. Moreover, as in the proof of Theorem I.5.2, the formula for
even solutions in time (with initial condition (u0, 0)) can be easily deduced from the formula for odd solutions
in time (with initial condition (0, u1)). So we only consider this second case.

Let u be a C2 solution of (LW) on R× R2, with initial data (u, ∂tu)(0) = (0, u1), where u1 ∈ C2(R2). By
Theorem I.5.2, considering u as a solution on R× R3, we obtain:

u(t, x1, x2) =
t

4π

∫
S2

ũ1((x1, x2, 0) + ty)dσ(y)dy,

where by definition ũ1(x1, x2, x3) = u1(x1, x2). Passing to spherical coordinates, we get∫
S2

ũ1((x1, x2, 0) + ty)dσ(y)

=

∫ 2π

0

∫ π

0

u1(x1 + t sin θ cosφ, x2 + t sin θ sinφ) sin θdθdφ

= 2

∫ 2π

0

∫ π/2

0

u1(x1 + t sin θ cosφ, x2 + t sin θ sinφ) sin θdθdφ.

The announced formula then follows from the change of variable y1 = t sin θ cosφ, y2 = t sin θ sinφ. □

It can be seen from the formula in Theorem I.5.6 that the strong Huygens principle is not verified in
dimension 1 + 2: the solution u(t, x) depends on the values of the initial condition over the entire ball B2

|t|(x),

not just on the sphere {y ∈ R2 : |x− y| = |t|}.

I.6. Conservation Laws

The energy of a solution u on R× RN is defined as:

E(u⃗(t)) =

∫
RN

eu(t, x)dx =
1

2

∫
RN

(
(∂tu(t, x))

2 + |∇u(t)|2
)
dx.

This is the global version of the local energy considered in §I.4. The energy of a solution is conserved over time.

Theorem I.6.1. Let u ∈ C2(R1+N ) be a solution of (LW), (ID). Assume (u0, u1) has finite energy. Then
for any t, E(u⃗(t)) is finite and E(u⃗(t)) = E(u0, u1).
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Proof. One might be tempted to write

d

dt
(E(u⃗(t))) =

∫
∂teu(t, x)dx =

∫
∇ · (∂tu∇u)dx = 0,

but the last equality, obtained by integration by parts ignoring the ”boundary” term (i.e., when |x| → ∞) is
purely formal. To justify the preceding calculation, we can use the decay of the local energy (Lemma I.4.2).
For R > 0, we define:

E<R(u⃗(t)) =

∫
|x|<R

eu(t, x)dx.

Notice that this quantity is finite as soon as u ∈ C1(R1+N ). Fix t > 0. By Lemma I.4.2, for any R > t,

E<R−t(u⃗(t)) ≤ E<R(u⃗(0)) ≤ E(u0, u1).

As we let R tend to +∞, we obtain that E(u⃗(t)) is finite, and

E(u⃗(t)) ≤ E(u0, u1).

Reversing the direction of time, we also obtain the inequality

E(u0, u1) ≤ E(u⃗(t)).

We have shown that the energy is conserved for t ≥ 0. By applying this result to the solution (t, x) 7→ u(−t, x),
we obtain energy conservation for t ≤ 0, which concludes the proof. □

There exists another (vectorial) conserved quantity, the momentum, defined as

P (u⃗(t)) =

∫
∂tu(t, x)∇u(t, x)dx ∈ RN .

Proposition I.6.2. Let u ∈ C2(R1+N ) be a solution of (LW) with finite energy. Then

∀t ∈ R, P (u⃗(t)) = P (u0, u1).

The proof of this proposition is left as an exercise (see Exercise I.7).

I.7. Equation with a source term

We now consider the equation with a source term (I.1.2). We will express the solution of this equation in
terms of the propagator of the free equation (LW). For (u0, u1) ∈ C3 × C2(R3), let SL(t)(u0, u1) denote the
solution of (LW) with initial data (u0, u1) at t = 0. We denote S(t)u1 = SL(t)(0, u1), so that

SL(t)(u0, u1) =
∂

∂t
(S(t)u0) + S(t)u1.

For u1 ∈ C2, we recall that

(S(t)u1)(x) = tMu1
(t, x) = t

∫
S2

u1(x+ ty)dσ(y).

Theorem I.7.1 (Duhamel’s Formula). Let (u0, u1) ∈ (C2×C3)(R3) and f ∈ C2(R×R3). Then the equation
(I.1.2), (ID) has a unique C2 solution, given by the formula:

u(t) = SL(t)(u0, u1) +

∫ t

0

S(t− s)f(s)ds.

Remark I.7.2. The Duhamel term
∫ t

0
S(t− s)f(s)ds can be explicited, see (I.7.1).

Proof of Theorem I.7.1. Uniqueness follows immediately from Theorem I.4.1, since the difference of
2 solutions of (I.1.2) with the same source term f is a solution of (LW). For existence, taking into account
Theorem I.5.2, it is sufficient to check that the function

U : (t, x) 7→
∫ t

0

S(t− s)f(s)ds

is C2 and satisfies equation (I.1.2) with zero initial conditions.
We have:

(I.7.1) U(t, x) =
1

4π

∫ t

0

(t− s)

∫
S2

f(s, x+ (t− s)y)dσ(y)ds,

and the fact that U is C2 follows from the theorem on differentiation under the integral sign.
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Furthermore, using that S(0)g = 0 for any function g,

∂U

∂t
=

∫ t

0

∂

∂t

(
S(t− s)f(s)

)
ds.

Upon further differentiation, we obtain

∂2U

∂t2
=

∂

∂t

(
S(t− s)f(s)

)
↾s=t

+

∫ t

0

∂2

∂t2

(
S(t− s)f(s)

)
ds = f(t) +

∫ t

0

∆
(
S(t− s)f(s)

)
ds = f(t) + ∆U.

where we used that ∂
∂t (S(t)g)↾t=0 = g for any function g of class C2. □

Remark I.7.3. Duhamel’s formula is certainly not specific to dimension 3, as shown by the calculation
leading to this formula, which is completely independent of dimension. The reader is invited to explicitly
rewrite the solution of equation (I.1.2) when N = 1 and N = 2.

From Duhamel’s formula, we deduce the energy inequality:

Proposition I.7.4. Let u be a C2 solution of (I.1.2) with N = 3 with initial data (u0, u1), such that
f ∈ C2(R1+3). Suppose furthermore that (u0, u1) has finite energy, and for all T > 0,∫

[−T,+T ]

√∫
R3

|f(t, x)|2dxdt <∞.

Then for all t > 0, √
2E(u⃗(t)) ≤

√
2E(u0, u1) +

∫ t

0

√∫
R3

|f(s, x)|2dxds.

Proof. To lighten notations, we will denote:

∥u⃗(t)∥2
Ḣ1×L2 =

∫
R3

|∇u(t, x)|2dx+

∫
R3

|∂tu(t, x)|2dx, ∥f∥L1(I,L2) =

∫
I

∥f(t)∥L2(R3)dt

(∥ · ∥Ḣ1 is the norm defining the homogeneous Sobolev space Ḣ1(R3), see Section II.2 below). From Duhamel’s
formula and the conservation of energy for the free equation (LW), it suffices to verify that for all t > 0,

(I.7.2)

∥∥∥∥(∫ t

0

S(t− s)f(s)ds, ∂t

∫ t

0

S(t− s)f(s)ds

)∥∥∥∥
Ḣ1×L2

≤ ∥f∥L1([0,t],L2)

By conservation of energy (Theorem I.6.1), we have∥∥∥ (S(t− s)f(s), ∂t(S(t− s)f(s)))
∥∥∥
Ḣ1×L2

= ∥f(s)∥L2 ,

which implies directly (I.7.2) □

I.8. Exercises

Exercice I.1. Let f : RN → R (N ≥ 1). Suppose f is radial (i.e. That it depends only on the variable

r = |x| =
√
x21 + x22 + . . .+ x2N ). Denote f(x) = g(|x|), where g : [0,∞[→ R.

(1) Show that f is continuous on RN if and only if g is continuous on [0,∞[.
(2) Show that f is C1 on RN if and only if g is C1 on [0,∞[ and g′(0) = 0.
(3) Show that for any k ≥ 2, f is Ck on RN if and only if g is Ck on RN and g(j)(0) = 0 for all odd

integers j ≤ k.
(4) Assuming f is C1, compute ∂f

∂xj
in terms of g′, j = 1, . . . , N . Compute g′(r) in terms of ∇f .

(5) Assuming f is C2 on RN , prove the formula

∆f(x) = g′′(|x|) + N − 1

|x|
g′(|x|).

To lighten notation, we use the same notation (f) for functions f and g, and denote g′ = df
dr , etc...

Exercice I.2 (Loss of regularity for the radial wave equation in dimension 1+3). Let k ≥ 0 and f ∈ Ck(R3)
be a radial function. Define a function u on R× (R3 \ {0}), radial with respect to the space variable, by

u(t, x) =
1

2r

(
(r + t)f(|r + t|) + (r − t)f(|r − t|)

)
,

where r = |x|. Note that this defines a function of class Ck on R×
(
R3 \ {0}

)
.
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(1) Suppose that f is supported in the annulus { 1
2 ≤ |x| ≤ 2} and is such that for |η − 1| ≤ 1/10,

f(η) =

{
2− η if η > 1

η if η < 1
.

Calculate limr→0 u(t, r) when t = 1, t > 1, and t < 1 (close to 1). Conclude that u cannot be extended
to a continuous function on R× R3.

(2) Similarly, give an example of a C2 function f such that u cannot be extended to a C2 function on
R× R3.

(3) Assume f is C3. Show that u defines a C2 function on R× R3.
(4) Let g be a C2 radial function on R3. Show that

u(t, r) =
1

2r

∫ r+t

r−t

σg(|σ|)dσ,

extends to a C2 function on R3.

Exercice I.3 (Explicit solutions of the radial wave equation in odd space dimension). Let N ≥ 3 be an
odd integer, written as N = 2k + 1. Let Tk be the operator defined by

Tkϕ =

(
r−1 d

dr

)k−1 (
r2k−1ϕ(r)

)
.

(1) Show that

Tkφ =

k−1∑
j=0

cjr
j+1ϕ(j)r,

for some cj ∈ R. Determine c0 and ck−1.
(2) Show that for any function φ ∈ Ck+1([0,+∞[),

d2

dr2
(Tkφ) =

(
r−1 d

dr

)k

(r2kφ′(r)).

Hint: You can start by verifying that the formula is true when φ(r) = rm for any integer m.
(3) Consider a solution u(t, x) of the linear wave equation in space dimension N , radial with respect to

the space variable. Suppose u is Ck+1 on R1+N . Show prove

(∂2t − ∂2r )(Tku) = 0.

Deduce an expression of Tku in terms of u0 and u1.
(4) Express u(t, r) in terms of u0 and u1 when N = 5. What regularity of u0 and u1 is required for u to

be C2 on R1+5?

****************

Exercice I.4. Let u be a solution of the wave equation (LW) in spce dimension N ≥ 3, radial with respect

to the space variable. Recall that ∆u = d2

dr2 + N−1
r

d
dr . Suppose u ∈ C2(R1+N ), with compactly supported

initial data. Let

v(t, r) =

∫ ∞

r

ρ∂tu(t, ρ)dρ.

Show that v defines a radial solution, of class C2, to the wave equation in space dimension N − 2.

Exercice I.5. Let f ∈ Ck(R3). Show that the function Mf , defined by (I.5.3), is also of class Ck.

Exercice I.6. Let u ∈ C2(R× RN ) be a solution of (LW) with finite energy. Show

∀ε > 0, ∃R > 0, ∀t ∈ R,
∫
|x|>R+|t|

eu(t, x)dx ≤ ε.

Exercice I.7 (Conservation of momentum). (1) Let u be a C2 solution of (LW) on R × RN , and
j ∈ 1, . . . N . Let pj,u(t, x) = ∂xj

u(t, x)∂tu(t, x). Show

∂pj,u
∂t

=
1

2

∂

∂xj

(
(∂tu)

2 − |∇u|2
)
+∇ · V,

where V is a certain C1 vector field to be specified.
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(2) Assume that (u0, u1) has finite energy. Justify that

Pj(u⃗(t)) =

∫
RN

pj,u(t, x)dx

is defined for all times. Show that this quantity is independent of time. You can start by considering
a local version of the momentum∫

[−R,R]N
pj,u(t, x)dx or

∫
RN

pj,u(t, x)φ
( x
R

)
dx

then let R tend to +∞. Here φ denotes a C2 function with compact support equal to 1 in a neigh-
borhood of the origin.

Exercice I.8. (1) Let u1 ∈ C2(R3) such that

∀t ≥ 0, ∀x ∈ R3, u1(x) ≥ 0.

Assume u0 = 0. Let u be the corresponding solution of (LW). Prove

∀t ≥ 0, ∀x ∈ R3, u(t, x) ≥ 0.

(2) Suppose now N = 1 or N = 2. Let u be the solution of (LW), (ID), with (u0, u1) ∈ C3×C2 (if N = 2)
or C2 × C1 (if N = 1).

Show that if u1 ≥ 0 and u0 = 0 then u(t, x) has the sign of t for all x and t ̸= 0.
When N = 1, give a weaker sufficient condition on (u0, u1) such that:

∀t ≥ 0, ∀x ∈ R, u(t, x) ≥ 0.

Exercice I.9. Assume N = 1 or N = 2. Let u be a solution of (I.1.2), with u0 = u1 = 0, and f of class
C1 (if N = 1) or C2 (if N = 2). Express u in terms of f .

Exercice I.10. The Minkowski spacetime of dimension N is the space R1+N , equipped with the quadratic
form of signature (1, N):

g(X) = x20 −
N∑
j=1

x2j = t2 − |x|2 = tXJX,

where tX is the transpose of X,

X = (x0, x1, . . . , xN ), t = x0, x = (x1, . . . , xN ),

and J = [Jµ,ν ]0≤µ ν≤N is the matrix such that J0,0 = 1, Jℓ,ℓ = −1 if ℓ ∈ 1, . . . , N , and Jµ,ν = 0 if µ ̸= ν.
The Lorentz group O(1, N) is the group of real square matrices P of size 1 +N which leave the quadratic

form g invariant, i.e., such that g(PX) = g(X) for all X in R1+N . In other words, if P is a (1 +N)× (1 +N)
matrix,

P ∈ O(1, N) ⇐⇒ tPJP = J.

(1) Prove that a function v of class C2 on R1+N satisfies the wave equation (LW) if and only if Tr(Jv′′) = 0,
where v′′ is the Hessian matrix

[
∂xµ

∂xνv

]
0≤µ

ν≤N
.

(2) Let P ∈ O(1, N), v ∈ C2(R1+N ), and w(X) = v(PX). Then

(∂2t −∆)v = 0 ⇐⇒ (∂2t −∆)w = 0.

(3) Prove that the space rotations: [
1 0
0 R

]
, R ∈ O(N)

and the Lorentz boosts

Rσ =

[
Rσ 0
0 IN−1.

]
, Rσ =

[
cosh(σ) sinh(σ)
sinh(σ) cosh(σ)

]
,

where IN−1 denotes the identity matrix (N − 1)× (N − 1) and σ ∈ R are Lorentz transformations. In
these formulas, 0 always denotes the zero matrix of appropriate size.

Exercice I.11. In all Chapter I, we considered the Cauchy problem with initial conditions on a hyperplane
in R1+N of the form {t = t0}. We now seek to solve the same problem by prescribing an initial condition on
other hyperplanes. Therefore, we consider a hyperplane of the form

Π = {X ∈ R1+N : tAX = 0}
where A ∈ R1+N \ {0}, A = (a0, a1, . . . , aN ) = (a0, a).
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(1) Prove that if |a0| > |a|, there exists a transformation P ∈ O(1, N) such that

Π = P
(
{(0, x), x ∈ RN}

)
.

Hint: use compositions of transformations defined in Question (3) of Exercise I.10.
(2) If the condition |a0| > |a| is satisfied, we can therefore reduce the Cauchy problem with an initial

condition
u↾Π = u0, A · ∇u↾Π = u1,

to a Cauchy problem with initial conditions at t = 0 as treated above. The hyperplane Π is called
timelike when A = (a0, a) with a0 ∈ R, A ∈ RN , and |a0| > |a|.

Prove that Π is timelike if and only if the restriction of the quadratic form g to Π is negatively
defined.

(3) Under what condition on A does there exist B = (b0, b1, . . . , bN ) ∈ RN+1 such that the function

eA·X+iB·X

is a solution of (LW)?
(4) Now assume that the hyperplane Π is not timelike. Let Y /∈ Π. Construct a sequence of solutions

(un)n of (LW) such that un(X) = 0 on Π, such that for any differential operator D =
∏N

j=1 ∂
α1
x1
. . . ∂αN

xN

(of arbitrarily large order), there exists C > 0 such that |Dun(X)| ≤ Ce−n on Π, but |un(Y )| → +∞
as n→ ∞.



CHAPTER II

The linear equation in Sobolev spaces

II.1. Reminders on the Fourier transform

Here, we recall the definition and basic properties of the Fourier transform on RN , in the most general
framework possible, that of tempered distributions. We omit the proofs. For more details, one can consult,
for example, the foundational writings of Laurent Schwartz [6], the course of Jean-Michel Bony [2], as well as
[1, Section 1.2] for a quick introduction, and [5] for a more in-depth exposition (the first two references are in
French).

We begin by introducing a notation: a multi-index is an element α = (α1, . . . , αN ) of NN . The order of α

is |α| =
∑N

j=1 αj . The derivative with respect to α of a function f of class C |α| on RN is then defined by:

∂αx f =

N∏
j=1

∂αj
xj
f.

1.a. Fourier Transform on S.

Definition II.1.1. The Schwartz space S(RN ) is the space of functions f of class C∞ on RN such that for
every p ∈ N,

Np(f) := sup
x∈RN |α|≤p

(1 + |x|)p|∂αx f(x)| <∞.

It can be observed that each Np is a norm on S(RN ), but Np is not complete for any of these norms.
We equip S(RN ) with the distance function

(II.1.1) d(φ,ψ) =
∑
p≥0

1

2p
min

(
Np(φ− ψ), 1

)
.

Notice that d(φn, φ) tends to 0 as n tends to infinity if and only if Np(φn − φ) tends to 0 for every p.
The metric space (S, d) is complete.1

The Fourier transform of an element φ of S is defined by the formula

(II.1.2) φ̂(ξ) = Fφ(ξ) =
∫
RN

e−ix·ξφ(x)dx.

One easily checks that F is a continuous application from S into S.
Fubini’s theorem immediately implies the duality formula:

(II.1.3)

∫
RN

φ̂(ξ)ψ(ξ)dξ =

∫
RN

φ(x)ψ̂(x)dx,

for φ,ψ ∈ S(RN ).
The Fourier transformation is a bijection of S: by defining

(II.1.4) F(ψ)(x) =
1

(2π)N

∫
RN

eix·ξψ(ξ)dξ =
1

(2π)N
ψ̂(−x),

we have the Fourier inversion formula: for all φ ∈ S(RN ),

(II.1.5) FFφ = FFφ = φ.

1Such a vector space, equipped with a countable family of semi-norms, and which is complete as a metric space (where the
distance function is defined as in (II.1.1)), is called a Fréchet space. It is a natural generalization of a Banach space when a unique

norm is not sufficient to ensure completeness.

17
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By combining the Fourier inversion formula (II.1.5) and the duality formula (II.1.3), we obtain the Plancherel
theorem: for all φ,ψ in S,

(II.1.6)

∫
RN

φ(x)ψ(x)dx =
1

(2π)N

∫
RN

φ̂(ξ)ψ̂(ξ)dξ.

The Fourier transform exchanges multiplication by powers of x with differentiation. For all φ ∈ S(RN )

(II.1.7) ∀α ∈ NN , F∂αxφ = i|α|ξαφ̂(ξ), F(xαφ) = i|α|∂αξ φ̂(ξ).

1.b. Fourier Transform of Tempered Distributions.

Definition II.1.2. The space S ′(RN ) of tempered distributions is the topological dual of S(RN ), i.e., the
vector space of continuous linear forms on S.

In the definition, continuity must be interpreted in the sense of the topology induced by the distance d
defined by (II.1.1). Using the definition of this topology, one sees that a linear form f on S is an element of S ′

if and only if:

∃p ∈ N, ∀φ ∈ S, |⟨f, φ⟩| ≤ CNp(φ).

We equip S ′ with the topology of pointwise convergence: a sequence (fn)n of elements of S ′ converges to f in
S ′ if and only if

∀φ ∈ S, lim
n→∞

⟨fn, φ⟩ = ⟨f, φ⟩ .

Several function spaces continuously embed into S ′(RN ) in the following manner. If f is a measurable, locally
integrable function on f such that

∀R > 0,

∫
|x|≤R

|f(x)|dx ≤ C(1 +R)C

for some constant C > 0, we define an element Lf of S ′(RN ) by

⟨Lf , φ⟩ =
∫
RN

f(x)φ(x)dx.

The preceding application is injective, i.e., Lf is null if and only if f is null almost everywhere on RN . We
then identify f with the linear form Lf , also denoted f . The preceding identification allows us to consider S,
Lebesgue spaces Lp(RN ) (1 ≤ p ≤ ∞), Ck

b (the space of Ck functions on RN that are bounded along with all
their derivatives up to order k) as subspaces of S ′.

Examples of tempered distributions that are not functions are given by the (improperly named) Dirac delta
function at a, denoted δa and defined by ⟨δa, φ⟩ = φ(a), as well as the surface measure σ on the sphere SN−1,
defined by:

⟨σ, φ⟩ =
∫
SN−1

φ(y)dσ(y).

By duality, several actions can be defined on the elements of S ′.
Differentiation. Let α ∈ NN and f ∈ S ′. The derivative of f of order α is the element ∂αx of S ′ defined by:

∀φ ∈ S, ⟨∂αx f, φ⟩ = (−1)|α| ⟨f, ∂αxφ⟩ .

The integration by parts formula shows that if f ∈ C
|α|
b , its derivative of order α in the sense of distributions

coincides with its derivative in the classical sense.
Multiplication by a Function. We denote by P = P(RN ) the space of C∞ functions with slow growth, i.e.,

such that

(II.1.8) ∀α, ∃M,C > 0 ∀x ∈ RN , |∂αx g(x)| ≤ C(1 + |x|)M .

It is easy to check that the multiplication by an element of P defines a continuous mapping from S into S. We
then define, for f ∈ S ′ and g ∈ P, the product fg by:

⟨fg, φ⟩ = ⟨f, gφ⟩ .

The product fg is an element of S ′. Fixing g ∈ P, f 7→ fg is a continuous mapping from S ′ into S ′.
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Fourier Transform. We define the Fourier transform of an element f of S ′ by

∀φ ∈ S,
〈
f̂ , φ

〉
= ⟨f, φ̂⟩

The duality formula (II.1.3) shows that if f ∈ S, its Fourier transform according to formula (II.1.2) and its
Fourier transform in the sense of S ′ coincide.

We recall that L1(RN ) and L2(RN ) are identified with subspaces of S ′(RN ). The Fourier transform on
S ′ thus applies to elements of these two spaces. On L1(RN ), we recover the Fourier transform in the classical
sense.

Proposition II.1.3 (Fourier Transform in L1). Let f ∈ L1(RN ), and f̂ be its Fourier transform in S ′.

Then f̂ can be identified with the continuous function given by the formula:

f̂(ξ) =

∫
RN

e−ix·ξf(x)dx.

The second proposition immediately follows from the Plancherel theorem:

Proposition II.1.4 (Fourier Transform in L2). Let f ∈ L2(RN ) then f̂ ∈ L2(RN ) and

∥f∥L2 =
1

(2π)N/2
∥f̂∥L2 .

Indeed, the Fourier inversion formula in S ′ (see below) implies that f 7→ 1
(2π)N/2 f̂ is an isometry of L2(RN ).

The properties of the Fourier transform on S are transmitted by duality to the Fourier transform:

• We define the inverse Fourier transform F of an element f of S ′ by〈
Ff, φ

〉
=
〈
f, Fφ

〉
.

Then we have the Fourier inversion formula:

∀f ∈ S ′, FFf = FFf = f.

• Property (II.1.7) remains valid for φ ∈ S ′.

II.2. Sobolev Spaces

2.a. Definition. (cf [1, Section 1.3]) We mainly focus on Sobolev spaces on RN , of Hilbert type (i.e. based

on L2 spaces). In this section, we consider homogeneous Sobolev spaces Ḣσ. We refer to the exercise sheet for
classical Sobolev spaces Hσ.

The Hilbertian Sobolev spaces on RN are easily defined using the Fourier transform:

Definition II.2.1. Let σ ∈ R. The Sobolev space Ḣσ(RN ) is the set of f ∈ S ′(RN ) such that f̂ can be
identified with a function in L1(K) for every compact set K, such that the following quantity is finite:

∥f∥2
Ḣσ =

1

(2π)N

∫
RN

|ξ|2σ|f̂(ξ)|2dξ.

The space Ḣσ, equipped with the inner product:

(f, g)Ḣσ =
1

(2π)N

∫
RN

|ξ|2σ f̂(ξ)ĝ(ξ)dξ

is a pre-Hilbert space.

Theorem II.2.2. The space Ḣσ(RN ) is complete if and only if σ < N/2. In this case, the vector space S0

of functions in S whose Fourier transform vanishes in a neighborhood of 0 is dense in Ḣσ(RN ).

Note that Ḣ0 is exactly the space L2.
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2.b. Sobolev Inequalities. We have the following Sobolev embedding on RN .

Theorem II.2.3. Let σ ∈]0, N/2[, and p ∈ (2,∞) such that 1
p = 1

2 − σ
N . Then Ḣσ(RN ) is contained in Lp

with continuous embedding.

The result is well-known. We give a proof based on the Fourier transform, which yields a slightly stronger
result that we will use later in this course.

By the density result in Theorem II.2.2, it suffices to show that there exists a constant C > 0 such that

(II.2.1) ∀f ∈ S(RN ), ∥f∥Lp(RN ) ≤ C∥f∥Ḣσ(RN ).

Let f ∈ S. We denote2

∥f∥2
Ḃσ = sup

k∈Z

1

(2π)N

∫
2k≤|x|≤2k+1

|ξ|2σ|f̂(ξ)|2dξ,

and observe that ∥f∥Ḃσ ≤ ∥f∥Ḣσ . We will prove the following result, which implies (II.2.1):

Theorem II.2.4 (Improved Sobolev Inequality). Let σ and p be as in the previous theorem. Then there
exists a constant C > 0 such that

∀f ∈ S(RN ), ∥f∥pLp ≤ ∥f∥p−2

Ḃσ
∥f∥2

Ḣσ .

Notation II.2.5. Let φ be a function on RN . For u ∈ S ′(RN ), we denote

φ(D)u = F (φ(ξ)û(ξ)) .

The operator φ(D) is called Fourier multiplier (with symbol φ).

The tempered distribution φ(D)u is not well-defined for all functions φ and u ∈ S ′: we need φ û to define

a tempered distribution. This is for example the case if φ ∈ L∞ and u ∈ Ḣσ (in this case φ(D)u ∈ Ḣσ), or if
φ ∈ P(RN ) (the space of C∞ functions with slow growth i.e. that satisfy (II.1.8)).

Proof. We use a method introduced by Chemin and Xu in [3]. We fix a parameter A > 0 and decompose
f into a high-frequency part f>A and a low-frequency part f<A:

f>A = F
(
11|ξ|>Af̂(ξ)

)
= 11|D|>Af, f<A = 11|D|<Af = 1− f.

Let k(A) be the largest integer such that 2k(A) ≤ A. By using the Cauchy-Schwarz inequality, then the fact
that σ < N/2, we obtain:

|f<A(x)| =
1

(2π)N

∣∣∣∣∣
∫
|ξ|<A

eix·ξ f̂(ξ)dξ

∣∣∣∣∣ ≤ 1

(2π)N

∑
k≤k(A)

∫
2k≤|ξ|≤2k+1

|f̂(ξ)|dξ

≤ 1

(2π)N

∑
k≤k(A)

2k(N/2−σ)

(∫
2k≤|ξ|≤2k+1

|ξ|2σ|f̂(ξ)|2dξ

)1/2

≤ CNA
N/2−σ∥f∥Ḃσ ,

where CN depends only on the dimension N . Then we write (using Fubini’s equality):

∥f∥pLp =

∫
|f(x)|pdx =

∫
RN

p

∫ |f(x)|

0

λp−1dλdx = p

∫ +∞

0

λp−1
∣∣∣{x ∈ RN : |f(x)| ≥ λ

}∣∣∣ dλ,
where |S| denotes the Lebesgue measure of the measurable subset S of RN . Let A(λ) be such that

CNA(λ)
N
2 −σ∥f∥Ḃσ = λ/2.

For any x in RN ,

|f<A(λ)(x)| ≤
λ

2
.

Thus |f(x)| > λ =⇒ |f>A(λ)(x)| > λ/2. Hence:

∥f∥pLp ≤ p

∫ ∞

0

λp−1
∣∣∣ {x ∈ RN : |f>A(λ)(x)| > λ/2

} ∣∣∣dλ
By integrating |f>A(λ)|2 over the set

{
x ∈ RN : |f>A(λ)(x)| > λ/2

}
, we get∣∣∣ {x ∈ RN : |f>A(λ)(x)| > λ/2

} ∣∣∣ ≤ 4

λ2
∥f>A(λ)∥2L2 .

2This norm defines the Besov space Ḃσ
2,∞. See [1, Section 2.3] for the definition of general Besov spaces.
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Combining with the Plancherel theorem, then Fubini’s theorem, we obtain

∥f∥pLp ≤ 4p

(2π)N

∫ ∞

0

λp−3

∫
|ξ|>A(λ)

|f̂(ξ)|2dξdλ

=
4p

(2π)N

∫
RN

∣∣∣f̂(ξ)∣∣∣2 ∫ c(f,ξ)

0

λp−3dλdξ = Cp,N

∫
RN

∣∣∣f̂(ξ)∣∣∣2 c(f, ξ)p−2dξ,

where c(f, ξ) = 2CN∥f∥Ḃσ |ξ|
N
2 −s, and Cp,N depends only on N and p. It can be easily verified that (N2 −

σ)(p− 2) = 2σ, which proves the announced inequality. □

We will focus more particularly on the case s = 1. According to the above, the Sobolev space Ḣ1(RN ),

N ≥ 3, is a Hilbert space, contained in L
2N

N−2 , which can be defined as the closure of the space S(RN ) (or

C∞
0 (RN )) for the Ḣ1(RN )-norm. We can characterize this norm with the first-order partial derivatives of f .

Indeed,

∥f∥2
Ḣ1 =

1

(2π)N

∫
|ξ|2
∣∣f̂(ξ)∣∣2dξ = N∑

j=1

∫ ∣∣ξj f̂(ξ)∣∣2dξ,
which shows by Plancherel’s theorem and formula (II.1.7)

∥f∥2
Ḣ1 =

∫
|∇f(x)|2dx.

The attentive reader will have noticed that the space Ḣ1(RN ) is not the set of φ ∈ S ′(RN ) such that for all j,

∂xjφ ∈ L2(RN ): indeed, nonzero constant functions are in this space, but not in Ḣ1(RN ) (the Fourier transform
ĉ of a nonzero constant function is the multiple of a Dirac function, which does not satisfies the assumption of
local integrability in the definition of Ḣ1).

The density result of Theorem II.2.2 implies that Ḣ1(RN ) is the closure of C∞
0 (RN ) for the norm ∥ · ∥2

Ḣ1 .
An other characterization, using the Sobolev inequality, is given by

(II.2.2) Ḣ1(RN ) =
{
f ∈ L

2N
N−2 (RN ), |∇f | ∈ L2(RN )

}
.

The proof of (II.2.2) is left to the reader.

II.3. The wave equation in the Schwartz space

Let (u0, u1) ∈ S(RN ). We will write the solution u of (LW), (ID) using the Fourier transformation. We
start with a formal calculation, assuming that u(t) ∈ S for all t (which we will prove later). We denote û(t) as
the Fourier transform of u with respect to the spatial variable, i.e.,

û(t, ξ) =

∫
RN

e−ix·ξu(t, x)dx.

Thus, we have

∆̂u(t, ξ) = −|ξ|2û(t, ξ),
and the wave equation (LW) is formally equivalent to the linear differential equation

∂2t û(t, ξ) + |ξ|2û(t, ξ) = 0,

where the variable ξ is considered as a parameter. The solution to this equation, with initial conditions
(û(0), ∂tû(0)) = (u0, u1), yields

û(t, ξ) = cos(t|ξ|)û0(ξ) +
sin(t|ξ|)

|ξ|
û1(ξ),

or, with the previously introduced notation,

(II.3.1) u(t) = cos(t|D|)u0 +
sin(t|D|)

|D|
u1.

Theorem II.3.1. Let (u0, u1) ∈ S(RN )2. Then u defined by (II.3.1) is an element of C∞(R × RN ). It is
the unique C2 solution of (LW), (ID).
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Proof. Uniqueness follows from Theorem I.4.1. Hence, it suffices to prove that u, defined by (II.3.1), is
C∞ and satisfies (LW), (ID). We have

u(t, x) =
1

(2π)N

∫
RN

eix·ξ
(
cos(t|ξ|)û0(ξ) +

sin(t|ξ|)
|ξ|

û1(ξ)

)
dξ.

By writing
sin(t|ξ|)

|ξ|
= t

∑
k≥0

(−1)k(t|ξ|)2k

(2k + 1)!
,

we see that it is a C∞ function of (t, ξ). Moreover,
|∂j

t sin(t|ξ|)|
|ξ| ≤ |t||ξ|j . Similarly, (t, ξ) 7→ cos(t|ξ|) is C∞ and∣∣∣∂jt cos(t|ξ|)∣∣∣ ≤ |ξ|j . Using the fact that û0 and û1 are elements of S(RN ), by the theorem of differentiation

under the integral sign, we obtain that u is C∞ and satisfies (LW). The Fourier inversion formula shows that
u also satisfies the initial conditions (ID). □

II.4. The wave equation in Sobolev spaces

4.a. The equation in general homogeneous Sobolev spaces. Let (u0, u1) ∈ Ḣσ × Ḣσ−1, σ < N/2.
We define as before u by (II.3.1). We also define the formal derivative of u with respect to time:

u′(t, x) = cos(t|D|)u1 − |D| sin(t|D|)u0.

Then u and u′ satisfy the following properties:

Claim II.4.1. u ∈ C0(R, Ḣσ), u′ ∈ C0(R, Ḣσ−1), u(0) = u0, u
′(0) = u1.

Proof. Using that û0 ∈ L2(|ξ|2σdξ) and û1 ∈ L2(|ξ|2σ−2dξ), it is easy to see that

(II.4.1) û ∈ C0(R, L2(|ξ|2σdξ)), û′ ∈ C0(R, L2(|ξ|2σ−2dξ)),

which yields the announced continuity property. The facts that u(0) = u0 and u′(0) = u1 follow immediately
from the definition. □

Claim II.4.2. ∀t, ∥(u(t), u′(t))∥Ḣσ×Ḣσ−1 = ∥(u0, u1)∥Ḣσ×Ḣσ−1 .

Proof.∫
RN

|û(t, ξ)|2|ξ|2σdξ +
∫
RN

û′(t, ξ)|ξ|2σ−2dξ

=

∫
RN

∣∣∣∣cos(t|ξ|)û0(ξ) + sin(t|ξ|)
|ξ|

û1(ξ)

∣∣∣∣2 |ξ|2σdξ
+

∫
RN

∣∣∣− |ξ| sin(t|ξ|)û0(ξ) + cos(t|ξ|)û1(ξ)
∣∣∣2|ξ|2σ−2dξ

=

∫
RN

(
|û0(ξ)|2 + |û1(ξ)|2|ξ|−2

)
|ξ|2σdξ,

which gives the desired property. □

Claim II.4.3. Let (u0,n, u1,n) ∈ (S0(RN ))2 such that (u0,n, u1,n) converges to (u0, u1) in Ḣσ × Ḣσ−1. Let
un be the solution of (LW) with data (u0,n, u1,n). Then

lim
n→∞

sup
t∈R

∥un(t)− u(t)∥Ḣσ + ∥∂tun(t)− u′(t)∥Ḣσ−1 = 0.

Proof. It follows immediately from the preceding claim, applied to (u− un, u
′ − ∂tun). □

Claim II.4.4. One can identify u with a distribution on R × RN , and it satisfies the wave equation (LW)
in the distributional sense. Furthermore u′ = ∂tu in the sense of distribution.

Proof. We first give a “concrete” proof of these facts for the reader which is not familiar with the theory
of distributions, assuming that σ is large enough so that the object considered are all functions on R× RN .

Let σ ≥ 0. We let un be as in Claim II.4.3. Using that un is a C∞ solution of (LW) and integrating by
parts, we obtain ∫∫

un(t, x)(∂
2
t −∆)φdxdt = 0.
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Using the Sobolev embedding Ḣσ ⊂ Lp, 1
p = 1

2 − σ
N , and the point (II.4.3), we see that

lim
n→∞

∥u− un∥Lp(K) = 0,

for all compact K of RN . This implies

0 = lim
n→∞

∫∫
un(t, x)(∂

2
t −∆)φdxdt = lim

n→∞

∫∫
u(t, x)(∂2t −∆)φdxdt,

and thus

∀φ ∈ C∞
0 (R× RN ),

∫∫
u(∂2t −∆)φdtdx = 0,

which is precisely the meaning of ∂2t u−∆u = 0 in the distributional sense.
Let σ ≥ 1. The equality

∂tun = −|D| sin(t|D|)u0,n + cos(t|D|)u1,n.
holds by differentiation below the integral sign. By integration by parts,

∀φ ∈ C∞
0 (R× RN ),

∫∫
∂tunφdtdx = −

∫∫
un∂tφdtdx,

Letting n→ ∞, we obtain

∀φ ∈ C∞
0 (R× RN ),

∫∫
u′φdtdx = −

∫∫
u∂tφdtdx,

which means that u′ = ∂tu in the distributional sense.
The proof for general σ is essentially the same, and can be skipped by the reader who is not familiar with

distributions.
If φ ∈ C∞

0 (R × RN ) (the space of smooth functions with compact support on R × RN ), one defines the
action of u on φ by

⟨u, φ⟩ =
∫ +∞

−∞
⟨u(t), φ(t)⟩S′,S dt,

where φ(t) is the function t 7→ φ(t, ·). It is a straightforward exercise to prove that u is well-defined and that
is is a distribution on R×RN . The facts that u satisfies the wave equation in the distributional sense and that
u′(t) = ∂tu(t) follow immediately from Claim II.4.3, that implies that limun = u in the distributional sense,
where un is a in Claim II.4.3. This last fact is an immediate consequence of Claim II.4.3. □

From now on, we will use the formula (II.1.2) as the definition of the solution u of (LW), (ID) with

(u0, u1) ∈ Ḣσ × Ḣσ−1. The preceding claims show that such a u is a limit of smooth, classical solutions of
(LW), (ID), and that it satisfies (LW) in a weak sense. Also, we have

∂tu = −|D| sin(t|D|)u0 + cos(t|D|)u1
in the sense of distribution. In the sequel, we will always use the notation ∂tu to denote this quantity.

4.b. The wave equation in the energy space. Of particular interest for us is the case s = 1. We will
call “finite energy solutions” the weak solutions with initial data Ḣ1×L2 given by the preceding subsection in the

case s = 1, N ≥ 3. We will focus on the case N = 3. We note that if (u0, u1) ∈ (C3×C2)(R3)∩
(
Ḣ1 × L2

)
(R3),

we have two ways of defining the solution u: by integrals on spheres, as in Theorem I.5.2, and using the Fourier
transform, i.e. by formula (II.3.1). Let us prove that these two definitions coincide:

Proposition II.4.5. Let u ∈ C2(R×R3) be a solution of (LW), (ID). Assume furthermore u0 = u(0) ∈ Ḣ1,
u1 = ∂tu(0) ∈ L2. Then

u(t) = cos(t|D|)u0 +
sin(t|D|)

|D|
u1, ∂tu(t) = −|D| sin(t|D|)u0 + cos(t|D|)u1.

Proof. Let (u0,n, u1,n) ∈
(
S(RN )

)2
with

lim
n→∞

∥u0,n − u0∥Ḣ1 + ∥u1,n − u1∥L2 = 0.

Let un be the corresponding solution of (LW) given by (II.3.1) (note that by uniqueness it is also the solution
given by Theorem I.5.2). Since u− un is a C2, finite energy solution of (LW), Theorem I.6.1 yields

∀t, ∥u(t)− un(t)∥2Ḣ1 + ∥∂tu(t)− ∂tun(t)∥2L2 = ∥u0 − u0,n∥2Ḣ1 + ∥u1 − u1,n∥2L2 ,
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which tends to 0 as n goes to infinity. This proves the result, since un(t) converges to cos(t|D|)u0 + sin(t|D|)
|D| u1

in Ḣ1(R3) and ∂tun(t) converges to −|D| sin(t|D|)u0 + cos(t|D|)u1 in L2 by Claim II.4.3. □

Using the approximation of finite energy solutions by solutions with initial data in S, we can transfer several
results of Chapter I to general finite energy solutions. This is the case of the decay of energy on past wave
cones, which imply finite speed of propagation. If u is a finite energy solution (in any dimension N ≥ 3) and
R > 0, x0 ∈ RN , t0 ∈ R, we denote by

Eloc(t) =

∫
|x−x0|<R−|t−t0|

eu(t, x)dx.

Then

Theorem II.4.6. Eloc(t) is nonincreasing for t ≥ t0.

Proof. From Theorem I.4.1, this quantity is nonincreasing when (u0, u1) ∈ S. Considering the approxi-
mation given by Claim II.4.3, we obviously have, as a consequence of this claim,

∀t, lim
n→∞

∫
|x−x0|<R−|t−t0|

eun
(t, x)dx =

∫
|x−x0|<R−|t−t0|

eu(t, x)dx.

This gives the desired monotonicity property. □

We note that for general finite energy solution the integration by parts used in the proof of Theorem I.4.1
is no longer valid (since the boundary terms are not always well-defined).

4.c. Equation with a source term. We next consider the wave equation with a source term (I.1.2). By
linearity, it is sufficient to study the equation with zero initial data:

(II.4.2) ∂2t u−∆u = f, u⃗↾t=0 = (0, 0).

Proposition II.4.7. Assume f ∈ C0
(
R,S(RN )

)
. Then u defined by

(II.4.3) u(t) =

∫ s

0

sin ((t− s)|D|)
|D|

f(s)ds

is the unique solution of (II.4.2).

Proof. The uniqueness follows as usual by Theorem I.4.1. It is thus sufficient to check that u defined by
(II.4.3) is of class C2, and is a solution of (II.4.2). We consider F the function defined on R× R× RN by

F (t, s, x) =

(
sin
(
(t− s)|D|

)
|D|

f(s)

)
(x).

Thus

F (t, s, x) =
1

(2π)N

∫
RN

eix·ξ
sin
(
(t− s)|ξ|

)
|ξ|

f̂(s, ξ)dξ

Using that f̂ ∈ C0
(
R,S(RN )

)
, it is easy to check that F is continuous and C∞ with respect to the variable

(t, x), and that one can differentiate below the integral sign. The result follows since by integration by parts in
the ξ variable,

∆F (t, s, x) = − 1

(2π)N

∫
|ξ|2eix·ξ

sin
(
(t− s)|ξ|

)
|ξ|

f̂(s, ξ)dξ

□

We note that Duhamel formula (II.4.3) is still valid when f ∈ L1([−T,+T ], Ḣσ−1) for all T , where σ is

a fixed real number (assumed to be < N/2 for simplicity), and that it yields a function u ∈ C0(R, Ḣσ) with

∂tu ∈ C0(R, Ḣσ−1),

(II.4.4) ∂tu =

∫ t

0

cos
(
(t− s)|D|

)
f(s)ds,

in the sense of distribution, and such thatœ

(II.4.5) ∥u⃗(t)∥Ḣσ×Ḣσ−1 ≤
∫ t

0

∥f(s)∥Ḣσ−1ds.

Note that (II.4.5) is exactly the energy inequality proved in Chapter I when σ = 1.
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We can approximate such an f by a sequence of functions (fn) with

fn ∈ C0(R,S), ∀t, lim
n→∞

∫ +T

−T

∥f(s)− fn(s)∥Ḣσ−1ds = 0.

The corresponding solutions un defined by

un(t) =

∫ t

0

sin
(
(t− s)|D|

)
|D|

fn(s)ds

are C2 solutions of (II.4.2) and satisfy

(II.4.6) sup
−T≤t≤T

∥u⃗n(t)− u⃗(t)∥Ḣσ×Ḣσ−1 −→
n→∞

0.

As in the case of the free wave equation, this proves that u satisfies (LW) in the sense of distribution. In this
situation, we will take the formula (II.4.3) as a definition of the solution u of (LW).

Exercice II.1. Assume that σ = 1. Let f defined on R×RN , such that f ∈ L1([−T,+T, L2(RN )). Prove
that there exists a sequence of functions fn ∈ C∞

0 (R× RN ) such that

∀T > 0, lim
n→∞

∥fn − f∥L1([−T,+T ],L2(RN )) = 0.

Exercice II.2. Let u be a C2 solution of (LW) for some f ∈ C0(R×RN ). Assume that f ∈ L1([−T,+T ], L2(RN ))
for all T > 0. Show that u satisfies (II.4.3).
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