DYNAMICS OF SEMI-LINEAR WAVE EQUATIONS. HOMEWORK, CHAPTER 3

Exercise 1. Let $u_{0} \in\left(\dot{H}^{1 / 2} \times \dot{H}^{-1 / 2}\right)\left(\mathbb{R}^{3}\right), f \in L^{4 / 3}\left(\mathbb{R} \times \mathbb{R}^{3}\right)$. Let

$$
u(t)=\cos (t|D|) u_{0}+\frac{\sin (t|D|)}{|D|} u_{1}+\int_{0}^{t} \frac{\sin ((t-s)|D|)}{|D|} f(s) d s
$$

Using the methods developed in Chapter 3 of the course, prove:
(1) $u \in L^{4}\left(\mathbb{R} \times \mathbb{R}^{3}\right)$ and

$$
\|u\|_{L^{4}\left(\mathbb{R} \times \mathbb{R}^{3}\right)} \lesssim\|f\|_{L^{4 / 3}\left(\mathbb{R} \times \mathbb{R}^{3}\right)}+\left\|\left(u_{0}, u_{1}\right)\right\|_{\dot{H}^{1 / 2} \times \dot{H}^{-1 / 2}}
$$

(2) $\left(u, \partial_{t} u\right) \in C^{0}\left(\mathbb{R}, \dot{H}^{1 / 2} \times \dot{H}^{-1 / 2}\right)$ and

$$
\sup _{t}\left\|\left(u, \partial_{t} u\right)\right\|_{\dot{H}^{1 / 2} \times \dot{H}^{-1 / 2}} \lesssim\|f\|_{L^{4 / 3}\left(\mathbb{R} \times \mathbb{R}^{3}\right)}+\left\|\left(u_{0}, u_{1}\right)\right\|_{\dot{H}^{1 / 2} \times \dot{H}^{-1 / 2}}
$$

Exercise 2. For $u_{0} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{N}\right)$, we denote $u(t)=e^{i t \Delta} u_{0}$ the element of $C^{0}\left(\mathbb{R}, \mathcal{S}^{\prime}(\mathbb{R})\right)$ defined by

$$
u(t)=\overline{\mathcal{F}}\left(e^{-i t|\xi|^{2} \widehat{u_{0}}(\xi)}\right)
$$

which is (formally at least) the solution of the linear Schrödinger equation

$$
i \partial_{t} u+\Delta u=0
$$

One can show, by explicit calculation, the dispersion inequality:

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \lesssim \frac{1}{|t|^{N / 2}}\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{N}\right)}
$$

Let $(p, q) \in[2, \infty]^{2}$, with $p>2$ and $\frac{2}{p}+\frac{N}{q}=\frac{N}{2}$. Show

$$
\begin{equation*}
\left\|e^{i t \Delta} u_{0}\right\|_{L^{p}\left(\mathbb{R}, L^{q}\left(\mathbb{R}^{N}\right)\right)} \lesssim\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \tag{1}
\end{equation*}
$$

Hint: Use the methods from Chapter 3 of the course, but without the dyadic decomposition, which is unnecessary in this case.

