TD 2: Matrices

Institut Galilée. L1, algèbre linéaire Année 2016-2017, 2ème semestre

Exercice 1. On donne les matrices suivantes :

$$M = \begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 2i & 3 \end{bmatrix}; \ N = \begin{bmatrix} 1 & i \\ 0 & -1 \\ 3 & -i \end{bmatrix};$$

$$P = \begin{bmatrix} 3 & 2 \\ 0 & -1 \end{bmatrix}; \quad T = \begin{bmatrix} -1 \\ -3i \\ 1+i \end{bmatrix} \text{ et } U = \begin{bmatrix} 2+i & 1 & 1+i \end{bmatrix}.$$

- a) Donner les coefficients suivants de la matrice $M: m_{3,1}, m_{1,2}$.
- b) Calculer, lorsque c'est possible, les sommes suivantes : M+N; M+P; T+U; ^tT+U .
- c) Calculer, lorsque c'est possible, les produits suivants :

$$2iN:3U:NM:{}^{t}MN:MP:P^{t}M:UT:TU:T^{2}:P^{2}.$$

- d) A quelles conditions sur les dimensions des matrices A et B peut-on calculer la somme $A + {}^tB$?
- e) A quelles conditions sur les dimensions des matrices A et B peut-on calculer le produit A^tB ?

Exercice 2. On fixe $n \geq 2$. Soient les matrices :

-
$$B_n = [b_{ij}]_{1 \le i,j \le n}$$
 où $b_{ij} = 0$ si $i > j$, $b_{i,j} = i - j$ sinon;

-
$$C_n = [c_{ij}]_{1 \le i,j \le n}$$
 où

$$c_{i,j} = 0 \text{ si } |i - j| > 1 \text{ ou si } i = j,$$

$$c_{i,j} = 1 \text{ si } |i - j| = 1.$$

- a) Ecrire la matrice B_4 et la matrice C_4 .
- **b)** Calculer le produit B_3C_3 . Calculer C_3^2 .
- c) Calculer C_n^2 . On notera $[d_{i,j}]$ les coefficients de C_n^2 et on distinguera les cas |i-j| > 2, |i-j| = 2, |i-j| = 1 et i = j.

Exercice 3.

a) Posons
$$N:=\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right].$$
 Calculer N^n pour $n\geq 1.$

b) Soit la matrice $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$. En utilisant l'égalité $A = 2I_3 + N$ et en vérifiant que l'on peut utiliser la formule du binôme de Newton, calculer A^n .

1

Exercice 4. Dire si les matrices suivantes sont inversibles. Si oui, donner leur inverse :

$$A = \begin{bmatrix} 9 & 5 \\ 5 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 1 - i\sqrt{3} & 0 & 0 & 0 \\ 0 & 2i & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & i \end{bmatrix} \quad C = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \end{bmatrix} \quad D = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 0 & 2 \\ 6 & 4 & -1 \end{bmatrix}$$

$$E = \begin{bmatrix} -1 & 3 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \quad F = \begin{bmatrix} z + 2i & 3 \\ -1 & z \end{bmatrix} \text{ en fonction du paramètre } z \in \mathbb{C}.$$

Exercice 5. Soit B une matrice telle que

$$B\begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \\ 3 & 4 \end{bmatrix}.$$

Donner les dimensions de B, puis déterminer B.

Exercice 6. On pose $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

- a) On considère un système linéaire (S) homogène à 2 équations et 3 inconnues sur \mathbb{K} . Le système (S) est-il compatible? Combien a-t-il de solution(s)?
- b) Soit $B \in \mathcal{M}_{2,3}(\mathbb{K})$. Montrer qu'il existe $X \in \mathcal{M}_{3,1}$, non nul, tel que BX = 0.
- c) En déduire qu'il n'existe pas de matrice $A \in \mathcal{M}_{3,2}(\mathbb{K})$ tel que $AB = I_3$.

Exercice 7. Soit pour $\theta \in \mathbb{R}$ la matrice 3×3 , $R_{\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & \sin(\theta) \\ 0 & -\sin(\theta) & \cos(\theta) \end{bmatrix}$.

- a) Calculer $R_{\theta}R_{\sigma}$ pour $\theta, \sigma \in \mathbb{R}$.
- b) La matrice R_{θ} est-elle inversible? Si oui calculer son inverse.
- c) Soit $X=\begin{bmatrix}x\\y\\z\end{bmatrix}$ un point de \mathbb{R}^3 . Interpréter géométriquement $R_\theta X$. Les résultats précédents sont-ils cohérents avec cette interprétation géométrique?

Exercice 8. On considère les matrices

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

En utilisant que ces matrices sont des matrices élémentaires, calculer :

$$C^n$$
, $(n \in \mathbb{N})$ AB^4C^3A $C^4B^3C^2$.

Exercice 9.

a) En utilisant la méthode du pivot, dire si les matrices suivantes sont inversibles et donner leur inverse

$$A = \begin{bmatrix} -1 & -1 & -3 \\ 3 & 2 & 10 \\ -2 & -1 & -8 \end{bmatrix} \qquad B = \begin{bmatrix} -2 & 3 & 7 \\ 1 & -2 & -5 \\ 1 & -1 & -2 \end{bmatrix} \qquad C = \begin{bmatrix} -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -2 \\ -1 & -1 & -1 & -1 \\ 1 & 2 & 0 & 0 \end{bmatrix}$$

b) Soit $(a, b, c) \in \mathbb{R}^3$. Le système suivant est-il un système de Cramer?

$$\begin{cases}
-x - y - 3z = a \\
3x + 2y + 10z = b \\
-2x - y - 8z = c.
\end{cases}$$

Résoudre ce système.

Exercice 10.

a) A quelle condition sur le paramètre $\lambda \in \mathbb{R}$ la matrice suivante est-elle inversible? Calculer son inverse lorsqu'elle est inversible.

$$A_{\lambda} = \begin{bmatrix} 2 & 9 + 2\lambda & 8 - 4\lambda \\ 1 & 5 + \lambda & 6 - 3\lambda \\ 2 & 11 + 2\lambda & 14 - 7\lambda \end{bmatrix}$$

b) A quelle condition sur λ le système suivant (d'inconnues réelles x,y,z) a-t-il une infinité de solutions?

$$\begin{cases} 2x + (9+2\lambda)y + (8-4\lambda)z = 3\\ x + (5+\lambda)y + (6-3\lambda)z = 2\\ 2x + (11+2\lambda)y + (14-7\lambda)z = 5 \end{cases}$$

Exercice 11. Déterminer les inverses des matrices $A = \begin{bmatrix} 1 & 1,01 \\ 0,99 & 1 \end{bmatrix}$ et $B = \begin{bmatrix} 1 & 1 \\ 0,99 & 1 \end{bmatrix}$.

A votre avis, quel problème se pose si on calcule l'inverse d'une matrice en remplaçant chacun de ses coefficients par une valeur approchée?

- ★ Exercice 12. Soit $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ une matrice de $\mathcal{M}_2(\mathbb{C})$. On appelle trace de A, et on note tr A la somme $a_{11} + a_{22}$.
- a) Montrer que pour $A, B \in \mathcal{M}_2(\mathbb{C}), \lambda \in \mathbb{C}, \operatorname{tr}(A+B) = \operatorname{tr} A + \operatorname{tr} B \operatorname{et} \operatorname{tr}(\lambda A) = \lambda \operatorname{tr} A.$
- **b)** Montrer que pour $A, B \in \mathcal{M}_2(\mathbb{C})$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- c) Montrer qu'il n'existe pas de matrices $A, B \in \mathcal{M}_2(\mathbb{C})$ telles que

$$AB - BA = I_2$$
.

d) Soit $n \geq 2$. Si $A = [a_{i,j}] \in \mathcal{M}_n(\mathbb{C})$, on pose

$$\operatorname{tr} A = \sum_{i=1}^{n} a_{ii}.$$

3

Généraliser les questions précédentes aux matrices $n \times n$.

★ Exercice 13. Soit $A = [a_{i,j}] \in \mathcal{M}_n(\mathbb{R})$ telle que

$$\forall B \in \mathcal{M}_n(\mathbb{R}), \quad AB = BA. \tag{1}$$

- a) Soit $(k, \ell) \in \{1, 2, ..., n\}^2$. On note $E_{k,\ell}$ la matrice $n \times n$ dont tous les coefficients sont nuls, sauf le coefficient (k, ℓ) qui vaut 1. Calculer les coefficients de $AE_{k,\ell}$ et $E_{k,\ell}A$.
- **b)** Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $A = \lambda I_n$. Montrer réciproquement que les matrice $A = \lambda I_n$, $\lambda \in \mathbb{R}$, vérifient la propriété (1).

 $https://www.math.univ-paris13.fr/ ilde{d}uyckaer/enseignement.html$

Exercices à préparer pour le contrôle continu

Exercice 14. On considère les matrices

$$A = [i+j]_{\substack{1 \le i \le 2 \\ 1 \le j \le 3}}, \quad B = \begin{bmatrix} -1 & 3 \\ -4 & 2 \\ -3 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}, \quad D = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}.$$

Calculer, quand c'est possible, les matrices suivantes

$$AB$$
, BA , $A + B$, A^2 , C^2 , $^tA + 2B$, AC , tAC , AD , DA etc...

(ou tout autre somme, produit ou transposée de matrices explicites).

Exercice 15. Soit A la matrice $\begin{bmatrix} 0 & -1 \\ i & 0 \end{bmatrix}$. Calculer A^n pour tout n.

Exercice 16. Question de cours : montrer l'associativité de la multiplication matricielle (cf polycopié : théorème II.1.31, i, et la démonstration p.18).

Exercice 17. Les matrices suivantes :

$$\begin{bmatrix} 2 & -5 & -16 \\ -2 & 4 & 14 \\ -1 & 2 & 7 \end{bmatrix}, \begin{bmatrix} 1 & -3 & 4 \\ 0 & 1 & -3 \\ 1 & -1 & -3 \end{bmatrix}, \begin{bmatrix} i & 0 & -1+i \\ 1 & i & i \\ i & -1+i & -1 \end{bmatrix}$$

sont-elles inversibles? Donner l'inverse des matrices qui le sont. (Même question possible avec d'autres petites matrices carrées explicites).