DYNAMICS OF SEMI-LINEAR WAVE EQUATIONS. HOMEWORK, CHAPTER II

Exercise 1. Let $N \geq 1$, $\varphi \in \mathcal{S}(\mathbb{R}^N)$, which is not identically 0. Let

$$\varphi_{\varepsilon}(x) = e^{ix_1/\varepsilon}\varphi(x).$$

Show that for $\sigma > 0$, $\lim_{\varepsilon \to 0} \|\varphi_{\varepsilon}\|_{\dot{H}^{\sigma}} = +\infty$ Show that the sequences $(\|u_n\|_{L^p})_n$ and $(\|u_n\|_{\dot{B}^{\sigma}})_n$ are bounded for all $\sigma > 0$ and $p \in [1, \infty]$.

Exercise 2. Let $\sigma \in \mathbb{R}$. We define the (inhomogeneous) Sobolev space $H^{\sigma}(\mathbb{R}^N)$ by the space of $u \in \mathcal{S}'(\mathbb{R}^N)$ such that \hat{u} is in $L^1(K)$ for all compact K and that the following quantity is finite

$$||f||_{H^{\sigma}}^2 = \int_{\mathbb{R}^N} (1 + |\xi|^2)^{\sigma} |\widehat{f}(\xi)|^2 d\xi.$$

- (1) Prove that H^{σ} is an Hilbert space.
- (2) Assume that σ is a positive integer. Prove that f is in H^{σ} is and only if for all $\alpha \in \mathbb{N}^N$ with $|\alpha| \leq \sigma$, $\partial_x^{\alpha} f \in L^2(\mathbb{R}^N)$. Prove that the norm on H^{σ} is equivalent to the norm defined by

$$||f||^2 = \sum_{|\alpha| < \sigma} ||\partial_x^{\alpha} f||_{L^2}^2.$$

In the case where σ is even, prove that this norm is also equivalent to the norm defined by

$$||f||^2 = ||f||_{L^2}^2 + ||\Delta^{\sigma/2}f||_{L^2}^2.$$

(3) Prove that for all $(u_0, u_1) \in H^{\sigma} \times H^{\sigma-1}$ the formula

(1)
$$u(t) = \cos(t|D|)u_0 + \frac{\sin(t|D|)}{|D|}u_1$$

defines $u \in C^0(\mathbb{R}, H^{\sigma})$ such that $\partial_t u \in C^0(\mathbb{R}, H^{\sigma-1})$ that satisfies the linear wave equation in the sense of distribution.

Exercise 3. Let $u_1 \in L^2(\mathbb{R}^N)$ and consider

$$u(t) = \frac{\sin(t|D|)}{|D|} u_1,$$

the solution of the wave equation with initial data $(0, u_1)$.

- (1) Prove that for all $t, u(t) \in L^2(\mathbb{R}^N)$, and $||u(t)||_{L^2} \le t||u_1||_{L^2}$.
- (2) Give a sufficient condition on u_1 so that

$$\sup_{t\in\mathbb{R}}\|u(t)\|_{L^2}<\infty$$

(3) Give example of functions $u_1 \in L^2$ such that (*) does not hold.

Exercise 4 (Conservation laws). Let $(u_0, u_1) \in \mathcal{S}'(\mathbb{R}^N) \times \mathcal{S}'(\mathbb{R}^N)$. Assume that $\widehat{u_0}$ and $\widehat{u_1}$ are locally integrable functions. Let

$$u(t,x) = \cos(t|D|)u_0 + \frac{\sin(t|D|)}{|D|}u_1.$$

Let $\varphi \in C^{\infty}(\mathbb{R}^N)$ such that $(|\widehat{u_0}(\xi)|^2|\xi|^2 + |\widehat{u_1}(\xi)|^2) \varphi(\xi)$ is integrable on \mathbb{R}^N . Prove that

$$\int \left[|\xi|^2 \left| \widehat{u}(t,\xi) \right|^2 + \left| \widehat{\partial_t u}(\xi) \right|^2 \right] \varphi(\xi) d\xi$$

is well-defined and independent of t.

Exercise 5. Consider the function defined on \mathbb{R}^3 by

(2)
$$S(x) = \frac{\sin(|x|)}{|x|}.$$

Compute the Fourier transform of S. Hint: compare the two formulas for the wave equation in space dimension 3 obtained in Chapter I and Chapter II.