TD 5: espaces vectoriels II

Institut Galilée. L1, algèbre linéaire Année 2016-2017, 2ème semestre

Exercice 1.

- a) Soit E le sous-espace vectoriel de \mathbb{C}^3 d'équation cartésienne 2x + iy z = 0. Donner la dimension et une base de E.
- b) Soit E le sous-espace vectoriel de \mathbb{R}^4 d'équations cartésiennes $x_1 + x_3 x_4 = 0$ et $x_1 + x_2 x_3 + x_4 = 0$. Donner la dimension et une base de E.

Exercice 2. On considère les sous-espaces vectoriels E, F, G et H de \mathbb{R}^3 définis par :

$$E = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 = 2x_3\}, \quad F = \text{vect}((0, 1, 0), (2, 1, -1)),$$
$$G = \text{vect}((4, 3, -2)), \quad H = \text{vect}((1, 1, 2)).$$

Déterminer une base et la dimension de

$$F \cap G$$
, $G \cap H$, $E \cap H$, $E \cap F$

puis une base et la dimension de

$$F+G$$
, $G+H$, $E+H$, $E+F$.

Déterminer si les espaces F et G (respectivement G et H; F et H; E et F) sont supplémentaires dans \mathbb{R}^3 .

Exercice 3. Soit

$$E = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 - x_2 + x_3 - x_4 = 0\}, \quad F = \text{vect}\{(1, 2, 3, 2)\}$$
$$G = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_3 = 0 \text{ et } x_2 + x_4 = 0\}.$$

Montrer que F et G sont des sous-espaces vectoriels de E, puis que F et G sont supplémentaires dans E.

Exercice 4. Soit $\vec{u}=(1,-1,-1), \vec{v}=(-2,4,1)$ et F le sous-espace de \mathbb{R}^3 engendré par \vec{u} et \vec{v} .

- a) Quelle est la dimension de F?
- b) Fixons $(x, y, z) \in \mathbb{R}^3$. A quelle condition sur (x, y, z) le système

$$a\vec{u} + b\vec{v} = (x, y, z),$$

d'inconnues réelles a et b est-il compatible? En déduire une description cartésienne de F.

c) Déterminer par un raisonnement analogue une description cartésienne du sous-espace de \mathbb{C}^4 vect (\vec{u}, \vec{v}) , avec $\vec{u} = (i, 1, -1, 0)$ $\vec{v} = (1, -i, 2i, 1)$.

Exercice 5.

a) Résoudre, selon le paramètre $\lambda \in \mathbb{R}$, le système linéaire suivant :

(S_{\lambda})
$$\begin{cases} x + y + z = 0 \\ \lambda^2 x + y + z = 0 \\ 2x + (\lambda + 3)y + 2z = 0. \end{cases}$$

b) Soit E_{λ} l'espace vectoriel des solutions de (S_{λ}) . Déterminer, en distinguant selon les valeurs de λ , une base et la dimension de E_{λ} .

Exercice 6. Donner le rang des familles de vecteurs suivantes. En extraire une famille libre.

$$\mathcal{F}_1 = \Big((2,1), (-2,-4), (1,2), (2,-7), (3,-4)\Big), \qquad \mathcal{F}_2 = \Big((1,2,-2), (2,13,11), (0,3,5)\Big),$$

$$\mathcal{F}_3 = \Big((1,0,0,1), (2,-1,2,3), (-2,-1,1,3), (4,1,2,-1)\Big).$$

Exercice 7. Montrer que les familles suivantes sont libres. Les compléter en une base de \mathbb{R}^3 (respectivement de \mathbb{R}^4):

$$\mathcal{F} = \{(-1,3,4), (1,2,-3)\}, \quad \mathcal{G} = \{(3,1,2,-1), (1,0,-1,2)\}.$$

Exercice 8. Soit $\vec{u}_1 = (-1, 2, 0)$, $\vec{u}_2 = (1, 3, 1)$, $\vec{u}_3 = (1, 1, -2)$.

- a) Montrer que $\mathcal{B} = (\vec{u}_1, \vec{u}_2, \vec{u}_3)$ est une base de \mathbb{R}^3 .
- b) Exprimer les coordonnées d'un point (x_1, x_2, x_3) de \mathbb{R}^3 dans la base \mathcal{B} .

Exercice 9. Soit $n \geq 2$. On considère les sous-espaces vectoriels suivants de \mathbb{R}^n :

$$F = \left\{ (x_1, \dots, x_n) : \sum_{k=1}^n k \, x_k = 0 \right\} \text{ et } G = \text{vect} ((1, 1, \dots, 1)).$$

Montrer que F et G sont supplémentaires dans \mathbb{R}^n .

Exercices à préparer pour le contrôle continu.

Exercice 10 (Question de cours). Soit $\mathcal{F} = (\vec{u}_1, \dots, \vec{u}_n)$ une famille libre d'un espace vectoriel E. Soit $\vec{v} \in E$. Montrer que \mathcal{F} est libre si et seulement si $\vec{v} \notin \text{vect } \mathcal{F}$.

Exercice 11. Soit λ un paramètre réel. On considère les deux sous-espaces vectoriels suivants de \mathbb{R}^3 :

$$F = \text{vect}((1, 0, \lambda)), \quad G = \{(x, y, z) \in \mathbb{R}^3 : 2x + y - z = 0\}.$$

Déterminer selon la valeur du paramètre λ une base et la dimensions de $F \cap G$ puis une base et la dimension de F + G. A quelle condition sur λ ces deux espaces sont-ils supplémentaires dans \mathbb{R}^3 ?

Exercice 12. On considère les vecteurs de \mathbb{R}^4 :

$$\vec{u}_1 = (2, -1, 1, 1), \quad \vec{u}_2 = (3, -1, 2, 1), \quad \vec{u}_3 = (1, 0, 1, 0).$$

En utilisant la méthode de l'exercice 4, donner une description cartésienne du sous-espace de $\mathbb{R}^4: F = \text{vect}(\vec{u}_1, \vec{u}_2, \vec{u}_3)$.