DYNAMICS OF SEMI-LINEAR WAVE EQUATIONS. 2024-2025. FINAL EXAM

The notations are those used in the course. The course handout is allowed. All results contained in the course may be used. "Solution" will always mean finite-energy solution, in the sense of Chapters 4 and 5 of the course.

We denote by $\mathbb{1}_A$ the characteristic function of a set A: $\mathbb{1}_A(X) = 1$ if $X \in A$, $\mathbb{1}_A(X) = 0$ if $X \notin A$. The space variable is always $x \in \mathbb{R}^3$. We use the notations $L^b = L^b(\mathbb{R}^3)$ and $L^a L^b = L^a(\mathbb{R}, L^b(\mathbb{R}^3))$.

Problem 1.

1.1. Let $a = \frac{56}{13}$, $b = \frac{56}{5}$. Check that for all interval *I*, for all $T \in I$, for all u, f such that

$$\partial_t^2 u - \Delta u = f \in L^1(I, L^2), \quad \vec{u}(T) = (u, \partial_t u)(T) \in \dot{\mathcal{H}}^1 = \dot{H}^1(\mathbb{R}^3) \times L^2(\mathbb{R}^3),$$

one has

$$\|u\|_{L^{14}(I,L^{7}(\mathbb{R}^{3}))} + \|u\|_{L^{a}(I,L^{b}(\mathbb{R}^{3}))} \leq C\left(\|\vec{u}(T)\|_{\dot{\mathcal{H}}^{1}} + \|f\|_{L^{1}(I,L^{2}(\mathbb{R}^{3}))}\right).$$

Let u be a solution of

(1)
$$\partial_t^2 u - \Delta u = -u^5, \quad (u, \partial_t u)(0) = (u_0, u_1) \in \dot{\mathcal{H}}^1 = \dot{\mathcal{H}}^1(\mathbb{R}^3) \times L^2(\mathbb{R}^3).$$

Let E be the conserved energy of u, and T_+ the maximal time of existence of u. We assume $u \in L^{14}([0,T_+),L^7)$. We want to prove that u scatters to a linear solution.

1.2. We fix $T_0 \in [0, T_+)$ such that $||u||_{L^{14}([T_0, T_+), L^7)} \leq \varepsilon$, where $\varepsilon > 0$ is a small constant (depending on E) to be specified later. Prove that there exists C > 0 (independent of u) such that

$$\forall T \in [T_0, T_+), \quad \|u\|_{L^a([T_0, T), L^b)} \le C\sqrt{E} + C\varepsilon \|u\|_{L^a([T_0, T), L^b)}^4.$$

1.3. Specifying $\varepsilon > 0$, prove that $u \in L^{a}([0,T_{+}),L^{b})$ and $||u||_{L^{a}([0,T_{+}),L^{b})} \leq 2C\sqrt{E}$, where C is the constant above.

1.4. Prove that $T_+ = +\infty$ and that there exists $(v_0, v_1) \in \dot{\mathcal{H}}^1$ such that

(2)
$$\lim_{t \to \infty} \left\| \vec{u}(t) - \vec{S}_L(t)(v_0, v_1) \right\|_{\dot{\mathcal{H}}^1} = 0.$$

1.5. Conversely, prove that for every solution u of (1), if $T_+(u) = +\infty$ and there exists $(v_0, v_1) \in \dot{\mathcal{H}}^1$ satisfying (2), then $u \in L^{14}([0, +\infty), L^7)$.

Problem 2. In this exercise we use the notations of Chapter III of the course, and in particular the notation Δ_j defined in Section III.4. One can of course use the results of Section III.4 without proof.

2.1. Let $p \in (2, \infty)$ and $j \in \mathbb{Z}$. Prove that

(3)
$$\forall f \in \mathcal{S}_0, \quad \left\| e^{it|D|} \Delta_j f \right\|_{L^p} \le C(t, p, j) \|f\|_{L^{p'}},$$

where the dependence of the constant C(t, p, j) on p, t and j should be made explicit.

Let $T_j = e^{it|D|} \Delta_j$, considered as an operator from L^2 to $C^0(\mathbb{R}, L^2)$. In the sequel, we fix q > 2 and r > 2 such that $\frac{1}{q} + \frac{1}{r} = \frac{1}{2}$. We want to prove that T_j extends to an operator from L^2 to $L^q L^r$ such that

(4)
$$\forall f \in L^2(\mathbb{R}^3), \quad \|T_j f\|_{L^q L^r} \le \overline{C} \|f\|_{L^2},$$

for some $\overline{C} = \overline{C}(j, r) > 0$.

2.2. Let T_i^* be the formal adjoint of T_j and $g \in C_c^{\infty}(\mathbb{R}^4)$. Compute T_i^*g .

2.3. Justify that it is sufficient to prove the boundedness of $T_jT_j^*$ as an operator from \mathcal{X} to \mathcal{Y} , where the Banach spaces \mathcal{X} and \mathcal{Y} should be specified.

2.4. Use (3) and the preceding question to prove that (4) holds. The dependence of the constant \overline{C} with respect to r and j should be made explicit.

 $2.5. \ {\rm Prove}$

(5)
$$\forall f \in L^2(\mathbb{R}^3), \quad \|T_j f\|_{L^q L^r} \le 10\overline{C} \|\Delta_j f\|_{L^2},$$

2.6. Prove that there exists a constant C > 0 such that

$$\|e^{it|D|}f\|_{L^qL^r} \le C\|f\|_{\dot{H}^s}$$

where s = s(r) should be specified.

2.7. Deduce a Strichartz estimate for the wave equation $\partial_t^2 u - \Delta u = 0$.

Problem 3. We denote by $B_R(x_0)$ the open ball in \mathbb{R}^3 with center $x_0 \in \mathbb{R}^3$ and radius R > 0, and ${}^cB_R(x_0) = \mathbb{R}^3 \setminus B_R(x_0)$. We admit the following extension result: there exists a constant M > 0 such that for all $f \in \dot{H}^1(\mathbb{R}^3)$, there exist f and \tilde{f} in $\dot{H}^1(\mathbb{R}^3)$ such that

$$\forall x \in B_1(0), \ \underline{f}(x) = f(x) \quad \text{and} \quad \|\underline{f}\|_{\dot{H}^1(\mathbb{R}^3)} \le M \left[\|\mathbf{1}_{B_1(0)} |\nabla f| \|_{L^2} + \|\mathbf{1}_{B_1(0)} f\|_{L^6} \right] \\ \forall x \in {}^cB_1(0), \ \widetilde{f}(x) = f(x) \quad \text{and} \quad \|\widetilde{f}\|_{\dot{H}^1(\mathbb{R}^3)} \le M \left\| \mathbf{1}_{{}^cB_1(0)} |\nabla f(x)| \right\|_{L^2}.$$

3.1. Show that the previous extension property remains valid when replacing $B_1(0)$ with an arbitrary ball $B_R(x_0)$ in \mathbb{R}^3 .

3.2. Show that there exist $\delta_0 > 0$ and $C_0 > 0$ such that for all $(u_0, u_1) \in \dot{\mathcal{H}}^1$, for all $x_0 \in \mathbb{R}^3$, R > 0 such that

$$\left\|1\!\!1_{B_R(x_0)} |\nabla u_0|\right\|_{L^2} + \left\|1\!\!1_{B_R(x_0)} u_0\right\|_{L^6} + \left\|1\!\!1_{B_R(x_0)} u_1\right\|_{L^2} = \varepsilon \le \delta_0,$$

one has $\left\|\mathbbm{1}_{\Gamma_R(x_0)}u\right\|_{L^5L^{10}} \leq C_0\varepsilon$, where u is the maximal solution of

(6)
$$\partial_t^2 u - \Delta u = u^5, \quad (u, \partial_t u)(0) = (u_0, u_1) \in \dot{\mathcal{H}}^1,$$

 I_{\max} its interval of existence, and $\Gamma_R(x_0) = \{(t, x) \in I_{\max} \times \mathbb{R}^3 : |x - x_0| \le R - |t|\}.$

3.3. Similarly, show that there exist $\delta_1 > 0$, $C_1 > 0$ such that for all $(u_0, u_1) \in \dot{\mathcal{H}}^1$, for all $x_0 \in \mathbb{R}^3$, R > 0 such that $\|\mathbbm{1}_{{}^cB_R(x_0)}|\nabla u_0\|\|_{L^2} + \|\mathbbm{1}_{{}^cB_R(x_0)}u_1\|_{L^2} = \varepsilon \leq \delta_1$, one has $\|\mathbbm{1}_{\widetilde{\Gamma}_R(x_0)}u\|\|_{L^5(\mathbb{R},L^{10}(\mathbb{R}^3))} \leq C_1\varepsilon$, where $\widetilde{\Gamma}_R(x_0) = \{(t,x) \in I_{\max} \times \mathbb{R}^3 : |x-x_0| > R + |t|\}.$

3.4. Show that if u is a solution of (6), and R > 0 is such that

$$\sup_{x_0 \in \mathbb{R}^3} \left\| \mathbb{1}_{B_R(x_0)} |\nabla u_0| \right\|_{L^2} + \left\| \mathbb{1}_{B_R(x_0)} u_0 \right\|_{L^6} + \left\| \mathbb{1}_{B_R(x_0)} u_1 \right\|_{L^2} \le \delta_0,$$

then $] - R, +R [\subset I_{\max}]$.

Problem 4. Let u, v be two global solutions of (6), with radial initial data respectively (u_0, u_1) , (v_0, v_1) . We assume that for some $R_0 > 0$

$$\lim_{t \to \pm \infty} \int_{|x| > R_0 + |t|} |\nabla_{t,x}(u - v)(t, x)|^2 dx = 0 \quad \text{and} \quad \forall |x| > R_0, \ |u_0(x) - v_0(x)| \le \frac{C}{|x|^2}$$

Our goal is to prove that $(u_0, u_1) = (v_0, v_1)$.

Let w = u - v, $(w_0, w_1) = \vec{w}(0)$. Let $R_1 \ge R_0$ such that for $\mathfrak{u} \in \{u, v, w\}$, one has

$$\int_{|x|\geq R_1} \left[|\nabla \mathfrak{u}_0(x)|^2 + (\mathfrak{u}_1(x))^2 \right] dx \leq \varepsilon^2$$

where ε is a small constant.

4.1. Prove that for $\mathfrak{u} \in \{u, v, w\}$, one has

$$\left\|1\!\!1_{|x|>R_1+|t|}\mathfrak{u}\right\|_{L^5L^{10}}\leq C\varepsilon.$$

4.2. Prove that there exists $R > R_1$ such that $(w_0, w_1)(x) = 0$ for a.e x such that $|x| \ge R$.

4.3. Prove that $(w_0, w_1) = 0$ for a.e. x.