DYNAMICS OF SEMI-LINEAR WAVE EQUATIONS. 2023-2024. HOMEWORK, **CHAPTER 6**

Exercise 1. Let $(\varphi)_{n \in \mathbb{N}}$ be a bounded sequence in $\dot{H}^1(\mathbb{R}^3)$.

(1) Prove that there exists $I \sqsubset \mathbb{N}$, and for all integer J, an element ψ_j of $\dot{H}^1(\mathbb{R})$, sequences $(\lambda_{j,n})_{n \in I} \in \mathcal{N}$ $]0,\infty[^{I}, (x_{j,n})_{n\in I}\in (\mathbb{R}^{3})^{I}$ such that, denoting

$$w_{J,n}(x) = \varphi_n(x) - \sum_{j=1}^J \frac{1}{\lambda_{j,n}^{1/2}} \psi_j\left(\frac{x - x_{j,n}}{\lambda_{j,n}}\right),$$

one has

$$\lim_{J \to \infty} \limsup_{n \in I} \|w_{J,n}\|_{L^6} = 0.$$

and

$$j \neq k \Longrightarrow \lim_{n \to \infty} \frac{|x_{j,n} - x_{k,n}|}{\lambda_{j,n}} + \left| \log \left(\frac{\lambda_{j,n}}{\lambda_{k,n}} \right) \right| = +\infty.$$

- (2) Let $M = \max_{\substack{\varphi \in \dot{H}^1 \\ \|\varphi\|_{\dot{H}^1} = 1}} \|\varphi\|_{L^6}$. Prove that there exists $\Phi \in \dot{H}^1$ such that $\|\Phi\|_{L^6} = M$ and $\|\Phi\|_{\dot{H}^1} = 1$.
- (3) Subsidiary questions: Prove that one can assume that φ is radial (*Hint*: use Schwarz rearrangement). Prove that there exists $\mu \in \mathbb{R}$ such that $-\mu\Delta\Phi = \Phi^5$ in the sense of distributions. Prove that Φ is the ground state W introduced in Chapter V of the course, up to scaling and sign change.

Exercise 2. Let $N \ge 1$, $\sigma \in]0, N/2[$ and $\frac{1}{p} = \frac{1}{2} - \frac{\sigma}{N}$. Recall from Chapter II of the course the Sobolev inequality:

(1)
$$\forall f \in \mathcal{S}(\mathbb{R}^N), \quad \|f\|_{L^p(\mathbb{R}^N)} \le C \|f\|_{\dot{H}^{\sigma}(\mathbb{R}^N)}.$$

and its improved version (see Theorem II.2.4)

$$\forall f \in \mathcal{S}(\mathbb{R}^N), \quad \|f\|_{L^p(\mathbb{R}^N)}^p \le C \|f\|_{\dot{B}^{\sigma}(\mathbb{R}^N)}^{p-2} \|f\|_{\dot{H}^{\sigma}(\mathbb{R}^N)}^2.$$

Prove the analog of Proposition V.3.2, and of Questions 1 and 2 of Exercise 1 for the Sobolev inequality (1).

Exercise 3. We consider a solution u of the equation:

(W5)
$$(\partial_t^2 - \Delta)u = u^5, \quad \vec{u}_{\restriction t=0} = (u_0, u_1) \in \dot{\mathcal{H}}^1(\mathbb{R}^3)$$

in space dimension 3, such that $T_+(u) = +\infty$ and

$$\lim_{t\to\infty}\|\vec{u}(t)\|_{\dot{\mathcal{H}}^1}=+\infty$$

In the first questions we assume $(u_0, u_1) \in (C_0^{\infty}(\mathbb{R}^3))^2$.

- (1) Let $y(t) = \int_{\mathbb{R}^3} u^2(t, x) dx$. Compute y'(t) and y''(t). (2) Using the conservation of the energy, prove that $\lim_{T \to \infty} y''(T) = +\infty$. Deduce that $\lim_{T \to \infty} y'(T) = -\infty$. $+\infty$ and $\lim_{T\to\infty} y(T) = +\infty$.
- (3) Prove that for large t, $(y'(t))^2 \leq 0.9y(t)y''(t)$.
- (4) Prove that there exists C > 0 such that for large $t, y(t) \leq Cy'(t)^{0.9}$. Deduce a contradiction.
- (5) Adapt the preceding proof to the general case $(u_0, u_1) \in \dot{\mathcal{H}}^1$. One can consider

$$y(t) = \int \varphi\left(\frac{x}{t+1}\right) u^2(t,x) dx,$$

where $\varphi \in C_0^{\infty}(\mathbb{R}^3)$, $\varphi(x) = 1$ for $|x| \leq 2$, $\varphi(x) = 3$ for $|x| \geq 3$, together with the property

$$\lim_{t \to \infty} \int_{|x| \ge 2|t|} \left(|\nabla u(t,x)|^2 + (\partial_t u(t,x))^2 \right) dx = 0$$

(to be proved also).