TD 6: déterminant, réduction des endomorphismes

CALCUL DE DÉTERMINANTS

Exercice 1. Calculer les déterminants suivants:

$$\begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix}, \quad \begin{vmatrix} 3 & 1 & -1 \\ 4 & 0 & -2 \\ -1 & 3 & 1 \end{vmatrix}, \quad \begin{vmatrix} 1 & 17 & 18 \\ 1 & 18 & 19 \\ 1 & 19 & 20 \end{vmatrix}, \quad \begin{vmatrix} 2 & -1 & 1 & -1 \\ 1 & -3 & 4 & -2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 4 & 5 \end{vmatrix}.$$

Exercice 2. Calculer les déterminants suivants

$$\begin{vmatrix} 2 & 3 & 0 & 1 \\ 1 & -1 & 1 & 0 \\ 4 & 1 & 0 & 2 \\ 0 & -2 & -1 & 1 \end{vmatrix}, \quad \begin{vmatrix} 2 & 0 & 2 & 1 \\ 0 & 3 & 1 & 0 \\ 0 & -1 & 5 & 0 \\ 3 & 0 & -1 & 3 \end{vmatrix}, \quad \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{vmatrix}, \quad \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{vmatrix}.$$

Exercice 3. Soit $(a, b, c, d) \in \mathbb{C}^4$. Calculer:

$$\begin{vmatrix} 1 & 1 & 2 & 4 \\ a & b & a+b & 2a+2b \\ a & b & c & a+b+c \\ a & b & c & d \end{vmatrix} \quad \text{et} \quad \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ b+c & c+a & a+b \end{vmatrix}.$$

Exercice 4. Soit $\vec{x} = (1, 0, -1)$, $\vec{y} = (3, 2, 1)$ et $\vec{z} = (1, 1, a)$. Pour quelles valeurs du paramètre $a \in \mathbb{R}$ la famille $(\vec{x}, \vec{y}, \vec{z})$ forme-t-elle une base de \mathbb{R}^3 ?

Exercice 5. Pour quelles valeurs de $m \in \mathbb{R}$ les matrices suivantes sont-elles inversibles:

$$A_m = \begin{bmatrix} m-2 & 2 & -1 \\ 2 & m & 2 \\ 2m & 2m+2 & m+1 \end{bmatrix}, \qquad B_m = \begin{bmatrix} 1 & 1 & m \\ 1 & m & 1 \\ m & 1 & 1 \end{bmatrix}?$$

Exercice 6. Soit $(x_1,\ldots,x_n)\in\mathbb{C}^n$. On veut calculer le déterminant suivant:

$$V_n(x_1, x_2, \dots, x_n) = \begin{vmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{vmatrix},$$

appelé déterminant de Vandermonde¹.

- a) Calculer $V_1(x_1)$ puis $V_2(x_1, x_2)$.
- **b)** On suppose dans cette question: $\exists i, j \in \{1, ..., n\}$ t.q. $(i \neq j \text{ et } x_i = x_j)$. Montrer

$$V_n(x_1,\ldots,x_n)=0.$$

On suppose dans la suite $i \neq j \Longrightarrow x_i \neq x_j$.

¹Alexandre-Théophile Vandermonde, mathématicien français du 18ème siècle

c) On fixe x_1, \ldots, x_{n-1} . Montrer que

$$P(x) = V_n(x_1, \dots, x_{n-1}, x)$$

est une fonction polynôme de degré n-1 de la variable x. Calculer P(0) en fonction de $V_{n-1}(x_1,\ldots,x_{n-1})$.

- d) Montrer que x_1, \ldots, x_{n-2} et x_{n-1} sont des zéros de P. Le polynôme P admet-il d'autres racines?
- e) En déduire P en fonction de $V_{n-1}(x_1,\ldots,x_{n-1})$.
- f) Déduire des questions précédentes la valeur de $V_n(x_1, \ldots, x_n)$.

RÉDUCTION DES ENDOMORPHISMES

Exercice 7. Déterminer, pour chacune des matrices suivantes, le polynôme caractéristique, les valeurs propres et leur ordre de multiplicité.

$$A_{1} = \begin{bmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}, \quad A_{3} = \begin{bmatrix} 0 & 3 & -1 \\ 1 & 2 & -1 \\ 0 & 4 & -1 \end{bmatrix}$$
$$A_{4} = \begin{bmatrix} 0 & -1 & 2 & 1 \\ 1 & -2 & 2 & 1 \\ 0 & -4 & 5 & 2 \\ 0 & 4 & -3 & 0 \end{bmatrix}, \quad A_{5} = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Exercice 8. Soit f l'application linéaire de \mathbb{R}^3 dans lui-même dont la matrice dans la base canonique est:

$$A = \begin{bmatrix} -1 & 0 & 9 \\ -4 & 3 & 10 \\ 0 & 0 & 2 \end{bmatrix}.$$

- a) Vérifier que les vecteurs $\vec{v}_1 = (1, 1, 0)$, $\vec{v}_2 = (3, 2, 1)$ et $\vec{v}_3 = (0, 1, 0)$ sont des vecteurs propres de f. Déterminer les valeurs propres associées.
- b) Justifier que la famille $\mathcal{B} = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ est une base de \mathbb{R}^3 . Ecrire la matrice A' de f dans \mathcal{B} . L'endomorphisme f est-il diagonalisable?
- c) Déterminer la matrice de passage P de la base canonique à la base \mathcal{B} , ainsi que son inverse. Quelle relation existe-t-il entre A, A', P et P^{-1} ?

Exercice 9. Soit f l'endormorphisme de \mathbb{R}^2 défini par f(x,y)=(x+2y,2x+y).

- a) Donner la matrice A de f dans la base canonique.
- b) Déterminer les valeurs propres de f. L'endomorphisme f est-il diagonalisable?
- c) Déterminer les vecteurs propres de f. Déterminer une matrice inversible P telle que $P^{-1}AP$ est diagonale.
- d) Mêmes questions pour l'endomorphisme q de \mathbb{R}^3 défini par g(x,y,z)=(x-y-z,2y-z,3z).

Exercice 10. Soit f l'endomorphisme de \mathbb{R}^3 défini par f(x, y, z) = (-4x - 2z, y, 5x + y + 3z).

- a) Déterminer les valeurs propres de f.
- b) Pour chacune de ces valeurs propres, donner une base et la dimension du sous-espace propre associé. La matrice f est-elle diagonalisable? trigonalisable?
- c) Répondre aux questions précédentes avec l'endomorphisme g de \mathbb{R}^3 donné par g(x,y,z)=(-x+3z,2y,3x-z)
- d) Répondre aux mêmes questions avec l'endomorphisme h de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{bmatrix} -4 & -1 & -4 \\ 4 & 1 & 4 \\ 1 & 1 & 1 \end{bmatrix}.$$

Exercice 11. On considére les endomorphismes f de \mathbb{C}^3 ayant pour matrices dans les bases canoniques les matrices suivantes:

$$\begin{bmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{bmatrix}, \quad \begin{bmatrix} -6 & -9 & 5 \\ 8 & 11 & -5 \\ 6 & 8 & -3 \end{bmatrix}, \quad \begin{bmatrix} 2 & 0 & 0 \\ -3 & -1 & 3 \\ 3 & 3 & -1 \end{bmatrix}, \quad \begin{bmatrix} 4 & 4 & 3 \\ -5 & -7 & -7 \\ 5 & 5 & 4 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 1 & 3 \end{bmatrix}.$$

Dans chacun des cas:

- a) Calculer le polynôme caractéristique et les valeurs propres de f.
- b) Chercher si il existe une base de \mathbb{C}^3 formée de vecteurs propres de f. Le cas échéant, déterminer une telle base et calculer pour tout entier n la matrice de f^n dans la base canonique.
- c) Si f n'est pas diagonalisable, donner une base de \mathbb{C}^3 dans laquelle la matrice f est triangulaire supérieure.
- d) Déterminer si il existe une base de \mathbb{R}^3 formé de vecteurs propres de f.

Les trois exercices suivants illustrent une application importante de la réduction des endomorphismes aux suites définies par une relation de récurrence linéaire.

Exercice 12. Soit (u_n) et (v_n) les suites réelles définies par les formules:

$$u_0 = 2$$
, $v_0 = -1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 2u_n + 3v_n$, $v_{n+1} = u_n + 4v_n$.

- a) Pour tout entier n, on pose $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$. Déterminer une matrice A telle que $X_{n+1} = AX_n$.
- b) En utilisant une récurrence, exprimer X_n en fonction de X_0 et de A.
- c) Diagonaliser A. Calculer A^n pour tout entier $n \ge 1$.
- d) Donner une expression de u_n et v_n en fonction de $n \in \mathbb{N}$.

Exercice 13. Mêmes questions qu'à l'exercice précédent pour les suites (u_n) et (v_n) définies par les formules:

$$u_0 = 0$$
, $v_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 4u_n - 2v_n$, $v_{n+1} = u_n + v_n$.

Exercice 14. Soit

$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}.$$

- a) Calculer A^n pour $n \in \mathbb{N}$.
- b) Soit (u_n) la suite définie par

$$u_0 = 1$$
, $u_1 = -1$, $u_{n+2} = 3u_{n+1} - 2u_n$.

Soit $U_n = \begin{bmatrix} u_{n+1} \\ u_n \end{bmatrix}$. Exprimer U_{n+1} en fonction de U_n et de la matrice A.

c) Calculer u_n pour tout $n \in \mathbb{N}$.

Exercice 15 (Endomorphismes nilpotents de \mathbb{R}^3).

- a) Soit f un endomorphisme de \mathbb{R}^3 tel que $f^2 = f \circ f \neq 0$ et $f^3 = f \circ f \circ f = 0$. Soit $\vec{x} \in \mathbb{R}^3 \setminus \text{Ker}(f^2)$. Montrer que $(\vec{x}, f(\vec{x}), f^2(\vec{x}))$ est une base de \mathbb{R}^3 . Donner la matrice de f dans cette base.
- b) Soit f un endomorphisme de \mathbb{R}^3 tel que $f \circ f = 0$. Montrer qu'il existe une base de E dans

laquelle la matrice de
$$f$$
 est
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$