DYNAMICS OF SEMI-LINEAR WAVE EQUATIONS. 2023-2024. HOMEWORK, CHAPTER 6

Exercise 1. Let $(\varphi)_{n \in \mathbb{N}}$ be a bounded sequence in $\dot{H}^{1}\left(\mathbb{R}^{3}\right)$.
(1) Prove that there exists $I \sqsubset \mathbb{N}$, and for all integer J, an element ψ_{j} of $\dot{H}^{1}(\mathbb{R})$, sequences $\left(\lambda_{j, n}\right)_{n \in I} \in$ $] 0, \infty{ }^{I},\left(x_{j, n}\right)_{n \in I} \in\left(\mathbb{R}^{3}\right)^{I}$ such that, denoting

$$
w_{J, n}(x)=\varphi_{n}(x)-\sum_{j=1}^{J} \frac{1}{\lambda_{j, n}^{1 / 2}} \psi_{j}\left(\frac{x-x_{j, n}}{\lambda_{j, n}}\right)
$$

one has

$$
\lim _{J \rightarrow \infty} \limsup _{n \in I}\left\|w_{J, n}\right\|_{L^{6}}=0
$$

and

$$
j \neq k \Longrightarrow \lim _{n \rightarrow \infty} \frac{\left|x_{j, n}-x_{k, n}\right|}{\lambda_{j, n}}+\left|\log \left(\frac{\lambda_{j, n}}{\lambda_{k, n}}\right)\right|=+\infty .
$$

(2) Let $M=\max \underset{\|\varphi\|_{\dot{H}^{1}}=1}{ }\|\varphi\|_{L^{6}}$. Prove that there exists $\Phi \in \dot{H}^{1}$ such that $\|\Phi\|_{L^{6}}=M$ and $\|\Phi\|_{\dot{H}^{1}}=1$.
(3) Subsidiary questions: Prove that one can assume that φ is radial (Hint: use Schwarz rearrangement). Prove that there exists $\mu \in \mathbb{R}$ such that $-\mu \Delta \Phi=\Phi^{5}$ in the sense of distributions. Prove that Φ is the ground state W introduced in Chapter V of the course, up to scaling and sign change.
Exercise 2. Let $N \geq 1, \sigma \in] 0, N / 2\left[\right.$ and $\frac{1}{p}=\frac{1}{2}-\frac{\sigma}{N}$. Recall from Chapter II of the course the Sobolev inequality:

$$
\begin{equation*}
\forall f \in \mathcal{S}\left(\mathbb{R}^{N}\right), \quad\|f\|_{L^{p}\left(\mathbb{R}^{N}\right)} \leq C\|f\|_{\dot{H}^{\sigma}\left(\mathbb{R}^{N}\right)} . \tag{1}
\end{equation*}
$$

and its improved version (see Theorem II.2.4)

$$
\forall f \in \mathcal{S}\left(\mathbb{R}^{N}\right), \quad\|f\|_{L^{p}\left(\mathbb{R}^{N}\right)}^{p} \leq C\|f\|_{\dot{B}^{\sigma}\left(\mathbb{R}^{N}\right)}^{p-2}\|f\|_{\dot{H}^{\sigma}\left(\mathbb{R}^{N}\right)}^{2}
$$

Prove the analog of Proposition V.3.2, and of Questions 1 and 2 of Exercise 1 for the Sobolev inequality (1).
Exercise 3. We consider a solution u of the equation:

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta\right) u=u^{5}, \quad \vec{u}_{\mid t=0}=\left(u_{0}, u_{1}\right) \in \dot{\mathcal{H}}^{1}\left(\mathbb{R}^{3}\right) . \tag{W5}
\end{equation*}
$$

in space dimension 3 , such that $T_{+}(u)=+\infty$ and

$$
\lim _{t \rightarrow \infty}\|\vec{u}(t)\|_{\dot{\mathcal{H}}^{1}}=+\infty
$$

In the first questions we assume $\left(u_{0}, u_{1}\right) \in\left(C_{0}^{\infty}\left(\mathbb{R}^{3}\right)\right)^{2}$.
(1) Let $y(t)=\int_{\mathbb{R}^{3}} u^{2}(t, x) d x$. Compute $y^{\prime}(t)$ and $y^{\prime \prime}(t)$.
(2) Using the conservation of the energy, prove that $\lim _{T \rightarrow \infty} y^{\prime \prime}(T)=+\infty$. Deduce that $\lim _{T \rightarrow \infty} y^{\prime}(T)=$ $+\infty$ and $\lim _{T \rightarrow \infty} y(T)=+\infty$.
(3) Prove that for large $t,\left(y^{\prime}(t)\right)^{2} \leq 0.9 y(t) y^{\prime \prime}(t)$.
(4) Prove that there exists $C>0$ such that for large $t, y(t) \leq C y^{\prime}(t)^{0.9}$. Deduce a contradiction.
(5) Adapt the preceding proof to the general case $\left(u_{0}, u_{1}\right) \in \dot{\mathcal{H}}^{1}$. One can consider

$$
y(t)=\int \varphi\left(\frac{x}{t+1}\right) u^{2}(t, x) d x
$$

where $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right), \varphi(x)=1$ for $|x| \leq 2, \varphi(x)=3$ for $|x| \geq 3$, together with the property

$$
\lim _{t \rightarrow \infty} \int_{|x| \geq 2|t|}\left(|\nabla u(t, x)|^{2}+\left(\partial_{t} u(t, x)\right)^{2}\right) d x=0
$$

(to be proved also).

