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CHAPTER 1

Linear wave equation: classical theory

I.1. Presentation of the equation
The linear wave equation is the equation:
(LW) OPu—Au=0, (t,z)eR xRN,
where N > 1 is the spatial dimension (in this course, we will often assume N = 3), and

N

82
A= el
k=1 9Tk
(We will use either the notations 0, or 8% for the derivative with respect to the variable y € {¢t,z1,...,2n}).

This is an evolution equation: we fix initial data at a certain time ¢ = ¢, and are interested in the evolution
of the equation over time t. Since the equation is of order 2, we actually fix an initial data for @ = (u, d;u):

(1.1.1) a[t:to = (uo,ul)

where (ug, u1) is to be taken in a certain functional space.

We will consider in this course initial data with real values. The passage to complex or vector values is
immediate for most properties of the equation (LW) (by working coordinate by coordinate), but can induce
drastic changes in the nonlinear case, if the nonlinearity mixes the components.

Equation (LW) is invariant under several obvious space-time transformations. If u is a solution, it is also
the case of

,U,U(t — to, )\(RSE — IEo)),

where u € R, tg € R, A > 0, R € On(R), 1o € RY. It is in fact invariant under a larger group of linear
transformations, the Lorentz group (cf Exercise 1.10 p. 15).

As a consequence, we can limit ourselves, without loss of generality, to the case of an initial time ¢, = 0,
ie.

(ID) I_L'[t:() = (UO,U1>

Furthermore, the equation is invariant under time inversion: if u is solution, it is also the case of ¢ — u(—t, x).
It is thus a reversible equation.
We will also consider the equation with a force:

(1.1.2) 02— Au = f,

(still with an initial condition of type (ID)), whose understanding will be crucial for the study of the nonlinear
wave equation.
The Cauchy problem (LW), (ID) can be approached in at least 3 different ways:

e The classical approach which consists in finding an explicit formula to express the solution. It works
when the initial data is sufficiently regular (C® x C? in dimension 3 of space) and gives classical
solutions (that is to say C2 in (¢, z) and satisfying (LW) in the sense of classical differentiation).

e The use of the Fourier transformation in space, which is very simple (once the Fourier transformation
is known) and particularly effective in Sobolev spaces based on L? (which are natural spaces for the
study of the equation due to the conservation of energy and other L2-based quantities). This method
allows to obtain weak solutions with degrees of regularity lower than the previous ones, and to use
tools based on the Fourier transformation, which can be useful, for example, to prove certain dispersive
properties of the equation.

e The "functional analysis” approach, by the theory of semi-groups, which gives the same type of
solutions as the previous method.
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In this chapter, we will detail the classical method, first by writing the explicit formula for solutions in dimension
1 of space, then in higher dimensions. We will study in the following chapter the equation in the energy space
by the Fourier transformation. This chapter is partly based on Chapter 5 of the beautiful book by Folland on
partial differential equations [16].

1.2. Explicit Formula in Dimension 1

In dimension 1, the equation (LW) can be written as:
(1.2.1) (02 — 0%)u =0,
which can be written (9; — 0,)(9¢ + 9z)u = 0. We thus make the change of variables n =z +¢, £ = x — t.
Setting v(n, &) = u ("775, "TE , or u(t,z) = v(t + x,t — x), we have:

0% 0% 0% 02v

oz o "o ooy

and
Pu  0Pv O 02v

92 "o "o “ocon

which gives:
*u  Pu 0%v

o2 0x2 onoE

Thus, we obtain:
v _
ono¢
Let u be a C? solution of (1.2.1), (ID). Thus, u; € C1(R) and ug € C*(R).
The equality % = 0 shows that ?TZ is a (class C') function w(¢) independent of 1. Integrating with
respect to £ for 7 fixed, we deduce:

(LW) «<—

¢
v(n,§) = / w(o)do +(n),
N

©(8)
for a certain function v, necessarily C? since v is of class C? and w of class C'. Thus, we necessarily have:

v(n,€) = (&) +¥(n), ¥ e C*R?),

or equivalently:

(1.2.2) u(t,z) = oz —t) + Yz +1).
Using the initial condition (ID), a direct calculation gives:
1/ 1
wln) =3 [ wilo)da+ Suoln) +c.
0

§
o) = =3 | wlds+ Fu( .

where ¢ € R (the choice of this constant is irrelevant). Hence, we deduce:

1 1 -+t
(1.2.3) u(t,z) = §(uo(x +1t) +uo(x—1t)) + 5/ u1 (y)dy.
x—t
Conversely, it is easy to verify that formula (1.2.3) gives a C? solution of (I1.2.1), (ID). Therefore, we have
shown:

PROPOSITION 1.2.1. Let (ug,u1) € C*(R) x C1(R). Then, there exists a unique solution u € C*(R x R) of
(LW) satisfying the initial condition (ID). This solution satisfies formula (1.2.3).

On formula (I1.2.2), we observe that a solution of the wave equation in dimension 1 is the sum of two waves:
one, ¢(x —t), moving at speed 1 to the right, and the other v(z + t), moving at the same speed to the left.!

It is also possible to obtain a formula for the equation with the right-hand side (I.1.2). We leave this as an
exercise to the reader. Further on, we will provide a general method giving the solution of the equation with
the right-hand side in terms of the equation without the right-hand side.

INote that the equations (LW), (1.2.1) have been normalized, so that the speed of propagation is exactly 1.
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We can see from formula (I.2.3) that u(t,z) depends only on the values of (ug,u1) over [m — ¢,z + \t@
This is a first example of ”finite speed of propagation” which holds in all spatial dimensions.
I1.3. Integral on the Sphere and Divergence Theorem

We denote SVN=1 = {x € R, |z| = 1}, where | - | represents the Euclidean norm on R":

N
|z|? = Zx?
j=1

More generally, Sh ' will denote the sphere of radius R: {z € RV, |z| = R}.
We denote do as the volume element on one of these spheres. Thus, the integral of a function f € £1(S g -
(i.e., a function integrable on SN ') is written as

[ fwdotw.
SR

This integral can be calculated using spherical coordinates. In dimension 3, this writes:

2 pm
fy)do(y) = Rz/ / f(Rsin 6 cos @, Rsin 0 sin ¢, Rsin ¢) sin(0)d0dep.
o Jo

S%
We denote Bg (zo) as the ball centered at xy with radius R:
BY () = {x eRN, |z — x| < R}

and simply B = BJ (0).
We will use the following formulas:
Scaling:
| ey =¥ [ pmpdnn e £1sE.
R

SN-1

Integral in radial coordinates: if f € L1 ({|z| < R}),

R R
f(z)dx = / / f(y)do(y)dr = / / f(rw)do(w)rN = dr
BN 0 JsN—t 0 Jsn-1
Divergence theorem: if F' € C'(Bg,RY),

_ Yy :
/zng'F(x)dx a /Sg_l Iv] F(y)do(y),

where V- F = Z;V:1 O, Fj is the divergence of the vector field F'.

I.4. Energy density. Uniqueness and finite speed of propagation

Before giving an explicit formula for the wave equation in dimension 3, we prove a uniqueness result valid
in any dimension:

THEOREM L4.1. Let (ty,z0) € RN, t; > tg, R > 0. We denote T' = {(t,m) ERXRYN : ty<t<

t1, [t —xo]l <R — |t — to\}. Let u € C%(T) be a solution of (LW) on T'. We suppose (u,d;u)(to, ) = 0 for all
x € Br(xo). Then u is identically zero on T.

The proof of the theorem is based on a monotonicity law that has its own interest.
We define, for (¢,z) € T, the density of energy e, as

1 1
eu(t,x) = §|Vu(t,x)|2 + 5([“),5u(t,:13))27

where |Vu|? = Zle(axju){ and we consider, for {y <t < ¢1, the local energy

Eloc(t) :/ eu(t,x)das:/ ey (t, z)d.
BRr—(t—t0)(%0) |z—mo| <R—(t—to0)

LEMMA 1.4.2. The function E\ is decreasing on [to,t1].
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The lemma immediately implies Theorem 1.4.1. Indeed, if @(¢g) vanishes on B(xg, R), then Ej..(tg) = 0,
and thus Ey..(t) = 0 for all ¢ € [tg, 1], showing that u is zero on T'.

PrROOF OF LEMMA 1.4.2. We notice that

N N
(1.4.1) % = Z (amjuataxju + Gij u@tu) = Z ai 8$ju8tu) =V (0uVu),

j=1

where Vu = (95,u)1<i<n Without loss of generality, we can assume that zy = 0 and ¢p = 0. By the integration
formula in radial coordinates,

R—t
Fioc(t) =/ SN_l/ ey (t, sw)do(w)ds.
0 SN -1

By differentiation under the integral sign, we get that Fj,. is differentiable and

Efyo(t) = —(R—t)N~" /SN_1 eu(t, (R — t)w)do(w) + /BN aaet“ (t,x)dx.

By formula (I.4.1), then the divergence formula

/ %(t, z)dr = / V- (0wuVu) (t,z)dx = / Vuatu(t y)do(y).
By, Ot BN sy Jy

R—t

We thus have

’ 1 o 1 2 Y 1 / ?
Eloc (t) /SN71 (2 |VU" + 92 (atu) |y‘ Vuatu(tv y) dO’(y) = 2 Sg:tl |y| VU + 8tu<t y) dU(y)

R—t

1.5. Explicit formulas.

This section is devoted to explicit formulas in space dimensions N > 2. In dimension N = 3, we will show
that for any initial data (ug,u;) € C? x C3, there exists a unique solution u € C?(R'*3) of (LW), (ID), and
provide an explicit formula for this solution. We will also provide a formula in dimension N = 2. We refer the
reader to [16, Chapter 5B] for expressions of solutions when N > 4.

5.a. The radial case in dimension 3. When the initial conditions depend only on the variable r = |z|,
the explicit formula is very simple.

We start by observing that if f depends only on the variable r, then the function f is C? as a function on
R? if and only if it is C? as a function of the variable r on [0, cc[, and satisfies %(0) = 0. Moreover,

Y
dr?2 ' rdr

(cf Exercise I.1). We notice that we can rewrite this formula as

Af =

rAf = (Tf )-

Now let u be a C? solution of (LW), (ID) with initial data (ug,u;) assumed to be radial. We also assume that
for all ¢, u(t) is a radial function. We will show a posteriori that this second assumption is a consequence of the
assumption on the initial data. The previous formula gives

0? 0?

The function (¢, r) — ru(t,r) is thus a solution of the wave equation in dimension 1, on R;x]0, co[. To obtain
a function on R?, we extend ru(t,7) to an odd function:

U(tvy) = yu(t7 |y|)

One can verify (using Exercise 1.1) that v is of class C? on R?, and that

02 02
(atz‘ayz)“zo'
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Formula (I.2.3) then gives:

Y+t
o) = 5ol + O+ - ) +3 [ wo)do

where (vg,v1) = V4=, thus
r+t

(L5.1) u(t,r) = o (0 4+ uo(lr + 1) + (r — Bhuo(lr — 1)) + %/ o (|o|)do

r—t
Notice that when ¢ > 0 (to fix ideas),

r+t r4+t
/ au1(|a|)da:/ ous (|o])do

—t |r—t]
The finite speed of propagation is satisfied: the solution w(t,r) depends only on the initial condition (ug,u;) on
the ball centered at r with radius [¢].

The formula (I.5.1) defines a function u(t,r) of class C? outside the origin x = 0, as soon as the initial
conditions (ug,u;) have the expected regularity C? x C!. However, there is a subtle phenomenon of loss of
regularity of the solution u compared to the initial data at the origin : there exist data (ug,u;) € C? x C! such
that u, defined by formula (I.5.1), cannot be extended by a C? function up to 7 = 0. Indeed, it can be checked
that (at fixed t),

(1.5.2) lim u(t,r) = ug(t) + tug(t) + tus(t),

r—0

which shows that if (ug,u1) are C* x C*~! functions, then u(t,0) is only C*~! in general (see also Exercise 1.2).
We can interpret this phenomenon physically as follows: a singularity on the circle r = ry at the initial time
0 that travels at speed 1 towards the origin will concentrate at the origin at time t = ry, causing a stronger
singularity.

The limit (I.5.2) suggests a maximal loss of regularity of a derivative with respect to the initial data, which
is indeed the case:

PROPOSITION L.5.1. Let (ug,u1) € (C3 x C%)(R?) be radial functions. Then formula (1.5.1) extended by
u(t,0) = ug(t) + tuf(t) + tui(t), defines a C? function on R x R3, radial with respect to the variable z, and
satisfying (LW), (ID).

The Proposition 1.5.1 is left as an exercise to the reader. Combining with the uniqueness property (Theorem
1.4.1), we obtain that (I.5.1) gives the unique solution of (LW) with initial data (ug,u1).

The formula (I.5.1) is remarkably simple. In higher space dimensions, we also have an explicit formula for
radial solutions, which becomes more complicated as the dimension increases (see Exercise 1.3). The loss of
regularity observed in dimension 3 (and absent in dimension 1) increases with dimension, as the reader can
verify on the formula obtained in Exercise 1.3.

There is no simple formula in the radial case in even dimensions.

We also have explicit formulas (of course more complicated) without radiality assumptions, in all dimensions.
We will explicitly state these formulas when N = 3, then N = 2.

5.b. General solutions in dimension 3: averaging over spheres. If f € C°(R3), we define
(1.5.3) (My)(t,z) = f( + ty)do(y = t2/ f(x+ z)do(z).

the average of f over the sphere of radius |¢t| and center . The functlon M/ inherits the regularity of f (cf
exercise L.5).

THEOREM 1.5.2. Let (ug,u1) € C3(R?) x C%(R3). Then the unique C? solution of the wave equation (LW)
with initial conditions (ID) is given by
0
a(tMuo (tv .’E))

PROOF. We start by verifying that tM,, (¢,z) is the solution of the wave equation (LW), with initial
condition (0,u;). By the theorem of differentiation under the integral sign, if g € C%(R3),

57 (M2 = 1= [ - Va)la -+ tn)dr(s).

u(t,x) = tM,, (t,z) +
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Using the divergence formula,

|- Voatmot) =t [ (V-(T0) @+ )y

ly|<1

:t/ (Ag)(z + ty)dy = / / (Ag)(z + sy)sdo(y)ds.
ly|<1 52
Thus:
0
— (tM. =M (A 2
5 (tM,y, (t,)) uy (5, 2) 47rt/ . up)(x + sy)do(y)s“ds.
and therefore

82
o2

(tMy, (t,z)) = / . (Auy)(z + sy)do(y)s>ds

- [ @ sdststas + L [ (sw)e o) = 5@, 1.0).

This shows that tM,, satisfies the wave equation (LW). Furthermore, since My, (0,z) = u1(0,), the initial
condition at ¢ = 0 is indeed (0, uq).

Now let v(t,x) = tM,, (¢, ). Then, by the same reasoning, v is a solution of the wave equation (LW) with
initial condition (0,ug). We deduce that d;v is a solution of the wave equation with initial condition (uo,0),
which concludes the proof. |

Notice that we can rewrite the formula of the theorem as:
(1.5.4) u(t, ) = tMy, (t,2) + My, (t, x) + tMy.vu, (L, ).
We now give two important consequences of the previous formula.

COROLLARY 1.5.3 (Strong Huygens’ principle). The solution u(t,x) depends only on the values of ug, Vuyg,
and uy on the sphere centered at x and of radius |t|.

REMARK 1.5.4. The strong Huygens’ principle is a stronger version of the finite speed of propagation
property, which states that u(¢,x) depends only on the values of (ug,u;) on the ball centered at x and of
radius |¢t|. This principle remains valid in any odd dimension > 3 (the number of derivatives of uy and u
in the statement increases with the dimension). In even dimension, solutions only satisfy the finite speed of
propagation: see §5.c. In dimension 1, as shown by formula (I1.2.3), only solutions that are even in time (i.e.
with initial condition of the form (ug,0)) satisfy the strong Huygens’ principle.

The second consequence of the explicity formula proved above is an estimate related to the dispersive nature
of the wave equation. We will denote

(1.5.5) [ellyirsn = sup 1050l Lo@ny -

la=s
We prove:

THEOREM L5.5 (Dispersion inequality). Let (ug,u;) € (C3 x C?)(R3), with compact support and u the
solution of (LW), (ID). Then for allt > 0,

1
lu@lze=®s) S 5 (luollyirzs + lluallypra) -

PROOF. By space translation invariance it is sufficient to bound |u(t,0)|. We have

dmu(t,0) = t/52 uy (ty)do(y) +/82 uo(ty)do(y) +t/ y - Vuo(ty)do(y).

SZ
By the divergence theorem (denoting by B3 the unit ball of R3),

(15.6) t /S Cunty)do(y) =t | V- () dy =31 /B unty)dy + 2 / -V (ty)dy.

B3 B
We have

(L5.7)

1
[ vt <5 [ 1vawlr< ol
B3 tB3
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and
1
(15.8) / iy (ty)\dy < t / 19, un ()| dy < s o
B3 R3 t

where we have used the inequality [ [¢|dz S [gs |0z, @], that follows immediately from the formula p(z1, 22, 23) =
J5 0a,0(s, w2, 23)ds. Combining (I.5.6), (1.5.7) and (I.5.8), we obtain

1
(1.5.9) ‘t/sz ul(ty)da(y)’ < Z”ulHWl’l'

By the same proof, using also the inequality [gs @] S [gs [0z, 0z, ¢, we have

(L5.10)

[ u(enyaat] +

1
[ v Voo < { ol
SQ

This concludes the proof of the dispersion inequality. O

5.c. Dimension 1+ 2. A solution u of equation (LW) with N = 2 is also a solution of the same equation
with N = 3, constant with respect to the 3rd spatial coordinate. From Theorem 1.5.2, one can derive an
expression of u from the initial data. This strategy is called ”descent method”.

THEOREM L.5.6. Let (ug,u1) € (C?® x C?)(R?). Then equation (LW) has a unique C? solution on R x R?,
given by the formula

(15.11) utry= L |2 ( [ wlerw)g )y [ i),
2 |00\ Jigi1 V1= Tyl? i<t VI yP

PRrROOF. Uniqueness follows from Theorem 1.4.1. Moreover, as in the proof of Theorem 1.5.2, the formula for
even solutions in time (with initial condition (ug,0)) can be easily deduced from the formula for odd solutions
in time (with initial condition (0,u;)). So we only consider this second case.

Let u be a C? solution of (LW) on R x R?, with initial data (u,d;u)(0) = (0,u;), where u; € C?(R?). By
Theorem 1.5.2, considering v as a solution on R x R?, we obtain:

t

u(tu $17x2) = E /2 al((xthﬂ 0) + ty)da(y)dyv
S

where by definition @; (21, 2, x3) = u1(z1, x2). Passing to spherical coordinates, we get

/2 ﬂl((xla Z2, O) + ty)da(y>
s
2m ™
= / / up (z1 + tsin b cos p, xo + tsin O sin ) sin 0dOde
o Jo

2n  pm/2
= 2/ / up (1 + tsin b cos p, xo + tsin O sin ) sin OdOdp.
o Jo
The announced formula then follows from the change of variable y; = tsinf cos p, y2 = ¢ sin 0 sin . O

It can be seen from the formula in Theorem 1.5.6 that the strong Huygens principle is not verified in

dimension 1 + 2: the solution w(t,z) depends on the values of the initial condition over the entire ball Blzt‘(:v)7

not just on the sphere {y € R? : |z —y| = [¢|}.
I.6. Conservation Laws

The energy of a solution u on R x RY is defined as:

Bia(t)) = /RN el ) dz = %/RN (@t 2))? + [Vu(t)) .

This is the global version of the local energy considered in §1.4. The energy of a solution is conserved over time.

THEOREM L.6.1. Let u € C*(RY™N) be a solution of (LW), (ID). Assume (ug,u1) has finite energy. Then
for any t, E(4(t)) is finite and E(4(t)) = E(ug, u1).
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PROOF. One might be tempted to write

%(E(ﬁ(t))) - / Dew(t v)dz = / V- (QuVu)dz = 0,

but the last equality, obtained by integration by parts ignoring the ”boundary” term (i.e., when |z| — 00) is
purely formal. To justify the preceding calculation, we can use the decay of the local energy (Lemma 1.4.2).
For R > 0, we define:

E_g(d(t)) = / ey (t, x)dz.

|z|<R
Notice that this quantity is finite as soon as u € CY(R'*). Fix ¢ > 0. By Lemma 1.4.2, for any R > t,

E<p—(i(t)) < E<g(i(0)) < E(uo, u1).
As we let R tend to +o0o, we obtain that E(u(t)) is finite, and
E(d(t)) < E(ug,u1).
Reversing the direction of time, we also obtain the inequality
E(ug,u1) < E(u(t)).

We have shown that the energy is conserved for ¢ > 0. By applying this result to the solution (¢, z) — u(—t,z),
we obtain energy conservation for ¢t < 0, which concludes the proof. |

There exists another (vectorial) conserved quantity, the momentum, defined as
P(u(t)) = /&gu(t, z)Vu(t,z)dr € RY.

PROPOSITION 1.6.2. Let u € C?(RY ) be a solution of (LW) with finite energy. Then
VteR, P(u(t)) = P(ug,ur).

The proof of this proposition is left as an exercise (see Exercise 1.7).

1.7. Equation with a source term

We now consider the equation with a source term (I.1.2). We will express the solution of this equation in
terms of the propagator of the free equation (LW). For (ug,u1) € C3 x C?(R3), let Sp(¢)(uo,u1) denote the
solution of (LW) with initial data (ug,u1) at t = 0. We denote S(t)u; = SL(¢)(0,u1), so that

SL(t)(Uo, ul) = % (S(t)uo) + S(t)ul.

For u;, € C?, we recall that

(S(t)yur)(x) = tM,, (t,2) = 1 / u (x + ty)do (y).

S2
THEOREM L.7.1 (Duhamel’s Formula). Let (ug,u1) € (C? x C3)(R3) and f € C*(RxR3). Then the equation
(I.1.2), (ID) has a unique C* solution, given by the formula:
¢
u(t) = Sp(t)(uo, u1) —|—/ S(t—s)f(s)ds.
0

REMARK 1.7.2. The Duhamel term fg S(t — s)f(s)ds can be explicited, see (1.7.1).

PrOOF OF THEOREM 1.7.1. Uniqueness follows immediately from Theorem 1.4.1, since the difference of
2 solutions of (I.1.2) with the same source term f is a solution of (LW). For existence, taking into account
Theorem 1.5.2, it is sufficient to check that the function

U:(t,m)»—)/o S(t—s)f(s)ds

is O2 and satisfies equation (I.1.2) with zero initial conditions.
We have:

(1.7.1) Ut,z) = % /0 (t—s) . f(s,z+ (t — s)y)do(y)ds,

and the fact that U is C? follows from the theorem on differentiation under the integral sign.
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Furthermore, using that S(0)g = 0 for any function g,

%[j - /t gt(S(t —9)/(s))ds.

Upon further differentiation, we obtain

o?U 0 b o2 K
G = (S0=916), _+ [ Ga(s-9r@)as = 10+ [ A(S¢-95))ds = 10+ AV.
where we used that %(S(t)g) it—0 = g for any function g of class C?. O

REMARK 1.7.3. Duhamel’s formula is certainly not specific to dimension 3, as shown by the calculation
leading to this formula, which is completely independent of dimension. The reader is invited to explicitly
rewrite the solution of equation (I1.1.2) when N =1 and N = 2.

From Duhamel’s formula, we deduce the energy inequality:

PROPOSITION 1.7.4. Let u be a C? solution of (1.1.2) with N = 3 with initial data (ug,uy), such that
f € C3RY™3). Suppose furthermore that (ug,uy) has finite energy, and for all T > 0,

/ |f(t, z)|2dzdt < co.
[—T,+T] \/ R3
V2E(1(t)) < v/2E(ug, uy) —|—/O 1//]R3 |f(s,x)|2dxds.

Proor. To lighten notations, we will denote:
Iz = [ IVutt)Pdo+ [ outta)Pdz, 1o = [ 170z

(Il - | g1 is the norm defining the homogeneous Sobolev space H'(R?), see Section 1.2 below). From Duhamel’s
formula and the conservation of energy for the free equation (LW), it suffices to verify that for all ¢ > 0,

(/ S(t—s)f s)ds,@t/OtS(t—s)f(s)ds>

By conservation of energy (Theorem 1.6.1), we have
ISGEEHORACERION I FO]
which implies directly (1.7.2) O

Then for all t > 0,

(1.7.2)

. <z o,g,22)
Hx L2

1.8. Exercises

EXERCICE I.1. Let f : RN — R (N > 1). Suppose f is radial (i.e. That it depends only on the variable
r=|z|=\/2? + 2%+ ...+ 1%). Denote f(x) = g(|z|), where g : [0, 00[— R.
(1) Show that f is continuous on RY if and only if g is continuous on [0, oo].
(2) Show that f is C* on RY if and only if g is C* on [0, 00[ and ¢’(0) = 0.
(3) Show that for any k > 2, f is C* on RY if and only if g is C* on RN and ¢\)(0) = 0 for all odd
integers j < k.
(4) Assuming f is C', compute 8‘97]; in terms of ¢’, j = 1,..., N. Compute ¢'(r) in terms of Vf.

(5) Assuming f is C% on R¥, prove the formula
1

Af(x) = g"(J2]) + N|T‘|g’<|x\>.

To lighten notation, we use the same notation (f) for functions f and g, and denote ¢’ = df

, etc..

EXERCICE 1.2 (Loss of regularity for the radial wave equation in dimension 1+3). Let k£ > 0 and f € C*(R?)
be a radial function. Define a function u on R x (R?\ {0}), radial with respect to the space variable, by

ult2) = o (0 + 0+ ) + & = ) (I~ 1)),

where 7 = |z]. Note that this defines a function of class C* on R x (R*\ {0}).
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(1) Suppose that f is supported in the annulus {3 < |#| < 2} and is such that for | — 1| < 1/10,

2-n ifn>1
f(n)={ : :
n ifn<1

Calculate lim, o u(t,r) when ¢t =1,¢ > 1, and t < 1 (close to 1). Conclude that u cannot be extended
to a continuous function on R x R3.

(2) Similarly, give an example of a C? function f such that u cannot be extended to a C? function on
R x R3.

(3) Assume f is C3. Show that u defines a C? function on R x R3.

(4) Let g be a C? radial function on R®. Show that

1 7‘+t
u(t,r):g/ olol)do,

extends to a C? function on R?3.

EXERCICE 1.3 (Explicit solutions of the radial wave equation in odd space dimension). Let N > 3 be an
odd integer, written as N = 2k + 1. Let T}, be the operator defined by

Tpp = <r—1$>k_l (r**1o(r)) .

(1) Show that
k—1
Tk(p = Z Cj’l"j+1¢(])7",
J=0

for some ¢; € R. Determine ¢ and cp_1.
(2) Show that for any function ¢ € C*+1([0, +o0|),

2 k
@ = () (),

Hint: You can start by verifying that the formula is true when ¢(r) = r™ for any integer m.
(3) Consider a solution u(t,x) of the linear wave equation in space dimension N, radial with respect to
the space variable. Suppose u is C**1 on RV, Show prove

(0F — 07)(Tyu) = 0.

Deduce an expression of Tpu in terms of ug and u;.
(4) Express u(t,r) in terms of ug and u; when N = 5. What regularity of vy and w; is required for u to
be C? on R'*57

Kok ok ok sk ok ok Kook ok kok kok ok

EXERCICE 1.4. Let u be a solution of the wave equation (LW) in spce dimension N > 3, radial with respect

to the space variable. Recall that Au = % + Nr_lﬁ. Suppose u € C?(R'*Y), with compactly supported
initial data. Let

u(t,r) = /OO pOyu(t, p)dp.
Show that v defines a radial solution, of class C?, torthe wave equation in space dimension N — 2.
EXERCICE L5. Let f € C*(R3). Show that the function My, defined by (1.5.3), is also of class C*.
EXERCICE L6. Let u € C?(R x RY) be a solution of (LW) with finite energy. Show

Ve >0, dR > 0, Vt € R, / ey(t,x)dx <e.
|z|>R+|t|
EXERCICE 1.7 (Conservation of momentum). (1) Let u be a C? solution of (LW) on R x RY, and
j€1,...N. Let pj(t,x) = Oz, u(t, x)0pu(t, z). Show
8pj}u . 1 8

—_—— 2_ 2 .
o = 30u; ((Bru)® = [Vu?) + V-V,

where V is a certain C' vector field to be specified.
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(2) Assume that (ug,u;) has finite energy. Justify that

P(a0) = [ pindt.aio

is defined for all times. Show that this quantity is independent of time. You can start by considering
a local version of the momentum

T
U t, d U t, —=)d
/[R7R]ij, (t,z)dx or /RN Dju(t, z)p (R) T

then let R tend to 4+o0c. Here ¢ denotes a C? function with compact support equal to 1 in a neigh-
borhood of the origin.

EXERCICE L.8. (1) Let uy € C*(R?) such that
Yt >0, Vo € R®,  wy(x) > 0.
Assume ug = 0. Let u be the corresponding solution of (LW). Prove
Yt >0, Yo € R®,  u(t,z) > 0.

(2) Suppose now N = 1 or N = 2. Let u be the solution of (LW), (ID), with (ug,u1) € C3x C? (if N = 2)
or C? x C! (if N =1).
Show that if u1 > 0 and ug = 0 then wu(¢, x) has the sign of ¢ for all x and ¢ # 0.
When N = 1, give a weaker sufficient condition on (ug, u1) such that:

Vt >0, Ve € R, wu(t,z)>0.

EXERCICE 1.9. Assume N =1 or N = 2. Let u be a solution of (I.1.2), with up = u; = 0, and f of class
C! (if N =1) or C? (if N = 2). Express u in terms of f.

EXERCICE 1.10. The Minkowski spacetime of dimension N is the space R1T" equipped with the quadratic
form of signature (1, N):

N
g(X) = a3 — Za:f =t~ |z|* =X JX,
j=1
where X is the transpose of X,
X = (zo,21,...,2N), t =g, T = (T1,...,ZN),

and J = [J,, v]o<pu v<n is the matrix such that Joo =1, Jop=—-1ifle1l,...,N,and J,, =0if p # v.

The Lorentz group O(1, N) is the group of real square matrices P of size 1 + N which leave the quadratic
form g invariant, i.e., such that g(PX) = g(X) for all X in R'*¥. In other words, if P isa (1+ N) x (1 + N)
matrix,

PeO(1,N) < 'PJP =J.
(1) Prove that a function v of class C% on R satisfies the wave equation (LW) if and only if Tr(Jv”) = 0,
where v" is the Hessian matrix [axuam]ogﬁg.
(2) Let P € O(1,N), v € C*(R*¥), and w(X) = v(PX). Then
(02 — Ao =0 < (6?2 - A)w=0.

(3) Prove that the space rotations:

1 0
{ o R ] , ReO(N)
and the Lorentz boosts

| Rs 0 | cosh(o) sinh(o)
Ro = { 0 In_1. ] R = { sinh(c) cosh(o) |’
where Iny_1 denotes the identity matrix (N —1) x (N — 1) and o € R are Lorentz transformations. In

these formulas, 0 always denotes the zero matrix of appropriate size.

EXERCICE 1.11. In all Chapter I, we considered the Cauchy problem with initial conditions on a hyperplane
in R1*N of the form {t = to}. We now seek to solve the same problem by prescribing an initial condition on
other hyperplanes. Therefore, we consider a hyperplane of the form

M={X cR"N . AX =0}
where A € RN\ {0}, A = (ag,ay,-..,an) = (ag,a).



16

(1)

(2)
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Prove that if |ag| > |al, there exists a transformation P € O(1, N) such that
II=P({(0,z), z€RY}).
Hint: use compositions of transformations defined in Question (3) of Exercise I.10.
If the condition |ag| > |a| is satisfied, we can therefore reduce the Cauchy problem with an initial
condition
up = ug, A-Vuim = uy,
to a Cauchy problem with initial conditions at ¢ = 0 as treated above. The hyperplane II is called
timelike when A = (ag,a) with ap € R, A € RY, and |ag| > |al.
Prove that II is timelike if and only if the restriction of the quadratic form g to II is negatively
defined.
Under what condition on A does there exist B = (bg, b1, ..., bx) € RVT! such that the function
pAX+iB-X

is a solution of (LW)?

Now assume that the hyperplane II is not timelike. Let Y ¢ II. Construct a sequence of solutions
(tn)n of (LW) such that u,(X) = 0 on II, such that for any differential operator D = Hj\’=1 Ogl...0gN
(of arbitrarily large order), there exists C' > 0 such that |Du,(X)| < Ce™™ on II, but |u,(Y)| — 400
as n — 0o.



CHAPTER II

The linear equation in Sobolev spaces

II.1. Reminders on the Fourier transform

Here, we recall the definition and basic properties of the Fourier transform on RY, in the most general
framework possible, that of tempered distributions. We omit the proofs. For more details, one can consult, for
example, the foundational writings of Laurent Schwartz [25], the course of Jean-Michel Bony [4], as well as [2,
Section 1.2] for a quick introduction, and [20] for a more in-depth exposition (the first two references are in
French).

We begin by introducing a notation: a multi-index is an element a = (ay,...,ay) of NV, The order of «
is |a| = Z;\Ll ;. The derivative with respect to a of a function f of class C!*l on R¥ is then defined by:

N
ogf=losr
j=1

1l.a. Fourier Transform on S.

DEFINITION I1.1.1. The Schwartz space S(RY) is the space of functions f of class C> on R¥ such that for
every p € N,
Np(f) = sup (14 |z])"]07 f(z)| < oo

z€RY |a|<p

It can be observed that each N, is a norm on S(RY), but N, is not complete for any of these norms.
We equip S(RY) with the distance function

(IL1.1) d(p, ) = Zimin (Np(go—w),l).

Notice that d(¢,, @) tends to 0 as n tends to infinity if and only if N,(¢, — ¢) tends to 0 for every p.
The metric space (S, d) is complete.!
The Fourier transform of an element ¢ of S is defined by the formula

(I1.1.2) 26 = Fe(©) = [ el

One easily checks that F is a continuous application from S into S.
Fubini’s theorem immediately implies the duality formula:

(IL13) / s = | pla)d()dr,

for p,1 € S(RY).
The Fourier transformation is a bijection of S: by defining

o L, (e = i),

we have the Fourier inversion formula: for all ¢ € S(RY),

(I1.1.5) FFo=FFp=op.

(IL.1.4) F)(z) =

1Such a vector space, equipped with a countable family of semi-norms, and which is complete as a metric space (where the
distance function is defined as in (II.1.1)), is called a Fréchet space. It is a natural generalization of a Banach space when a unique
norm is not sufficient to ensure completeness.

17
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By combining the Fourier inversion formula (I1.1.5) and the duality formula (I1.1.3), we obtain the Plancherel
theorem: for all ¢, in S,

_ 1 —
II.1. = — 7l d§.
(IL.16) |, el = oo [ aonea
The Fourier transform exchanges multiplication by powers of  with differentiation. For all ¢ € S(R™V)
(I1.1.7) Va e NV, Fotp =il*levg(e), F(avp) =il*loga(€).

1.b. Fourier Transform of Tempered Distributions.

DEFINITION I1.1.2. The space S'(RY) of tempered distributions is the topological dual of S(RY), i.e., the
vector space of continuous linear forms on S.

In the definition, continuity must be interpreted in the sense of the topology induced by the distance d
defined by (II.1.1). Using the definition of this topology, one sees that a linear form f on S is an element of S’
if and only if:

We equip &” with the topology of pointwise convergence: a sequence (f,), of elements of &’ converges to f in
S’ if and only if

Several function spaces continuously embed into S’(RY) in the following manner. If f is a measurable, locally
integrable function on f such that

VR >0, / |f(x)|dz < C(1+ R)“
|z|<R
for some constant C' > 0, we define an element Ly of S’(RY) by
L) = [ 1@eyis,
RN

The preceding application is injective, i.e., Ly is null if and only if f is null almost everywhere on RN . We
then identify f with the linear form Ly, also denoted f. The preceding identification allows us to consider S,
Lebesgue spaces LP(RY) (1 < p < 00), CF (the space of C* functions on RY that are bounded along with all
their derivatives up to order k) as subspaces of S’.

Examples of tempered distributions that are not functions are given by the (improperly named) Dirac delta
function at a, denoted d, and defined by (6., ) = ©(a), as well as the surface measure o on the sphere S™V=1,
defined by:

{o,0) = /SN_1 p(y)do(y).

By duality, several actions can be defined on the elements of S’.
Differentiation. Let a € NV and f € S’. The derivative of f of order « is the element 9% of S’ defined by:

VoS, (05f.0)= (-1 (f,02¢).

The integration by parts formula shows that if f € Cgal, its derivative of order « in the sense of distributions
coincides with its derivative in the classical sense.

Multiplication by a Function. We denote by P = P(RY) the space of C* functions with slow growth, i.e.,
such that

(I11.1.8) VYa, 3IM,C>0 VeecRY [0%(z) <O+ |z))™.

It is easy to check that the multiplication by an element of P defines a continuous mapping from S into S. We
then define, for f € &’ and g € P, the product fg by:

(fg.0) = (f,99¢)-

The product fg is an element of S’. Fixing g € P, f + fg is a continuous mapping from &’ into &’.
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Fourier Transform. We define the Fourier transform of an element f of S’ by
voes, (fe)=(9)

The duality formula (I1.1.3) shows that if f € S, its Fourier transform according to formula (II.1.2) and its
Fourier transform in the sense of S’ coincide.

We recall that L'(RY) and L?(RY) are identified with subspaces of &'(R"). The Fourier transform on
S’ thus applies to elements of these two spaces. On L'(RY), we recover the Fourier transform in the classical
sense.

PROPOSITION 11.1.3 (Fourier Transform in L'). Let f € LY(RY), and f be its Fourier transform in S’
Then f can be identified with the continuous function given by the formula:

flo = [ e s
RN
The second proposition immediately follows from the Plancherel theorem:

PROPOSITION I1.1.4 (Fourier Transform in L?). Let f € L?(RY) then fe L*(RYN) and

1 N
112 = gmywral Pl

Indeed, the Fourier inversion formula in &’ (see below) implies that f — W f is an isometry of L2(RN).

The properties of the Fourier transform on S are transmitted by duality to the Fourier transform:

e We define the inverse Fourier transform F of an element f of S’ by
(Ff.o)=(fFe).
Then we have the Fourier inversion formula:
VfeS, FFf=FFf=Ff

e Property (I11.1.7) remains valid for p € S'.

I1.2. Sobolev Spaces

2.a. Definition. (cf [2, Section 1.3]) We mainly focus on Sobolev spaces on RY | of Hilbert type (i.e. based
on L? spaces). In this section, we consider homogeneous Sobolev spaces H?. We refer to the exercise sheet for
classical Sobolev spaces H?.

The Hilbertian Sobolev spaces on RV are easily defined using the Fourier transform:

DEFINITION 11.2.1. Let o € R. The Sobolev space H°(RY) is the set of f € &'(RY) such that f can be
identified with a function in L!(K) for every compact set K, such that the following quantity is finite:

11 = Gy [ €I

The space Hoe, equipped with the inner product:

1 P—
(F-9ae = Gy |, Vo FloaEae
is a pre-Hilbert space.

THEOREM I1.2.2. The space H?(RN) is complete if and only if o < N/2. In this case, the vector space So
of functions in S whose Fourier transform vanishes in a neighborhood of 0 is dense in H(RY).

Note that H? is exactly the space L2.
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2.b. Sobolev Inequalities. We have the following Sobolev embedding on R¥.

THEOREM I1.2.3. Let o €]0, N/2[, and p € (2,00) such that % =1—Z. Then H(RN) is contained in LP
with continuous embedding.

The result is well-known. We give a proof based on the Fourier transform, which yields a slightly stronger
result that we will use later.
By the density result in Theorem I1.2.2, it suffices to show that there exists a constant C' > 0 such that

(112.1) VF e SEY),  fllrny < Ol e e
Let f € S. We denote?
1 ~
I =sup o [ €I F(e) e,
I = s o [, IR
and observe that || f|| zo < || f|l 7o We will prove the following result, which implies (II.2.1):

THEOREM I1.2.4 (Improved Sobolev Inequality). Let o and p be as in the previous theorem. Then there
exists a constant C > 0 such that

vieS®RY), I < IR,
NoTATION I1.2.5. Let ¢ be a function on RY. For u € §'(RY), we denote

p(D)u = F (p(§)u(s)) -
The operator ¢(D) is called Fourier multiplier (with symbol ¢).

The tempered distribution ¢(D)u is not well-defined for all functions ¢ and u € &' we need ¢ u to define
a tempered distribution. This is for example the case if ¢ € L and v € H? (in this case ¢(D)u € H?), or if
¢ € P(RY) (the space of C* functions with slow growth i.e. that satisfy (I.1.8)).

PROOF. We use a method introduced by Chemin and Xu in [6]. We fix a parameter A > 0 and decompose
f into a high-frequency part fs 4 and a low-frequency part fca:

fsa=F <]1|£|>AJ?(£)) =ULipsaf, fca=1lpaf=1-f

Let k(A) be the largest integer such that 2¢(4) < A. By using the Cauchy-Schwarz inequality, then the fact
that o < N/2, we obtain:

< 1
—

|f<A($>| = (27T)N 271_)]\]

/ e f(e)de
[El<A

/ Fo))de
2k €| <2HH1

1/2
1 —0 o Iy —0
<@y 2 207 ’(/5 €2 |f(£)|2d§> < On AN fl| g

k<k(A)

k<k(A)

where Cy depends only on the dimension N. Then we write (using Fubini’s equality):

|f(@)] 400
1 = [1f@pde= [ o [7 v ante=p [0t [fo e Y 5 If)] 2 4} an
Ry Jo 0
where |S| denotes the Lebesgue measure of the measurable subset S of RY. Let A()\) be such that
Cx AN F 7| fllp = A/2

For any z in RV,

o | >

|fcapn(@)] <
Thus |f(z)] > A = [f>a0y(2)] > A/2. Hence:

191 <p [ 27| {z € RN ¢ |foap(@)] > A/2}|ax
0
By integrating | fs a()|? over the set {z € RY : [fs 40 (@) > A/2}, we get

4
[{z e RY ¢ |foar @) > M2} < Zl a2

2This norm defines the Besov space Bg oo~ See [2, Section 2.3] for the definition of general Besov spaces.
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Combining with the Plancherel theorem, then Fubini’s theorem, we obtain

4p \p—3

€)|?ded

- e el [ [ e

where ¢(f, &) = 2C’N||f||B(,|§|%_s, and Cp, ny depends only on N and p. It can be easily verified that (§ —
o)(p — 2) = 20, which proves the announced inequality. O

£z, <

€\>A(>\)

We will focus more particularly on the case s = 1. According to the above, the Sobolev space H HRN),
N > 3, is a Hilbert space, contained in L%, which can be defined as the closure of the space S(RY) (or

C3°(RN)) for the H*(RN)-norm. We can characterize this norm with the first-order partial derivatives of f.
Indeed,

1 . N .
171 = W/|52|f(£>|2d5;/yfjf@)ma

which shows by Plancherel’s theorem and formula (I1.1.7)
71 = [ 1V 5@

The attentive reader will have noticed that the space H'(RN) is not the set of ¢ € S’'(RV) such that for all j,
9z, € L*(RY): indeed, nonzero constant functions are in this space, but not in H'(RV) (the Fourier transform
¢ of a nonzero constant function is the multiple of a Dirac function, which does not satisfies the assumption of
local integrability in the definition of H).

The density result of Theorem I1.2.2 implies that H'(RY) is the closure of C§¢(RN) for the norm || - ||i[1
An other characterization, using the Sobolev inequality, is given by
(I1.2.2) H®RY) = {f e LF5®Y), |v/l € L*RY)}.

The proof of (I1.2.2) is left to the reader.

I1.3. The wave equation in the Schwartz space

Let (ug,u1) € S(RY). We will write the solution u of (LW), (ID) using the Fourier transformation. We
start with a formal calculation, assuming that u(t) € S for all ¢ (which we will prove later). We denote u(t) as
the Fourier transform of u with respect to the spatial variable, i.e.,

u(t, &) = /RN e~ Syt z)d.

Thus, we have
Au(t, 6) = _|£|2a(t7€)7
and the wave equation (LW) is formally equivalent to the linear differential equation
7u(t,€) + [¢l*u(t, €) =0,

where the variable £ is considered as a parameter. The solution to this equation, with initial conditions
(@(0), 0¢u(0)) = (ug, uy), yields

P I sin(t|&|) ~
a(t,6) = costle) () + =5 o),
or, with the previously introduced notation,
(I1.3.1) u(t) = cos(t|D|)ug + Sml(gfbul.

THEOREM I1.3.1. Let (ug,u1) € S(RN)2. Then u defined by (11.3.1) is an element of C°(R x RYN). It is
the unique C? solution of (LW), (ID).
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PROOF. Uniqueness follows from Theorem 1.4.1. Hence, it suffices to prove that u, defined by (I1.3.1), is
C* and satisfies (LW), (ID). We have

_ 1 ei:v-§ cos m Sln(t|§|)
) = gy [ e (contrehan(e) + 70 ) ae

i§
By writing
snlle) _ 5~ (CDHAED™,
€ & @k
we see that it is a C'°° function of (¢,£). Moreover, % < |t]|€)7. Similarly, (t,&) — cos(t|¢]) is C°° and

J cos(t|§|)’ < |€. Using the fact that % and 4; are elements of S(RY), by the theorem of differentiation

under the integral sign, we obtain that w is C° and satisfies (LW). The Fourier inversion formula shows that
u also satisfies the initial conditions (ID). O

I1.4. The wave equation in Sobolev spaces

4.a. The equation in general homogeneous Sobolev spaces. Let (ug,u1) € H x H! o < N/2.
We define as before u by (I1.3.1). We also define the formal derivative of u with respect to time:

u' (t,z) = cos(t|D|)u; — |D|sin(t|D|)uo.
Then u and u’ satisfy the following properties:
CraM IL4.1. u € COR, H?), v’ € CO(R, H1), u(0) = ug, u'(0) = uy.
PROOF. Using that ug € L2(|¢[*9d€) and 6y € L?(|€]2972dE), it is easy to see that
(I.4.1) e COR, L2(|[*7dg)), ' € CO(R, L*(j¢]*~2dg)),

which yields the announced continuity property. The facts that u(0) = ug and «/'(0) = u; follow immediately
from the definition. O

Craim 11.4.2. Vt, H(u(t),u/(t))HHgXHg,l = H(uO,ul)”ngHo,l.
PRrROOF.
[ awopids+ [ aea

]RN ]RN
sin(t[¢])

= [ |eostticnote) + a()| eemae
o g
[ ] =l sin(eieho(©) + costeiem(©)| e 2dg
RN
= [, (Rl©)F + @ Pl ?) s
which gives the desired property. O

CrAM I1.4.3. Let (ugn,u1n) € (So(RN))? such that (ug,,u1,) converges to (ug,u1) in H? x H° 1. Let
uy, be the solution of (LW) with data (uon,u1,n). Then

i sup s (8) = w(t) o + [Ortn (1) = /(1) o1 = 0.
te

n—oo
PROOF. It follows immediately from the preceding claim, applied to (u — tyn,uw’ — Jpuy,). O

CraM IL.4.4. One can identify u with a distribution on R x RN | and it satisfies the wave equation (LW)
in the distributional sense. Furthermore v’ = Oyu in the sense of distribution.

PrOOF. We first give a “concrete” proof of these facts for the reader which is not familiar with the theory
of distributions, assuming that o is large enough so that the object considered are all functions on R x R,
Let 0 > 0. We let u, be as in Claim I1.4.3. Using that w, is a C* solution of (LW) and integrating by

parts, we obtain
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Using the Sobolev embedding H? C L?, % = 5 — %, and the point (I1.4.3), we see that

1
2
nllﬁﬂgo lu — unllLe(x) =0,
for all compact K of RY. This implies
0= lim // Uy (t,2)(87 — A)pdrdt = lim //u(t, 2)(0? — A)pdadt,
n—oo n—oo

and thus
Vo € C°(R x RY), // u(0} — A)pdtdr = 0,

which is precisely the meaning of 9?u — Au = 0 in the distributional sense.
Let 0 > 1. The equality
Oy, = —|D|sin(t|D|)uo,n + cos(t|D|)u1 n-

holds by differentiation below the integral sign. By integration by parts,

Vo € C° (R x RY), // Oruppdtdr = — // UnOppdtde,

Letting n — oo, we obtain

Vo € C(R x RY), // W pdtde = — // udypdtdz,

which means that v’ = d,u in the distributional sense.
The proof for general o is essentially the same, and can be skipped by the reader who is not familiar with
distributions.
If ¢ € C°(R x RY) (the space of smooth functions with compact support on R x RY), one defines the
action of v on ¢ by
“+o0
o) = [ it o) sdt
—00
where @(t) is the function ¢ — ¢(¢,-). It is a straightforward exercise to prove that u is well-defined and that
is is a distribution on R x RY. The facts that u satisfies the wave equation in the distributional sense and that
u'(t) = Opu(t) follow immediately from Claim II.4.3, that implies that limu,, = u in the distributional sense,
where u,, is a in Claim I1.4.3. This last fact is an immediate consequence of Claim I1.4.3. ]

From now on, we will use the formula (I1.1.2) as the definition of the solution u of (LW), (ID) with
(ug,u1) € H x H°~!. The preceding claims show that such a u is a limit of smooth, classical solutions of
(LW),(ID), and that it satisfies (LW) in a weak sense. Also, we have

Oyu = —|D|sin(t|D|)ug + cos(t|D|)uy
in the sense of distribution. In the sequel, we will always use the notation 0;u to denote this quantity.

4.b. The wave equation in the energy space. Of particular interest for us is the case s = 1. We will
call “finite energy solutions” the weak solutions with initial data H' x L? given by the preceding subsection in the

case s = 1, N > 3. We will focus on the case N = 3. We note that if (ug, u1) € (C3x C?)(R3)N (Hl X L2) (R3),
we have two ways of defining the solution u: by integrals on spheres, as in Theorem 1.5.2, and using the Fourier
transform, i.e. by formula (II.3.1). Let us prove that these two definitions coincide:

PROPOSITION I1.4.5. Let u € C%(RxR?) be a solution of (LW), (ID). Assume furthermore ug = u(0) € H*,
uy = 0yu(0) € L2, Then
sin(t|D|)

u(t) = cos(t|D])ug + D]

uy, Owu(t) = —|D|sin(¢|D])ug + cos(t|D|)uy.

PROOF. Let (ugn,u1,n) € (S(RN))2 with
Jim Jjuo,n —uoll o + lurn —urfz2 = 0.

Let u, be the corresponding solution of (LW) given by (I.3.1) (note that by uniqueness it is also the solution
given by Theorem 1.5.2). Since u — u,, is a C?, finite energy solution of (LW), Theorem 1.6.1 yields

9t lu(t) = un ()17 + 10u(t) = run (172 = lluo — uomlF + llur — urnllZe,
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which tends to 0 as n goes to infinity. This proves the result, since u, (¢) converges to cos(t|D|)ug + %ul

in H'(R?) and dyuy,(t) converges to —|D|sin(t|D|)ug 4 cos(t|D|)u; in L? by Claim I1.4.3. O
Using the approximation of finite energy solutions by solutions with initial data in S, we can transfer several
results of Chapter I to general finite energy solutions. This is the case of the decay of energy on past wave

cones, which imply finite speed of propagation. If u is a finite energy solution (in any dimension N > 3) and
R >0, zg € RY, ty € R, we denote by

Froe(t) = / eult,2)dz.
|x—$0‘<R—‘t—to‘
Then

THEOREM I1.4.6. Ejo.(t) is nonincreasing for t > to.

ProoOF. From Theorem I.4.1, this quantity is nonincreasing when (ug,u1) € S. Considering the approxi-
mation given by Claim I1.4.3, we obviously have, as a consequence of this claim,

vt, lim €u, (t,z)dr = / ey (t, x)d.
0 J1z—zo|<R—|t—to| |z—z0|<R—|t—to|
This gives the desired monotonicity property. O

We note that for general finite energy solution the integration by parts used in the proof of Theorem 1.4.1
is no longer valid (since the boundary terms are not always well-defined).

4.c. Equation with a source term. We next consider the wave equation with a source term (I.1.2). By
linearity, it is sufficient to study the equation with zero initial data:
(11.4.2) Otu—Au=f, =9 = (0,0).

PROPOSITION 11.4.7. Assume f € C° (R,S(RN)), Then u defined by

t .
t—s)|D
(IL4.3) u(t) = / sin (= 9IDN) 145
0 Dl

is the unique solution of (11.4.2).

PROOF. The uniqueness follows as usual by Theorem 1.4.1. It is thus sufficient to check that u defined by
(I1.4.3) is of class C2, and is a solution of (I1.4.2). We consider F the function defined on R x R x RY by

Ft.s.2) = (Si“ (“l‘)s)'p ) f(s)> (@)

Thus ( )
1 _sin ((t— 9)|¢]) ~
F(t,s,x :7/ elrt TV f(s, €)dE
50 = G o g e
Using that f e Co (R,S(RN)), it is easy to check that F' is continuous and C* with respect to the variable

(t,z), and that one can differentiate below the integral sign. The result follows since by integration by parts in
the & variable,

|2 ix- ESln )|§D

AF(t,s,x) = ||

Fls,€)dg

|

We note that Duhamel formula (I1.4.3) is still valid when f € L'([-T,+T],H°~") for all T, where ¢ is
a fixed real number (assumed to be < N/2 for simplicity), and that it yields a function u € C°(R, H?) with
Ou € CO(R,H™ 1),

t
(I1.4.4) Opu = / cos ((t — s)|D|) f(s)ds,
0
in the sense of distribution, and such that
¢
(11.45) 0o ro-s < [ 1Al rmsds

Note that (I1.4.5) is exactly the energy inequality proved in Chapter I when o = 1.
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We can approximate such an f by a sequence of functions (f,) with
+T
foe CO®S), W, tim [ [£(5) = fa(8)llge rds = 0.

n—oo | _p
The corresponding solutions u,, defined by
tsin ((t — s)|D])
up(t) = | —————=fn(s)ds
0= [ TS
are C? solutions of (I1.4.2) and satisfy

(11.4.6) sup ||ty () — @(t)|| o gro—1 — 0.
_T<t<T n—00

As in the case of the free wave equation (LW) with nonzero initial data, this proves that u satisfies (LW) in
the sense of distribution. In this situation, we will take the formula (I1.4.3) as a definition of the solution u of
(LW).

EXERCICE II.1. Assume that 0 = 1. Let f defined on R x R, such that f € L'([-T,+7T, L*(RY)). Prove
that there exists a sequence of functions f,, € C§°(R x RY) such that

VT > 0, nh—>H;o ||fn - f||Ll([7T’+T]’L2(RN)) =0.

EXERCICE I1.2. Let u be a C? solution of (LW) for some f € CO(RxRY). Assume that f € L' ([T, +T], L*(RY))
for all T' > 0. Show that u satisfies (I1.4.3).






CHAPTER III

Strichartz inequalities

II1.1. Introduction

In view of Plancherel theorem and the Fourier representation formulas for the wave equation, it is natural
to study the wave equation in L?(R™) or in L? based spaces such as the Sobolev spaces H* considered in
the preceding chapter. However, this is not sufficient for the study of nonlinear wave equations. Indeed since
If1Pl L2y = ||f||i’;p, the appearance of Lebesgue spaces L? with ¢ # 2 is unavoidable. A first way to deal
with this issue is to use Sobolev inequalities. For example, if one wants to consider solutions in the energy
spaces for the equation

(I11.1.1) OPu—Au=u® xcR?

the energy inequality will yields terms of the form® [[u?|| 11 (jo,79,22) = Hu||%3([0)T]’L6) < THu||Loo([O’T]’H1), which
is sufficient to prove the existence and uniqueness of finite energy solutions for (III.1.1). However this strategy
will not work for higher order nonlinearities, and in particular the quintic one which we will focus on in several
chapters of this course. In this chapter I will introduce the celebrated Strichartz inequalities, that use the
dispersive properties of the wave equation to improve over Sobolev type inequalities. This type of inequalities
was introduced by Robert Strichartz in an article published in 1977 [27], and generalized later by several
authors. See e.g. [19] or the book [26].

The original inequalities of Strichartz were formulated in terms of Lebesgue spaces L4(R x RY) on the whole
space time R x RY. Having in minds applications to nonlinear wave equations, it is useful to consider more
general spaces where the Lebesgue exponents in space and times are distinct. If I is an interval, we will define
LP(I,L%(RY)) as the set of integrable function f : I — LI(RY) such that

1/p
(ITL.1.2) lulo zoevy = [leC)lzoem | = ( / |u<t>|’zth) .
Lr(R) R

if finite (with the usual modification if p = oo). The notion of integrable functions with values in a Banach space
can be rigorously defined by the theory of Bochner’s integration, see e.g. section 1.2 in the book [5]. An element
of LP(I,L4(R™Y)) can be identified with a (class) of measurable function on I x RY. With the identification, we
can use the density of C§°(RY) in LI(RY), ¢ < 0o, to prove that C5°(I x RY) is dense in LP(I, L9) if ¢ and p
are finite. Using this fact, we will mainly work on LP L% norms of smooth functions, for which the definition of
(IT1.1.2) is clear.

We will often write LP(I, L?) instead of LP(I, L9(R")) to lighten notations. When I = R, we will also use
the notation LPLA.

We will use the generalized Holder inequality in these spaces:

ProposITION II1.1.1. Let p, q,p1,q1, P2, g2 in [1,00] with
1 1 1 1 1 1

PP P2 4 @ g
Let f € LP*L? and g € LP>L%. Then fg € LPL? and

[fgllrrs < || flleiralgllrepo.
The proof of Proposition III.1.1, using the standard Hélder inequality, is left as an exercise to the reader.
We will also use the following consequence of Holder inequality:
ExERCICE III.1. Let 6 € [0,1], p, q,p1,q1,P2,q2 in [1,00] with
1 0 1-6 1 0 1-—46
+ + :

)

P_PT b2 q_qil q2

1See below for the notations LP (I, L9)

27
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Let f e LPr LD N LP2L%. Prove that f € LPL? and
I fllzrza < IFIZor pon 1 N et o
I11.2. Statement of the estimate
The Strichartz inequalities in space dimension 3 with initial data in the energy space read as follows:
THEOREM I11.2.1. Let (ug,u1) € (H' x L?)(R3) and f € L'(R x L*(R3)). Let

sin(¢|D|)uq t sin ((t — 5)‘DD
D] +/o D]

(TI1.2.1) u(t) = cos(t|D|)uo + f(s)ds.

Then for any (p,q) with p > 2,
(I11.2.2) LI
q

one has u € LP(R, LY(R3)) and

ullzo®,0y < C (I (uos un)ll gz + 1 fllLre.z2)) -
for a constant C > 0 depending only on p.

REMARK II1.2.2. If I is an interval with 0 € I, f € L*(I, L?(R")), and u satisfies (II1.2.1) for ¢ € I, then
u € LP(I,L9(R3)) and

(111.2.3) lullLe(r,zay < C (Il(uo, ui)ll gz + 1f1lL2(r,r2)) -
This follows immediately from the Theorem, extending f by f(¢) =0if ¢t ¢ I.

REMARK II1.2.3. We recall that in the setting of Theorem III.2.1, we also have @ € C° (R, H! % LQ), and

the energy inequality
(D) 12 < NEO) g2 + L 122 o,71,22)5
for any T > 0, which can be easily checked using the space Fourier transform of formula (III.2.1)

We have focused on solutions with initial data H' x L2 in space dimension 3, in view of application to the
quintic wave equation in space dimension 3. Analogs of Theorem II1.2.1 exist in all space dimensions N > 2
with more general assumptions on the initial data (ug, u1) and the right hand-side f. The condition (III.2.2) is
necessary by the scaling of the equation. For solutions in space dimension N with initial data in H? x H°~ 1,
it becomes
1 N N

+—=—- -0

p q 2
Let us mention that there is in general another condition on p and ¢. This condition does not appear in Theorem
II1.2.1 as it is implied by the scaling condition (I11.2.2).
Of particular interest is the case ¢ = 1/2 in space dimension 3, which was considered by R. Strichartz in
his article [27], and which is useful to solve the cubic wave equation. We state this inequality and will leave
some of the details of the proof to the reader:

THEOREM I11.2.4. Let u be defined by (II1.2.1) with
(uo,u1) € HY2(RY) x H-V2(R?),  f € L3R x B?).
Then u € L*(R x R3), @ € C° (R,H1/2 X H*1/2(]R3)) and

up (0) 4, -4 + Nl ey < € (I lorsersy + 0wl g -t )

In the sequel of this chapter we will prove Theorem III.2.1 for p > 4, which will be sufficient for our
applications to the nonlinear equations below.

We will use the following notations. If A and B are positive quantities, we will write A < B when there
exists a constant C, independent of the parameters, such that A < CB, and A= B when A < B and B < A.

By the energy inequality and Sobolev embedding, we have for all ¢.

lu(@llze < Il g2 < (w0 u)ll a2 + 111w z2),
which solves the case p = 0o, ¢ = 6. Next, we notice that by Holder inequality, if p and ¢ satisfy (I11.2.2) with
p € (4,00), we have

(IIL.2.4) lull oz S lullp=2psllullfa e
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where 6 = %. Thus the inequality (I11.2.3) for this pair (p,q) will follows from the same equality for p = 4,
g = 12. We are just reduced to prove the estimate (I11.2.3) for p = 4, ¢ = 12. By density, we can assume
(uo, u1) € (C(R3))?, f € C5°(R x R3).

The inequality will follow from the dispersion inequality (Theorem 1.5.5) proved in Chapter I.

To deduce the Strichartz inequality from the dispersion inequality a few tools from harmonic analysis are
needed. These tools, that include Hardy-Littlewood-Sobolev inequality, dyadic decomposition, Littlewood-
Paley theory and interpolation of Lebesgue spaces, are recalled in Section II1.3. In Section II1.4, we prove the
Strichartz inequality for the “half-wave equation”, which is an order 1 equation related to the wave equation.
Section III.5 is devoted to the end of the proof of Theorem II1.2.1.

II1.3. Some tools from harmonic analysis
We first recall an interpolation Theorem for a linear operator between LP space.
THEOREM II1.3.1 (RieszThorin interpolation Theorem). Let (X, u), (Y,v) be measure spaces. Let

9 6]071[7 (P07P17QO7Q17P7 Q) € [1700]6

with

1 6 1-6 1 6 1-6
(I11.3.1) 1_9,1=0 1_90_1-96
P Po P q do q1
Let A be a linear operator defined on LP°(X) + LP'(X) which is bounded from LP°(X) to L?(Y) and from
LPr(X) to L1 (Y). Then A is a bounded linear operator from LP(X) to L1(Y), and
HA”LP(X)%L‘I(Y) < ”AH%PO(X)%L‘ZO(Y)HAH};;]e()Q_,Lrn ()

In the theorem, ||A||g—r denotes the operator norm of the bounded operator A : E — F, where E and F
are Banach spaces.
We next recall Young’s inequality for the convolution

THEOREM 111.3.2. Let f € LY(RY), g € L"(RN) with 1/q+1/r > 1, and p defined by %—i— 1=2+1 Then

fgla) = / £z — y)g(v)dy

is defined for almost every r € RN and

(I11.3.2) I1f = glle < [Ifllzallgllzr

EXERCICE II1.2. Prove Young’s inequality. Hint: start with the cases (¢,r) = (1,1), (¢,7) = (o00,1),
(¢,7) = (1,00) and use the interpolation theorem II1.3.1.

When N = 1 and 6 €]0, 1], the function ¢ — 1/t, is not in L'/? due to a logarithmic divergence at 0 and
00. The Hardy-Littlewood-Sobolev inequality says that this function behaves as a L'/? function from the point
of view of convolution. We will use this inequality in the particular case § = 1/2, p = 4/3, ¢ = 4. We refer e.g.
to [2, Theorem 1.7] for the proof.

THEOREM I11.3.3 (Hardy Littlewood Sobolev). Let 6 €]0,1[, (p,q) €]1,00[* satisfy
1 1
—4+60=1+-.
b q
Let f € LP(RY). Let, fort € R,

1
111.3.3 t) = ——ds.
QEE) ott) = [ 16 =gt
Then the integral defining g converges for almost every t, and

HgHLq(]R) S ||fHLP(R)~

We next give a few elements of Littlewood-Paley theory, which is a useful tool to study LP spaces with
p # 2 by Fourier transformation. What follows is by no mean a complete account on Littlewood-Paley theory:
we will just state the needed results, and will give only some of the proofs. We refer to [2, Chapter 2] for a
complete introduction to the subject.

We start with some inequalities on frequency localized function.
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THEOREM I11.3.4 (Berstein-type estimates). Let 1 € C§°(RY). Then if 1 < q < p < o0

(ITL.3.4) VEeSRY), WYA>0, [[bAD)f]Lr <AGT) ’f’

~

La

Assume furthermore 1¥(§) = 0 for £ close to 0. Then, if s € R and p € [1, 0],

(I11.3.5) Ve SERY), VA0, H|D|Sz/)(/\D)fHLp ~ A zp(/\D)fHLp.

Moreover, if s € N,

(I11.3.6) Ve S(RY), VYA>0, sup

loe|=s

o WOD)f) |~ a

Lr

YD)

i
In the theorem, the implicit constants might depend on v, but of course not on f and A > 0.

PROOF. Step 1.
We first prove (II1.3.4) for A = 1. We have

(I11.3.7) Y(D)u = (F1p) * u,

where f * g is the convolution of f and g. This is a classical property of the Fourier transform, which can be
checked by an explicit computation of F(¢(D)u). Note that Fi € S C ﬂl<p<oo LP. Using Young’s inequality
we obtain that (I11.3.4) holds for A = 1, i.e. that there exists C' > 0 such that

vfe S®RY), [e(D)fllLs < IIfllze.

Step 2: rescaling. Denote by Thu(xz) = u(Ax). By a simple change of variable, one can prove
U(D)(Tou) = Tx (¥(AD)u)
Thus by Step 1,
ITx (WAD)u)l| Lo S [Tt o -

Since [|[Thf|l;» = ﬁ\\fﬂm, we obtain (II1.3.4) for any A > 0.
Step 3: proof of (II1.3.5).
Let x € C§°(R?\ {0}), such that x(¢) = 1 if £ € supp(¢)). Then

%E(AD)w(/\D)u,

IDI*(AD)u = | DI X(AD)E(AD)u =
where 2(£) = |£]°x(€). Using (II1.3.4) with p = ¢, we obtain
s 1
(111.3.8) [1DIF¢(ADYul| , S 35 [0 AD)ul| -
Using (II1.3.8), with s replaced by —s and w replaced by |D|*x(AD)u, we obtain
[oAD)ul| ,, = [[[DI=*(AD)|D[*ul| , < A*[|w(AD)[D| ul| -

This concludes the proof of (II1.3.5).
Step 4: proof of (II1.3.6). First, we have

1
Lp o |)\|‘0‘|
where x is as above and Z,(§) = (1§)“x(§). The estimate < in (II1.3.6) then follows from (II1.3.4) with ¢ = p.

Next, if s is even, we have |D|* = (—A)*/2, which shows that (ITI.3.5) implies the other estimate in (IT1.3.6).
If s is odd, we write

(I11.3.9) Hw(AD)aﬁf

OEX(AD)Y(AD) |

- =.0mom],,

1

|eD)IDIf o

| = WODIDI s S sup (071D D),

1
<1 s 1A
|a|=s+1

and we conclude with (IT1.3.9) that the inequality 2 in (IT1.3.6) holds in this case also. O
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The Littlewood-Paley theory is based on a dyadic decomposition of a distribution f € S'(RY). We fix once
and for all a radial function ¢ € C§°(RY) with ¢(&) = 1 if |¢| < 1/2, and p(x) = 0 if |z| > 1. We let

050 =¢(55) - (5) =0 (5). ©=ve2 -0,

“+o0
supp©; C {2771 < [¢[ <2}, D ;) =1, (££0),

j=—o00

We have

where the sum is, for any fixed &, a finite sum. We denote
Ajf =0;(D),
so that (at least formarly) f = ZjeZ ©,(D)f (Dyadic decomposition of f in frequencies). If f € S, it is easy

to prove that this sum converges in S.
We have the inequality

(111.3.10) VE £ 0, % <Y eiy<
JEZ

ExXERCICE II1.3. Prove (II1.3.10). Hint: Let
A©) =06, B = 0;().

j odd j even

Check that if £ # 0,
AQ+BE) =1, A=) 03¢, B= ) 05

j odd j even

Combining with Plancherel identity, it follows that if f € S(RY),
(II1.3.11) £ 112y = D 1A FlI2 gy,
JEZ
and more generally,
(I11.3.12) 113 = DA DI flige = D (2%) (1A £
JEL JEZ
The situation is more complicated for p # 2. Nevertheless, we have the following estimates:

THEOREM II1.3.5. For all p € (1,2], for any f € S
(I11.3.13) D IAFI S A1l
JEL
For all p € [2,00), for any f € L?,
(I11.3.14) 171%0 £ D218 F1Z -
JEL
We omit the proof refering the interested reader to [2, Theorem 2.40].
EXERCICE III.4. Prove:
e Forall p € [1,2], for any f € S
(I11.3.15) 170 S D 1A £
JEZ
e For all p € [2,00], for any f € LP,
(IIL.3.16) S oIAfIE S A
JEZ
(where the sum has to be interpreted as sup; [|A; f||L~ when p = 00).

Hint: Start with the cases p = 1 and p = 2 for (II1.3.15) and p = oo and p = 2 for (II1.3.16), then use an
interpolation argument.
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The two estimates of Exercise II1.4 complete the estimates of Theorem II1.3.5. The proofs are simpler than
the proof of Theorem II1.3.5, but are not detailed here since we will not need these estimates below.
Note that there is no perfect equivalence between the norm || f||z» and a norm defined as a £7 norm of the

sequence ([|A;f|[rr); if p # 2.
Let us mention that the quantities

(IL.3.17) 1% =D 1A

" jer
appearing in (I11.3.13), (II1.3.14), (I111.3.15) and (II1.3.16) defines the norm of the so-called Besov space ng.
See Sections 2.3, 2.4 and 2.5 of [2] for more details on Besov spaces.

ITII.4. A Strichartz inequality for the half wave equation

It is sometimes useful to decompose the wave equation in two first-order equations in the time-variable. This
is particularly the case when dealing with Fourier analysis tools. We thus introduce the half-wave equations

Ou+i|Dlu=0, Owu—ilDju=0,
and their solutions (given in term of Fourier representations) e~*Ply and ePly. Note that the solution to
the usual wave equation (LW), (ID) is given by
citlD it D
ifprt o
Note also that if v(t) = e®/Ply, then e=*IPluy = v(—t), thus it is sufficient to consider only the solution e?!Plyp,
The function e*l¢l is not smooth at & = 0, so that ¢”*/°! does not map S(RY) to S(RY). However it maps
So(RY) to So(RY) (where as before Sp(RY) is the space of functions ¢ in S(RY) such that ¢ is identically 0 in

a neighborhood of the origin).
In this Section, we will prove

2u(t) = e1Plug + e Py +

ProPOSITION II1.4.1. There exists C > 0 such that
et 1D

®
D]

(IT1.4.1) Vo € S(RY),

S llellze,
LA(R,L12)

where as usual ePly denotes (t,z) — (e'Ply) (z).
PROOF. Step 1: frequency-localized dispersion estimate.

We will use the Littlewood-Paley decomposition of ¢, o = jez Ajp. In this step we prove the following
frequency localized version of the dispersion inequality for the wave equation

111.4.2 NP [N <Z|a
(IIL.4.2) Js W A L NTH sl
We let ¢; = Ajp. By the dispersion inequality for the full wave equation and Theorem II1.3.4, we have

sin(t|D]) 1 27

— %l S llesllia & ol

DI [ T ¢
cos(t| D)) 1 1 27
‘Dl 90] oo 2j HCOS(HDDSDJHLOO ~ 2J|t| ||<pj||W2>1 ‘t| ||SDJHL1'

Step 2. A L*/L*/3 dispersion inequality
We next introduce Ajf = A1 f+A;f+Ajpf. Noting that ©;_1 + ©; + 041 = 1 on the support

of ©;, we see that ngjf = A;f. For fixed ¢ > 0 and j, consider the operator eit|D||D|_1Zj. By Step 1, it
is a bounded operator from L! to L, with operator norm < 27/t. By Plancherel and Theorem I11.3.4, it is
bounded from L? to L? with operator norm < 277, Using the interpolation Theorem III.3.1, we obtain that
eitDl |D|_1£j is a bounded operator from L*/3 to L* with operator norm < ¢~'/2. Using that ﬁjAj =Aj, we
deduce )
it|D

| lﬁ A4
Taking the square and summing up, we deduce (using Theorem I11.3.5)

e

1
S W||Ajé0||L4/3~
L4

itp| L

I11.4.3)
( D)

2

1
S W||‘P||L4/3~
L4
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Step 8. Strichartz inequality.
Next, we consider the operator T defined by

(Te)(t,) = (171D /2p) (2)

In this step we prove that 7' extends to a bounded operator from L?(R?) to L*(R x R?), with an operator norm
that is independent of j, i.e.

(I11.4.4) Vo € S(R?), S lleoll e

eit|D||D|71/2¢’

LA(RXR3)
We will use a so-called TT* argument to reduce the proof of (II1.4.4) to the proof of the boundedness of an
operator acting on functions on R x R3.

The inequality (II1.4.4) is equivalent to the following statement:

//(T(p)gdxdt

Using Plancherel equality in the space variable for every ¢t € R, we obtain

[ @eisar = [ oy gz,

where the (formal) adjoint T* of T is defined by

Tg(a) = [ e 1P |D] (0.
R

Vo € S(R?), Vg e C5°(R x RY), S lellzz@s)llgllpars @xrs)-

We are thus reduced to prove

(I1L.4.5) Vg e CERXRE), T gl e S 9l ans)-

We have

(IT1.4.6) IT7g|% = / T* Tgdz = / / TT* ggdudt,
R3 RxR3

and (II1.4.5) would follow from the inequality

(1.7 T gl oy S Nl oocs

We have

TT g(t,x) = / e =3Pl D=L g(s)ds.
R
Using the L*/L*/3 dispersion inequality of Step 2, we obtain at fixed t,

ITT ) Olla0) % [ s 19
By Hardy Littlewood Sobolev inequality, we deduce
||TT*9||L4(R><R3) S ||g||L4/3(]R><R3)>
which yields (II1.4.7) and thus concludes the proof of (I11.4.4).

Step 4. The L*L'? Strichartz inequality. We next conclude the proof of Proposition I11.4.1 by proving that
for p € S,

(I11.4.8) etID!

< _—
L T

The inequality (II1.4.8) follows from (III.4.4) (applied to |D|y) and the Sobolev inequality
(I11.4.9) VFeS, Iflweey S [IDIV2)

Li(r3)
To illustrate the tools introduce in the preceding section, we give a proof that does not use (II1.4.9), but rather
Theorems II1.3.4 and II1.3.5. By the preceding step, applied to A;|D|p, we have

2
J ||t IDIA . 2
(I11.4.10) 2 [l A]gp‘ I Vo
By Theorem I11.3.4 (Bernstein inequalities), at fixed ¢,
€7 Al < 2972 1P g,
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Taking the L* norm in time, then summing up the squares, we obtain

(ITL.4.11) Z e PIA; |2 e < Zzﬂ ‘

7,t|D|A QO‘

2
S 141Dl
j

LY (RXR3)

where we have used (III.4.10) to obtain the 1ast inequality. The right-hand side of (I11.4.11) is = ||g0||§{1 by
Plancherel equality (see (III.3.11)). We must prove that the left-hand side dominates He“|D|<pHL4L12. Let
u = ePly and u; = Aju. By Minkowski inequality (i.e. the triangle inequality for the L?(R) norm), we see

that
Z lujl|Zs Lz = Z HHU’J )7 12 ey

oy 2 | 2 s 0

jez JEL L2(R)
By Theorem II1.3.5, at fixed t,
()72 S D s (@)1 71
JEL
This shows
1/2
D lslapin 2 [l s |, = Il

JEL
which together with (I11.4.11) concludes the proof of Proposition I11.4.1.
0

REMARK I11.4.2. An alternative, somehow simpler approach is to sum up over j the frequency localized
dispersion inequality of Step 2 of the preceding proof. Using Theorem II1.3.5, one obtains a L*/ L*/3 dispersion
inequality for the half-wave equation:

It is then possible to forget about frequency cut-off and run the preceding arguments to obtain Strichartz
inequalities for the half-wave equation directly.

eit|D||D|71<p‘

1
4 S W”‘P”L‘I/B'

ITI1.5. Proof of the Strichartz estimate for the full wave equation

We are now ready to prove Theorem II1.2.1. We can treat separately the terms

up(t) = cos(t] D|)ug + SnDuL

|D|
and
¢
(I115.1) (Bf)(t) = / sin (= 9)IDD) g
0 D
Using that cos(t|D]) = & (eIPl + e=*IP!) sin(¢|D[) = & (e"IP! — e=*IPl) we obtain immediately from Propo-
sition 11I.4.1
lurllzs@mxrsy S luoll g + [luallze.

The other term is more delicate. We first consider

B OOei(t—s)|D\ D) —zs|D\
ua(t)—/o g s = PP / 7f(s)ds

oo —i(t—s)|D|
ub(t):/o eTf(s)ds

Using that e%!Pl/|D| is a bounded operator from L? to H', we obtain that F € H' with

and

1Fl g S e r2(me))-
By the Strichartz estimate for the half-wave equation, Proposition I11.4.1, we deduce

[uallLa® rzga)) S I fllL®, 2 s))-
Similarly

||Ub||L4 R,L12(R3)) > ||fHL1(]R L2(R3))-
Combining, we obtain

(ITL.5.2) NAfN Lo pzreyy S I fllor,n2®s))s
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where A is the operator defined by

B > sin ((t — s)| D) $\ds
art) = [ S s

Note that Af is analogous to Bf defined above, the only difference between the two being that the integral
defining Af is on [0, 00), whereas the integral defining Bf is on [0,¢[. An important functional analysis result,
due to Michael Christ and Alexander Kiselev [7], shows that the boundedness of A implies the boundedness of
B. We state this result in a version that was proposed by Christopher Sogge:

LEMMA II1.5.1. Let X and Y be Banach spaces. Let 1 < p < ¢ < oco. Let K a continuous function from R?
to the space of bounded linear operators from X to Y. Let

/KtT T)dr,

and assume that A is a bounded operator from LP(R, X) to L1(R,Y"), with operator norm C. Define the operator

B by
/KtT T)dT.
1

Then B extends to a bounded operator from LP(R, X) to L(R,Y), with operator norm < 20 , where 6 = 2175,

Applying Christ and Kiselev Lemma to

(I1L.5.3) K(t,7) = 117>oSin<“|_D|T)D)x(6D),

where x € C§°(R?) is equal to 1 close to 0, one obtains
¥e >0, VfeL'(R,L?), [Ix(eD)Bf|sr S IIfllzoce,
where Bf is as in (IIL.5.1). Letting ¢ — 0 we obtain the desired result.

EXERCICE II1.5. Justify this last argument.






CHAPTER IV

Cauchy theory for the non-linear equation

In this chapter we will consider the nonlinear wave equation with a power-like nonlinearity
(NLW) o’ — Au = ouP,

on I x RY, where N is an interval, where the power p is an integer > 2 and o is nonzero real parameter.
Considering the unknown Au instead of u for a suitable choice of A > 0, we see that we can assume

o e {£1}.
We will briefly consider the general case, then restrict to the quintic case p = 5 in space dimension 3. We will

also comment on the cubic case p = 3, in the same space dimension.

IV.1. Scaling invariance. Critical Sobolev space
Let u be a (nonzero) C? solution of (NLW) on (a,b) x RV, where a < b. Let uy(t,7) = \*u(\t, Ar), where
A >0 and a = a(p, N) will be specified later. We have
DPuy — Auy = )\“+2_"pou’;\.
Thus, if @ = -2, we see that u, is a solution of (NLW) on (%, %) x RN, We will assume that o has this

p=1’
particular value in the sequel, denoting

ux(t,x) = )\%u()\t, Az).
Let
H® = H3(RY) x H*~Y(RM).
The critical Sobolev exponent is by definition the unique s such that
18X (0) 15 = [12(0) [l
Since by explicit computation

(IV.1.1) 177 (0) | = A7TH N2 G(0) | 5.
We see that
Lo N_ 2
) p— 1’

We observe that s. grows with p, and is always strictly smaller than N/2.

Consider a solution u of (NLW) defined on a finite interval [0,T[. The corresponding solution wy is defined
on [0,7/\[. Growing X has the effect of decreasing the time of existence. If s > s., the H* norm of iy (0)
becomes larger with A. If s < s, it becomes smaller. Thus in the case where s < s., the effect of scaling is to
simultaneously decrease the norm of the initial data in 7-.[3, s < s. and shrinking its interval of existence. This
is contrary to the intuition that for smaller solutions, the effect of the nonlinearity is weaker, and the solution
should behave in a linear way (and in particular has a long time of existence). This leads to an informal
conjecture that s, is a threshold for local well-posedness. It turns out that this conjecture is true for the wave
equation: the equation (NLW) is locally well-posed! in H* for s > s., and ill-posed if H* for s < s,.

We will focus on the quintic case p = 5 in space dimension N = 3:

(W5) (0} — Ayu = ou®.
In this case the critical Sobolev case is H!, and the equation is called “energy critical”. We will also sometimes
consider the cubic equation
(W3) (02 — A)u = ou?,
1By “well-posed in X”, we mean that there is existence and uniqueness of solutions with initial data in X and a reasonable

stability theory. We will not give a more rigorous definition of local well-posedness. See e.g. Definition 3.4, Remark 3.5 of T. Tao’s
book [29]

37
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in dimension 1 + 3, for which s, = 1/2. As usual, we will take initial data, say at ¢t = to:
(ID) (u, Opu) ity = (ug,u1).
In all the sequel, we fix N = 3.

IV.2. Definition of solutions

As for the linear wave equation, the notion of classical (C?) solution is too restrictive for the equation (W5),
and we will define the following weaker notion of solution, based on Duhamel’s formulation of the equation:

DEFINITION IV.2.1. A finite energy solution of (W5), (ID) on an interval I with ¢y € I is a function
we LY (I,L'9) such that Vt € I,

loc

(IV.2.1) u(t) = cos ((t — to)| D|)u + Mul n /t sin ((t = 9)|D])

u’(s)ds,
D) D) (®)

0

where (ug,u;) € H.

In the definition, by u € L} (I, L'°(R3)), we mean that u € L5(J, L'?) for any compact interval J C I.

Note that if u is a finite-energy solution in the above sense, one has u® € L{ (I,L*(R?)), and thus by
energy estimates (see Remark I11.2.3),

i€ COIHY).
Also, by Chapter II, u satisfies the equation (W5) in the sense of distribution on I x R3.

The solutions given by the Duhamel formula as in Definition IV.2.1 are called “strong” solutions in the
book of Terence Tao [29], by opposition to the weaker notion of distributional solutions (that do not impose
continuity in time) and the stronger notion of classical solutions (that are C? and satisfy the equation in a
classical sense). Note however that this terminology is not universal. For example the solutions of Definition
IV.2.1 are called ... “weak” solutions in the book [26] of Christopher Sogge.

We refer to Section 3.2 of [29] “What is a solution?”, for a discussion on different types of solutions.

In the sequel, by “solution to (W5)” we will always mean (unless specified otherwise) a solution in the sense
of Definition IV.2.1.

EXERCICE IV.1. Check that the definition of finite energy solutions above does not depend on the choice
of the initial time. In other words, if u is a solution of (W5) on I and ¢; € I, then for all ¢t € I,

e sin ((t — t1)|D|) Psin ((t—s)|D|) 5
u(t) = cos ((t — t1)|D|)u(ty) + — o Oru(ty) +/t — o u’(s)ds.

1

IV.3. Existence and uniqueness

3.a. A local statement. We introduce the following notations:

wﬁf%m S ()0 = (St ()0, 0,51 (1)ilo) ,

where @y = (ug, u1). We start with the following local statement:

Sp(t)ip = cos (t|D]) uo +

THEOREM IV.3.1. There exists 6o > 0 with the following property. Let I be an interval with to € I. Let
g € H'. Assume

(IV31) ||SL( - t0)60‘|L5(I,L10) =9 S (50.

Then there exists a unique solution u of (W5), (ID) on I. Furthermore

(IV.3.2) sup Hﬁ(t) St tO)FLOHHl = Si(- = to)ioll o 1. g0y S 57
te

In the Theorem, Si,(- — to)tp denotes the map ¢ — S (t — to)up.
Theorem IV.3.1 has two important consequences:

Local well-posedness: Note that (5,10) is a H'-admissible couple in dimension 3 (it satisfies (I11.2.2)).
By Theorem I11.2.1, if @y € H!, then Sy ()i € L5(R, L°(R3)). Thus if 7 > 0 is small enough, then
lltio || s ((—7,4-17,210) < do,
and Theorem IV.3.1 implies that there exists a solution to (W5), (ID) on [T, +T1.
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Small data global well-posedness: If iy € H' and |jug||;: < do/Cs, where Cg is the constant in
the Strichartz inequality (II1.2.3) with p =5, ¢ = 10, then [|SL(-)ol| 5% 10y < do, and one can use
Theorem IV.3.1 with I = R. This shows that the corresponding solution w is globally defined, and
that v € L°(R, L'?).

PrOOF OF THEOREM IV.3.1. Assume without generality that tg = 0. We use the Banach fixed point
theorem, proving that the operator A, defined by

! sin ((t - s)|D|)

v (s)ds,
Dl

(Iv.3.3) Av (t) = Sp(t)dp + Bv (t), Buv(t) = /
0
is a contraction on X defined by
X = {1) € LS(I,LIO)7 HU||L5(I,L10) < 2(50} .
We first prove that A maps X into X. Indeed, If v € X, then by Theorem III.2.1 (see Remark I11.2.2),
HBU(t)HL5(I,L10) <Cs ||US||L1(I’L2) < Cs HU“E])‘ﬁ(I,LlU) < Csdp < do,

assuming 0y < 05_1/4. Thus Av € X.
We next prove that A is a contraction on X. Let v,w € X. Using w® — v® = (w — v)(w* + w3v + w?v? +
wv? + v*) and Young’s inequality ab < a?/p + b%/q, 1/p + 1/q = 1, one obtains

)
|05 —wd| < 3 lv —w| (v* +w?).
Combining with Holder’s inequality, we obtain
5
(IV34) H’U5 — w5HL1(17L2) § 5”1} - ’LUHLS(LLIO) (H’UH%P(I,LIO) + ||UJH%5([’L10)) .

By Strichartz estimates

| Av — Aw|

L5(I,L10) = ||Bv - Bw||L5(I,L10) < CS H’US — w5||L1(I,L2) < 503”11 — w||L5(I7L10)6§.
If &g is small enough (§p = (IOCS)_1/4 works), one has

1
[Av — Awl| s (1 p10) < 5”“ —wl| 57,110

This shows that A is a contraction on X.
Let u be the only fixed point of A4 in X. Since u = Au and u € L3(I, L'9) we see that u is a solution of
(W5) on I.2 Using
u— S (-)ip = Bu,
and || Bulzs (7 10y < 5%, and Strichartz inequality, we obtain (IV.3.2). It remains to prove the uniqueness
statement. From the contraction argument, we see that u is the unique solution of (W5) such that ||u||zs 7 10y <
dg. We prove a stronger statement, Lemma IV.3.2 below, that will conclude the proof.

LEMMA IV.3.2. Let u, v be two solutions of (W5) on an interval I with to € I. Assume W(ty) = 9(to).
Then v = v.

PROOF. Assume again ty = 0 to simplify notations. Let dg > 0 be as in Theorem IV.3.1. We let K = [a, b]
be a compact subinterval of I such that ¢ty € K. We will prove that u(t) = v(¢) for t € K. Since K is compact,
we have by Definition IV.2.1,

ue L°(K, L"), wveL°(K,L"Y).
We can thus divide K into p subintervals [7;,7j41], 0 < j < p—1, with 70 < 74 < ... < 7p, such that
vje{0,...,J —1}, max (Hu||L5([Tj,Tj+1},L10)a ||U||L5([Tj,rj+1],L10)) < do.

Let jo be an index such that 0 € [}, 7j,+1]. By the proof of Theorem II1.2.1, with I = [7},, 7j,+1], noting that
uw and v are in X, we obtain u(t) = v(t) for t € [7,, Tjo+1]- This implies

ﬁ(Tjo) = U(Tjo) and 7'_[(7_jo+1) = U(Tjo+1)'

We can then iterate the preceding arguments on the intervals [7;, 7j41], j=Jjo+ 1, j = jo+ 2 until j = J — 1,
and j = jo — 1, j = jo — 2 until j = 0 to obtain that u(t) = v(¢) for t € K, concluding the proof. a

2Recall that “solution” is to be taken in the sense of Definition IV.2.1.
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3.b. Maximal solution. Using the above local existence theorem, we can now glue the solutions above
to construct a maximal solution of (W5).

COROLLARY IV.3.3. Let @y € H' and to € R. Then there is a unique mazimal solution of (W5), (ID).
Denoting by Imax = (T—,T4) its interval of existence, we have the following blow-up criteria:

(IV.3.5) T, <oo=u¢ L*([to, T, [,L*°), T_ > —oco=u¢ L°(JT_,to], L'°).

The phrase “maximal solution” in the theorem means that if v is another solution of (W5), (ID) defined
on an interval I with ¢ty € I, then I C Ijyax and u(t) = v(t) for all ¢ € I.

PROOF. Let J be the set of all open intervals I such that to € I, and there exists a solution v of (W5),
(ID) on I. Let
Iax = |J I

IeH
By Theorem IV.3.1, J is nonempty. Thus . is an open interval containing tg. If ¢t € I,.x, there exists an
interval I and a solution v of (W5), (ID) on I. By the uniqueness Lemma IV.3.2, the value v(¢) does not depend
on the choice of I. We denote by u(t) this common value. Let K be a compact subinterval of I;,x. We next
prove:

(IV.3.6) u € L°(K, L'°).
Indeed, for all ¢t € K, there exist an open interval I € J such that ¢t € I and u is a solution of (W5) on I. This
implies in particular that u € L3([t —e,t +¢], L'°) if £ = £(t) is small enough. Using the compactness of K, we

can cover K by a finite numbers of interval |t — £(¢),t + £(t)[, and thus we obtain (IV.3.6).
If t € Ihax, by the definition of I, and the uniqueness Lemma IV.3.2, we have that

sin ((t — s)|D
u(t) = Sr(t)io +/ sin ({t — 5)|DI) u®(s)ds,
0 D]
which concludes the proof that u is a solution of (W5), (ID) on Iiax. The maximality of u is a direct consequence
of the definition of I,x and Lemma IV.3.2. O

Let us mention that it is not possible to improve the blow-up criterion to

T} < oo = limsup ||@(t)]| 5, = +o0.
t—o0

Indeed, it was proved by Krieger, Schlag and Tataru [24] that there exist solutions of (W5) with o = 1, with
finite time of existence T and such that
lim sup [|@(t) (|2 < oo.
t—Ty

EXERCICE IV.2. Consider the cubic nonlinear wave equation (W3), (ID) with initial data (ug, 1) in the
critical space /2, in space dimension 3. Define a concept of “solution” for this equation analogous to the one
of Definition IV.2.1. Prove the analogs of Theorem IV.3.1 and Corollary IV.3.3. Hint: use the L*(I x R?) norm
instead of the L®(I, L'°(R?)) norm, and the Strichartz inequality of Theorem III.2.4.



(10]
(11]

(12]
(13]
14]
(15]
[16]
[17]
(18]

19]
20]

(21]
(22]

23]
24]

(25]

[26]
27]

(28]
29]

(30]

Bibliography

AuBIN, T. Equations différentielles non linéaires et probleme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl.
(9) 55, 3 (1976), 269-296.

Banouri, H., CHEMIN, J.-Y., AND DANCHIN, R. Fourier analysis and nonlinear partial differential equations, vol. 343 of
Grundlehren Math. Wiss. Berlin: Springer, 2011.

BAHOURI, H., AND SHATAH, J. Decay estimates for the critical semilinear wave equation. Ann. Inst. H. Poincaré Anal. Non
Linéaire 15, 6 (1998), 783-789.

BoNy, J.-M. Cours d’analyse. Théorie des distributions et analyse de Fourier. Palaiseau: Les Editions de ’'Ecole Polytechnique,
2001.

CAZENAVE, T. Semilinear Schrédinger equations, vol. 10 of Courant Lecture Notes in Mathematics. New York University
Courant Institute of Mathematical Sciences, New York, 2003.

CHEMIN, J.-Y., AND XU, C. Sobolev imbeddings, Weyl-Hormander calculus and subelliptic vector fields. Ann. Sci. Ec. Norm.
Supér. (4) 30, 6 (1997), 719-751.

CHRIST, M., AND KISELEV, A. Maximal functions associated to filtrations. J. Funct. Anal. 179, 2 (2001), 409-425.

Corror, C., Duyckagrtrs, T., KENIG, C., AND MERLE, F. Soliton resolution for the radial quadratic wave equation in space
dimension 6. arXiv preprint 2201.01848v2, 2022.

COTE, R., KENIG, C. E., AND SCHLAG, W. Energy partition for the linear radial wave equation. Math. Ann. 358, 3-4 (2014),
573-607.

DiNG, W. Y. On a conformally invariant elliptic equation on R™. Comm. Math. Phys. 107, 2 (1986), 331-335.

DONNINGER, R., AND KRIEGER, J. Nonscattering solutions and blowup at infinity for the critical wave equation. Math. Ann.
357, 1 (2013), 89-163.

DuvckAERTS, T., KENIG, C., MARTEL, Y., AND MERLE, F. Soliton resolution for critical co-rotational wave maps and radial
cubic wave equation. Commun. Math. Phys. 391, 2 (2022), 779-871.

DuyckAEgrTs, T., KENIG, C., AND MERLE, F. Universality of the blow-up profile for small type II blow-up solutions of the
energy-critical wave equation: the nonradial case. J. Eur. Math. Soc. (JEMS) 14, 5 (2012), 1389-1454.

DuyckaEgrTs, T., KENIG, C., AND MERLE, F. Classification of radial solutions of the focusing, energy-critical wave equation.
Camb. J. Math. 1, 1 (2013), 75-144.

DUYCKAERTS, T., AND NEGRO, G. G. Solutions with asymptotic self-similar behaviour for the cubic wave equation. Commun.
Math. Phys. 405, 84 (2024).

FoLLAND, G. B. Introduction to partial differential equations., 2nd ed. ed. Princeton, NJ: Princeton University Press, 1995.
GERARD, P. Description du défaut de compacité de 'injection de sobolev. ESAIM Control Optim. Calc. Var. 3 (1998), 213-233.
GINIBRE, J., SOFFER, A., AND VELO, G. The global Cauchy problem for the critical nonlinear wave equation. J. Funct. Anal.
110, 1 (1992), 96-130.

GINIBRE, J., AND VELO, G. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133, 1 (1995), 50-68.
HORMANDER, L. The analysis of linear partial differential operators. I: Distribution theory and Fourier analysis., reprint of
the 2nd edition 1990 ed. Class. Math. Berlin: Springer, 2003.

JENDREJ, J., AND LAWRIE, A. Soliton resolution for the energy-critical nonlinear wave equation in the radial case. Ann. PDE
9, 2 (2023), 117. 1d/No 18.

KEenig, C. E., AND MERLE, F. Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave
equation. Acta Math. 201, 2 (2008), 147-212.

KRIEGER, J., AND SCHLAG, W. On the focusing critical semi-linear wave equation. Amer. J. Math. 129, 3 (2007), 843-913.
KRIEGER, J., SCHLAG, W., AND TATARU, D. Slow blow-up solutions for the H! (R3) critical focusing semilinear wave equation.
Duke Math. J. 147, 1 (2009), 1-53.

ScHWARTZ, L. Théorie des distributions. Nouv. éd., entierement corr., ref. + augm. (Nouv. tirage). Paris: Hermann. 436 p.
(1984)., 1984.

SOGGE, C. D. Lectures on nonlinear wave equations. Monographs in Analysis, II. International Press, Boston, MA, 1995.
STRICHARTZ, R. S. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke
Math. J. 44, 3 (1977), 705-714.

TALENTI, G. Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110 (1976), 353-372.

Tao, T. Nonlinear dispersive equations, vol. 106 of CBMS Regional Conference Series in Mathematics. Published for the
Conference Board of the Mathematical Sciences, Washington, DC, 2006. Local and global analysis.

TRUDINGER, N. S. Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann.
Scuola Norm. Sup. Pisa (8) 22 (1968), 265-274.

41



