
DYNAMICS OF SEMI-LINEAR WAVE EQUATIONS. 2024-2025. FINAL EXAM

The notations are those used in the course. The course handout is allowed. All results contained in
the course may be used. “Solution” will always mean finite-energy solution, in the sense of Chapters 4
and 5 of the course.

We denote by 11A the characteristic function of a set A: 11A(X) = 1 if X ∈ A, 11A(X) = 0 if X /∈ A.
The space variable is always x ∈ R3. We use the notations Lb = Lb(R3) and LaLb = La(R, Lb(R3)).

Problem 1.

1.1. Let a = 56
13 , b =

56
5 . Check that for all interval I, for all T ∈ I, for all u, f such that

∂2
t u−∆u = f ∈ L1(I, L2), u⃗(T ) = (u, ∂tu)(T ) ∈ Ḣ1 = Ḣ1(R3)× L2(R3),

one has
∥u∥L14(I,L7(R3)) + ∥u∥La(I,Lb(R3)) ≤ C

(
∥u⃗(T )∥Ḣ1 + ∥f∥L1(I,L2(R3))

)
.

Let u be a solution of

(1) ∂2
t u−∆u = −u5, (u, ∂tu)(0) = (u0, u1) ∈ Ḣ1 = Ḣ1(R3)× L2(R3).

Let E be the conserved energy of u, and T+ the maximal time of existence of u. We assume u ∈
L14([0, T+), L

7). We want to prove that u scatters to a linear solution.

1.2. We fix T0 ∈ [0, T+) such that ∥u∥L14([T0,T+),L7) ≤ ε, where ε > 0 is a small constant (depending on
E) to be specified later. Prove that there exists C > 0 (independent of u) such that

∀T ∈ [T0, T+), ∥u∥La([T0,T ),Lb) ≤ C
√
E + Cε∥u∥4La([T0,T ),Lb).

1.3. Specifying ε > 0, prove that u ∈ La([0, T+), L
b) and ∥u∥La([0,T+),Lb) ≤ 2C

√
E, where C is the

constant above.

1.4. Prove that T+ = +∞ and that there exists (v0, v1) ∈ Ḣ1 such that

(2) lim
t→∞

∥∥∥u⃗(t)− S⃗L(t)(v0, v1)
∥∥∥
Ḣ1

= 0.

1.5. Conversely, prove that for every solution u of (1), if T+(u) = +∞ and there exists (v0, v1) ∈ Ḣ1

satisfying (2), then u ∈ L14([0,+∞), L7).

Problem 2. In this exercise we use the notations of Chapter III of the course, and in particular the
notation ∆j defined in Section III.4. One can of course use the results of Section III.4 without proof.

2.1. Let p ∈ (2,∞) and j ∈ Z. Prove that

(3) ∀f ∈ S0,
∥∥∥eit|D|∆jf

∥∥∥
Lp

≤ C(t, p, j)∥f∥Lp′ ,

where the dependence of the constant C(t, p, j) on p, t and j should be made explicit.

Let Tj = eit|D|∆j , considered as an operator from L2 to C0(R, L2). In the sequel, we fix q > 2 and
r > 2 such that 1

q +
1
r = 1

2 . We want to prove that Tj extends to an operator from L2 to LqLr such that

(4) ∀f ∈ L2(R3), ∥Tjf∥LqLr ≤ C∥f∥L2 ,

for some C = C(j, r) > 0.

2.2. Let T ∗
j be the formal adjoint of Tj and g ∈ C∞

c (R4). Compute T ∗
j g.

2.3. Justify that it is sufficient to prove the boundedness of TjT
∗
j as an operator from X to Y, where the

Banach spaces X and Y should be specified.
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2.4. Use (3) and the preceding question to prove that (4) holds. The dependence of the constant C with
respect to r and j should be made explicit.

2.5. Prove

(5) ∀f ∈ L2(R3), ∥Tjf∥LqLr ≤ 10C∥∆jf∥L2 ,

2.6. Prove that there exists a constant C > 0 such that

∥eit|D|f∥LqLr ≤ C∥f∥Ḣs ,

where s = s(r) should be specified.

2.7. Deduce a Strichartz estimate for the wave equation ∂2
t u−∆u = 0.

Problem 3. We denote by BR(x0) the open ball in R3 with center x0 ∈ R3 and radius R > 0, and
cBR(x0) = R3 \ BR(x0). We admit the following extension result: there exists a constant M > 0 such

that for all f ∈ Ḣ1(R3), there exist f and f̃ in Ḣ1(R3) such that

∀x ∈ B1(0), f(x) = f(x) and ∥f∥Ḣ1(R3) ≤ M
[∥∥11B1(0)

∣∣∇f
∣∣∥∥

L2 + ∥11B1(0)f∥L6

]
∀x ∈ cB1(0), f̃(x) = f(x) and ∥f̃∥Ḣ1(R3) ≤ M

∥∥11cB1(0)

∣∣∇f(x)
∣∣∥∥

L2 .

3.1. Show that the previous extension property remains valid when replacing B1(0) with an arbitrary
ball BR(x0) in R3.

3.2. Show that there exist δ0 > 0 and C0 > 0 such that for all (u0, u1) ∈ Ḣ1, for all x0 ∈ R3, R > 0 such
that ∥∥11BR(x0)

∣∣∇u0

∣∣∥∥
L2 + ∥11BR(x0)u0∥L6 +

∥∥11BR(x0)u1

∥∥
L2 = ε ≤ δ0,

one has
∥∥11ΓR(x0)u

∥∥
L5L10 ≤ C0ε, where u is the maximal solution of

(6) ∂2
t u−∆u = u5, (u, ∂tu)(0) = (u0, u1) ∈ Ḣ1,

Imax its interval of existence, and ΓR(x0) = {(t, x) ∈ Imax × R3 : |x− x0| ≤ R− |t|}.

3.3. Similarly, show that there exist δ1 > 0, C1 > 0 such that for all (u0, u1) ∈ Ḣ1, for all x0 ∈ R3, R > 0

such that
∥∥11cBR(x0)

∣∣∇u0

∣∣∥∥
L2 +

∥∥11cBR(x0)u1

∥∥
L2 = ε ≤ δ1, one has

∥∥∥11Γ̃R(x0)
u
∥∥∥
L5(R,L10(R3))

≤ C1ε, where

Γ̃R(x0) = {(t, x) ∈ Imax × R3 : |x− x0| > R+ |t|}.
3.4. Show that if u is a solution of (6), and R > 0 is such that

sup
x0∈R3

∥∥11BR(x0)

∣∣∇u0

∣∣∥∥
L2 + ∥11BR(x0)u0∥L6 +

∥∥11BR(x0)u1

∥∥
L2 ≤ δ0,

then ]−R,+R[⊂ Imax.

Problem 4. Let u, v be two global solutions of (6), with radial initial data respectively (u0, u1), (v0, v1).
We assume that for some R0 > 0

lim
t→±∞

∫
|x|>R0+|t|

|∇t,x(u− v)(t, x)|2dx = 0 and ∀|x| > R0, |u0(x)− v0(x)| ≤
C

|x|2
.

Our goal is to prove that (u0, u1) = (v0, v1).
Let w = u− v, (w0, w1) = w⃗(0). Let R1 ≥ R0 such that for u ∈ {u, v, w}, one has∫

|x|≥R1

[
|∇u0(x)|2 + (u1(x))

2
]
dx ≤ ε2,

where ε is a small constant.

4.1. Prove that for u ∈ {u, v, w}, one has∥∥11|x|>R1+|t|u
∥∥
L5L10 ≤ Cε.

4.2. Prove that there exists R > R1 such that (w0, w1)(x) = 0 for a.e x such that |x| ≥ R.

4.3. Prove that (w0, w1) = 0 for a.e. x.


