Matrices TD n°2

1. On donne les matrices :

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}, \ D = \begin{pmatrix} 5 \\ -3 \end{pmatrix}, E = \begin{pmatrix} -3 & 2 \\ 0 & 0 \end{pmatrix}, \ F = \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix}, \ X = \begin{pmatrix} x \\ y \end{pmatrix}, \ T = \begin{pmatrix} 2 \\ 2i \\ 3 \end{pmatrix}, U = \begin{pmatrix} -7 & 4 & \sqrt{7} \end{pmatrix}.$$

- a. Calculer, si c'est possible, C + E; A + C; AC; CA; -7CD.
- b. Calculer les coefficients de la matrice H définie par la combinaison linéaire suivante : H = 2C 3F.
- c. Quels sont les produits de deux matrices issues de la liste que l'on peut faire ? Quelle est la taille des matrices obtenues?
- d. Vérifier que (CA)B = C(AB)
- e. Calculer EF et FE. A-t-on $(E+F)^2 = E^2 + 2EF + F^2$?
- f. Calculer CX et déterminer X tel que CX = D.
- **2.** Résolvez l'équation matricielle suivante d'inconnue $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$:

$$XC = \begin{pmatrix} 3 & -1 \\ -4 & 2 \end{pmatrix}$$
 où C est la matrice $C = \begin{pmatrix} 1 & 2 \\ -1 & -4 \end{pmatrix}$

3. Déterminer toutes les matrices 2×2 à coefficients réels qui commutent avec la matrice $A = \begin{pmatrix} 2 & -3 \\ 1 & 2 \end{pmatrix}$.

Autre manière de décrire les solutions :

Montrer que les matrices obtenues sont les matrices de la forme $\alpha I_2 + \beta A$, où α et β sont des nombres réels. (*I*₂ désigne la matrice unité d'ordre 2).

- **4.** Dans chacun des cas ci-dessous, trouvez les matrices $A = [a_{ij}]$ de dimension 6x6 qui satisfont à la condition indiquée.

- (a) $a_{ij} = 0$ si $i \neq j$ (b) $a_{ij} = 0$ si i > j (c) $a_{ij} = 0$ si i < j (d) $a_{ij} = 0$ si |i j| > 1
- **6.** Soit *A* la matrice de $M_2(IR)$ définie par $A = \begin{pmatrix} -2 & 1 \\ 0 & -2 \end{pmatrix}$. Calculer A^n en utilisant le binôme de Newton.

On pourra écrire
$$A = -2I_2 + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
.

- 7. On dit d'une matrice B qu'elle est une racine carrée d'une matrice A si BB = A.
 - (a) Trouver deux matrices carrées de $A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$.
 - (b) Combien de racines carrés différentes pouvez-vous donner à la matrice $A = \begin{pmatrix} -2 & 1 \\ 0 & -2 \end{pmatrix}$?
 - (c) Pensez-vous que toute matrice 2x2 possède au moins une racine carrée ?
- 8. a. Résoudre le système (S) suivant : $\begin{cases} -x + 2y 4z = a \\ y + 3z = b \end{cases}$ en fonction des réels a, b et c. -x + 3y 1z = c

Traduire le système (S) sous forme matricielle.

- **b.** La matrice $A = \begin{pmatrix} -1 & 2 & -4 \\ 0 & 1 & 3 \\ -1 & 3 & -1 \end{pmatrix}$ est-elle inversible? Si oui donner son inverse.
- **9.** Ecrire les matrice K, L et M matrices carrées d'ordre 4 tel que, si A est une matrice carrée d'ordre 4 :
 - KA est la matrice qui a la même première ligne et la même dernière ligne que A mais dont la deuxième ligne est obtenue comme somme de la première et la deuxième ligne de A et dont la troisième ligne est 4 fois la troisième ligne de A.
 - *LA* est la matrice qui a la même première ligne et la même troisième ligne que *A* mais dont la deuxième ligne et la quatrième ont été échangées.
 - AM est la matrice qui a la même première colonne que A mais dont la deuxième colonne est obtenue comme somme de la première colonne et la deuxième colonne de A et dont la troisième colonne et la quatrième colonne ont été échangées.

2

10. Les matrices $B = \begin{pmatrix} 1 & 1 & -1 \\ -3 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$ sont-elles inversibles?

Quand elles le sont, donner leur inverse

11. Montrer qu'une matrice dont une ligne n'est constituée que de zéros n'est pas inversible.