TD 1: les nombres complexes

Institut Galilée. L1, algèbre linéaire Année 2013-2014, 2ème semestre

On note $\mathbb C$ l'ensemble des nombres complexes. Si z est un nombre complexe, on note Re z sa partie réelle et Im z sa partie imaginaire.

Exercice 1. Soit $z \in \mathbb{C}$. Exprimer Re(iz), Im(iz), $Re(i\overline{z})$, $Re(z^2)$, $Im(z^3)$ en fonction de Re z et Im z.

Exercice 2. Mettre sous forme cartésienne les nombres complexes suivants :

$$\frac{1}{4i}$$
, $\frac{3+i}{2-3i}$, $\frac{1}{3+i} + \frac{1}{3-i}$, $\frac{2+i}{1-2i} + \frac{i}{1+i}$.

Exercice 3.

a) Soit a et b deux nombres complexes. Calculer $|a+b|^2$ en fonction de $|a|^2$, $|b|^2$ et $\bar{a}b$.

b) Soit $z \in \mathbb{C}$, $z \neq -i$. Montrer que $\left| \frac{1+iz}{1-iz} \right| = 1$ si et seulement si z est réel.

Exercice 4. Montrer que pour tout $n \in \mathbb{N}$, $(1+i)^n + (1-i)^n$ est réel

Exercice 5. Dessiner les ensembles déterminés dans le plan complexe par les conditions suivantes:

a)
$$|z| < 1$$

b)
$$z + \overline{z} = 1$$

c)
$$\gamma - \overline{\gamma} = 0$$

d)
$$|z-2| = |z+2|$$

e)
$$z + \bar{z} = z^2$$

a)
$$|z|<1$$
 b) $z+\overline{z}=1$ c) $z-\overline{z}=i$ d) $|z-2|=|z+2|$ e) $z+\overline{z}=z^2$ f) $|z-3+5i|=4$.

Exercice 6. Calculer la somme $\sum_{k=0}^{10} i^k$. Mettre le résultat sous forme cartésienne.

Exercice 7. Déterminer le module et un argument des nombres complexes suivants :

$$-4$$
, $3i$, $2e^{-4i}$, $-8e^{\frac{3\pi}{7}i}$,

$$-1 + i\sqrt{3}$$
, $\frac{1+i}{\sqrt{3}-i}$, $(\sqrt{3}-i)^{2013}$.

Exercice 8. Mettre sous forme cartésienne les nombres complexes suivants :

$$(1-i)^{64}$$
, $\frac{(1-i)^{10}}{(1+i)^6}$, $\left(\frac{1-i}{\sqrt{3}+i}\right)^{12}$.

Exercice 9. Linéariser les expressions suivantes :

$$\sin^4 x$$
, $\cos^5 x$, $\sin^4 x \cos^3 x$, $x \in \mathbb{R}$.

Exercice 10. Soit $a \in \mathbb{R}$. Exprimer $\cos 4a$ en fonction de $\cos a$. Exprimer $\sin 6a$ en fonction de $\sin a$.

Exercice 11. Soit $a \in \mathbb{R}$. Exprimer $\cos 5a$ en fonction de $\cos a$, puis $\sin 5a$ en fonction de $\sin a$. En utilisant le fait que $\cos \frac{5\pi}{10} = 0$, donner la valeur de $\cos \frac{\pi}{10}$.

Exercice 12. Résoudre dans $\mathbb C$ les équations suivantes :

a)
$$z^6 = 27i$$
, b) $z^3 = \frac{1+i}{\sqrt{2}}$.

Exercice 13. Calculer les racines carrées des nombres complexes suivants :

$$4\sqrt{3} + i$$
, $6 - 8i$, $5 - 12i$, $5 + 12i$.

Exercice 14. Résoudre dans $\mathbb C$ les équations suivantes :

a)
$$2z^2 - 4z + 10 = 0$$
, b) $z^2 - 6z + 6 + 4i = 0$, c) $z^2 + (2 - 2i)z = 3i + 1$.

En utilisant le résultat de c), résoudre sans calcul l'équation $z^2 + (2+2i)z = -3i + 1$.

Exercice 15. Résoudre dans \mathbb{C} l'équation : $(z^2 - 1)^4 = 1$.

- \bigstar Exercice 16. Soit $\theta \in [0, 2\pi[$.
- a) Déterminer le module et un argument de $z=1+e^{i\theta}$. Indication : on pourra mettre $e^{i\frac{\theta}{2}}$ en facteur.
- **b)** En déduire le module et un argument de $(1 + e^{i\theta})^n$ $(n \in \mathbb{N})$.
- c) Soient a et b appartenant à \mathbb{R} . Calculer $\sum_{k=0}^{n} \binom{n}{k} e^{i(a+bk)}$.

En déduire $\sum_{k=0}^{n} \binom{n}{k} \cos(a+bk)$.

- \bigstar Exercice 17. Soit $n \ge 1$ un entier
- a) Pour tout θ réel, calculer la somme $\sum_{k=1}^{n} e^{ik\theta}$ en fonction de $\sin \frac{\theta}{2}$, $\sin \frac{n\theta}{2}$ et $e^{\frac{i(n+1)\theta}{2}}$. En déduire $\sum_{k=1}^{n} \cos(k\theta)$ et $\sum_{k=1}^{n} \sin(k\theta)$.

b) Calculer $\sum_{k=-n}^{n} e^{ik\theta}$ puis, pour $N \ge 1$, $\sum_{n=0}^{N} \sum_{k=-n}^{n} e^{ik\theta}$. Vérifier que cette dernière quantité est toujours un nombre réel positif ou nul.