TD 3: polynômes

Institut Galilée. L1, algèbre linéaire Année 2016-2017, 2ème semestre

Exercice 1. Soit P un polynôme de degré $n \in \mathbb{N}$. Donner les degrés des polynômes suivants : $P^3 + 2P^5$, P''P, $P - (P'')^2$.

Exercice 2. Effectuer la division euclidienne de A par B dans chacun des cas suivants :

a)
$$A = 2X^3$$
, $B = 2X + 1$ b) $A = X^3 + iX^2 + 3X + i$, $B = X^2 + 2iX - 1$ c) $A = X^5 - X^4 - 2X^3 + 5$, $B = X^2 - 2$ d) $A = X^2 - 1$, $B = 2X^3 + X + 1$.

Exercice 3. A l'aide d'une division euclidienne, déterminer pour quel(s) réel(s) a le polynôme $P = X^4 + aX^2 + 4$ est divisible par $Q = X^2 - X + 2$.

Exercice 4.

- a) Montrer en effectuant une division euclidienne que le polynôme $P = 3X^4 17X^3 + 23X^2 + 16X 10$ est divisible par $X^2 6X + 10$.
- b) Calculer les racines de $X^2 6X + 10$. Montrer que ce sont aussi des racines de P. En déduire une autre démonstration du résultat de la question précédente.

Exercice 5. Soit P le polynôme $X^8 + 20X^4 + 64$.

- a) Le polynôme P a-t-il des racines réelles?
- b) Déterminer les racines complexes de P et leur ordre de multiplicité.

Exercice 6. Soit $P = X^4 + 6X^2 + 8iX - 3$.

- a) Montrer que -i est racine de P et donner son ordre de multiplicité.
- b) Déterminer toutes les racines de P et leurs ordres de multiplicité.

Exercice 7. Soit $P = X^4 - 4X^2 - 16X + 32$.

- a) Montrer que 2 est racine de P et donner son ordre de multiplicité.
- b) Déterminer toutes les racines réelles, puis toutes les racines complexes de P et leurs ordres de multiplicité.

Exercice 8. Montrer que le polynôme $4X^7 + 10X^3 + 5X - 2$ a une et une seule racine réelle. On ne demande pas de calculer cette racine.

Exercice 9. Soit $P \in \mathbb{C}[X]$. Soient a et b deux nombres complexes distincts. Calculer le reste de la division de P par (X - a)(X - b) en fonction de P(a) et P(b).

★ Exercice 10.

- a) Calculer $\cos(5a)$ en fonction de $\cos(a)$ et $\sin(a)$, puis seulement en fonction de $\cos(a)$.
- b) A l'aide de la question précédente, montrer qu'il existe un polynôme non nul P, à coefficients entiers, tel que

$$P\left(\cos\frac{\pi}{10}\right) = 0.$$

On dit que $\cos \frac{\pi}{10}$ est algébrique.

c) Soit m et n des entiers naturels avec $n \neq 0$. Justifier qu'il existe un polynôme Q, à coefficients entiers, tel que pour tout réel a, $\cos(na) = Q(\cos a)$. En déduire que $\cos\frac{m\pi}{n}$ est algébrique, c'est à dire qu'il existe un polynôme P non nul, à coefficients entiers, tel que

$$P\left(\cos\frac{m\pi}{n}\right) = 0.$$

Pour d'autres exercices sur les polynômes, on pourra consulter la feuille de TD 2 de 2014 :

https://www.math.univ-paris13.fr/~duyckaer/enseignement/L1_2014_TD2.pdf

Exercices à préparer pour le contrôle continu

Exercice 11. Déterminer toutes les racines du polynômes $2X^4 + 9X^3 + 9X^2 - X - 3$ avec leurs ordres de multiplicité. On pourra commencer par chercher une racine évidente.

Exercice 12. Déterminer le reste et le quotient de la division euclidienne de $X^3 + (1 + 2i)X^2$ par X + 1 (ou toute autre division euclidienne de polynômes).

Exercice 13.

- a) Calculer, pour $x \in \mathbb{R}$, $\cos(4x)$ en fonction de $\cos(x)$
- b) Rappeler la valeur de $\cos(\pi/3)$. En utilisant la question précédente, trouver un polynôme P, à coefficients entiers, tel que $P\left(\cos\left(\frac{\pi}{12}\right)\right) = 0$.