DYNAMICS OF SEMI-LINEAR WAVE EQUATIONS. HOMEWORK, CHAPTER 5

In this exercise sheet, we consider the equations:

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta\right) u=\sigma u^{5} . \tag{W5}
\end{equation*}
$$

and
(LW)

$$
\left(\partial_{t}^{2}-\Delta\right) u_{L}=0
$$

in space dimension 3. A "solution" will always mean a finite-energy solution which satisfies the equation in the usual Duhamel sense.
Exercise 1. (1) Let u_{L} be a solution of (LW). Prove that

$$
\lim _{t \rightarrow \infty}\left\|u_{L}(t)\right\|_{L^{6}}=0
$$

Hint: start with the case where $\vec{u}_{L}(0)$ is smooth and compactly supported.
(2) Let f be a measurable function defined on $I \times \mathbb{R}^{3}$. Assume that the $L^{\infty}\left(I, L^{6}\right)$ and $L^{4}\left(I, L^{12}\right)$ norms of f are finite. Prove that $f \in L^{5}\left(I, L^{10}\right)$ and give a bound of the norm of f in this space in terms of the 2 preceding norms.
(3) Prove that there exists $\varepsilon>0$ with the following property. For any solution u of (W5) with $T_{+}(u)=+\infty$ and

$$
\limsup _{t \rightarrow \infty}\|u(t)\|_{L^{6}} \leq \varepsilon
$$

the solution u scatters to a linear solution.
Exercise 2. (1) Let u be a solution of (W5). Prove that the momentum of u,

$$
P(\vec{u})(t)=\int \nabla u(t, x) \partial_{t} u(t, x) d x
$$

is independent of t. What is the momentum of u when the initial data \vec{u}_{0} of u is radial?
(2) Assume that \vec{u}_{0} is smooth and compactly supported. Let $c>0$ and

$$
u_{c}(t, x)=u\left(\frac{t-c x_{1}}{\sqrt{1-c^{2}}}, \frac{x_{1}-c t}{\sqrt{1-c^{2}}}, x_{2}, x_{3}\right) .
$$

Prove that u_{c} is a solution of (W5). Compute the momentum and energy of u_{c} in terms of c, the momentum and the energy of u.
Exercise 3. Let Q be a solution of $-\Delta Q=Q^{5}$ with $Q \in \dot{H}^{1}\left(\mathbb{R}^{3}\right)$. Let $F(x):=\mathcal{K}(Q)(x)=\frac{1}{|x|} Q\left(\frac{x}{|x|^{2}}\right)$ (Kelvin transform of Q). Prove that $F \in \dot{H}^{1}$ and that $-\Delta F=F^{5}$. Compute $\mathcal{K} W$, where $W=$ $\left(1+|x|^{2} / 3\right)^{-1 / 2}$.

