
CHAPITRE 1

Linear wave equation: classical theory

1. Presentation of the equation

The linear wave equation is the equation:

(1.1) ∂2
t u−∆u = 0, (t, x) ∈ R× RN ,

where N ≥ 1 is the spatial dimension (in this course, we will often assume N = 3),
and

∆ =

NX

k=1

∂2

∂x2
k

.

(We will use either the notations ∂y or ∂
∂y for the derivative with respect to the

variable y ∈ {t, x1, . . . , xN}).
This is an evolution equation: we fix initial data at a certain time t = t0, and

we are interested in the evolution of the equation over time t. Since the equation
is of order 2, we actually fix initial data for (u, ∂tu), which we denote u⃗:

(1.2) u⃗↾t=t0 = (u0, u1)

where (u0, u1) is to be taken in a certain functional space.
We will consider in this course initial data with real values. The passage to

complex or vector values is immediate for most properties of the equation (1.1) (by
working coordinate by coordinate), but can induce drastic changes in the nonlinear
case, provided that the nonlinearity mixes the coordinates.

Equation (1.1) is invariant under several obvious space-time transformations.
If u is a solution, it is also the case of

µu(t− t0,λ(Rx− x0)),

where µ ∈ R, t0 ∈ R, λ > 0, R ∈ ON (R), x0 ∈ RN 1

For example, we can limit ourselves, without loss of generality, to the case of
an initial time t0 = 0, i.e.

(1.3) u⃗↾t=0 = (u0, u1)

Furthermore, the equation is invariant under time inversion: if u is solution, it
is also the case of t 7→ u(−t, x). In particular, it is a reversible equation.

We will also consider the equation with a force:

(1.4) ∂2
t u−∆u = f,

(still with an initial condition of type (1.3)), whose understanding will be crucial
for the study of the nonlinear wave equation.

The Cauchy problem (1.1), (1.3) can be approached in at least 3 different ways:

1Equation (1.1) is in fact invariant under a larger group of linear transformations, the Lorentz

group (cf §7 below)

3
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• The classical approach which consists in finding an explicit formula to
express the solution. It works when the initial data are sufficiently regular
(C3 ×C2 in dimension 3 of space) and gives classical solutions (that is to
say C2 in (t, x) and satisfying (1.1) in the sense of the classical derivative).

• The use of the Fourier transformation in space, which is very simple (once
the Fourier transformation is known) and particularly effective in Sobolev
spaces based on L2 (which are natural spaces for the study of the equation
by virtue of the conservation of energy). This method allows to obtain
weak solutions with degrees of regularity lower than the previous one, and
to use tools based on the Fourier transformation, which can be useful, for
example, to demonstrate certain dispersive properties of the equation.

• The ”functional analysis” approach, by the theory of semi-groups, which
gives the same type of solutions as the previous method.

In this chapter, we will detail the classical method, first by writing the explicit
formula for solutions in dimension 1 of space, then in higher dimensions. We will
study in the following chapter the equation in the energy space by the Fourier
transformation. This chapter is partly based on Chapter 5 of the beautiful book
by Folland on partial differential equations [1].

2. Explicit Formula in Dimension 1

In dimension 1, the equation (1.1) can be written as:

(2.1) (∂2
t − ∂2

x)u = 0,

which means (∂t − ∂x)(∂t + ∂x)u = 0. Thus, we make the change of variables

η = x + t, ξ = x − t. Therefore, by setting v(η, ξ) = u
�

η−ξ
2 , η+ξ

2

�
, or u(t, x) =

v(t+ x, t− x), we have:

∂2u

∂t2
=

∂2v

∂η2
+

∂2v

∂ξ2
+ 2

∂2v

∂ξ∂η
,

and
∂2u

∂x2
=

∂2v

∂η2
+

∂2v

∂ξ2
− 2

∂2v

∂ξ∂η
,

which gives:
∂2u

∂t2
− ∂2u

∂x2
= −4

∂2v

∂η∂ξ
.

Thus, we obtain:

(1.1) ⇐⇒ ∂2v

∂η∂ξ
= 0.

Let u be a C2 solution of (2.1), (1.3). Thus, u1 ∈ C1(R) and u0 ∈ C2(R).
The equality ∂2v

∂η∂ξ = 0 shows that ∂v
∂ξ is a (class C1) function w(ξ) independent

of η. Integrating with respect to ξ for η fixed, we deduce:

v(η, ξ) =

Z ξ

0

w(σ)dσ

| {z }
φ(ξ) + ψ(η),

for a certain function ψ, necessarily C2 since v is of class C2 and w of class C1.
Thus, we necessarily have:

v(η, ξ) = φ(ξ) + ψ(η), φ,ψ ∈ C2(R2),
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or equivalently:

(2.2) u(t, x) = φ(x− t) + ψ(x+ t).

Using the initial condition (1.3), a direct calculation gives:

ψ(η) =
1

2

Z η

0

u1(σ)dσ +
1

2
u0(η) + c, φ(ξ) = −1

2

Z ξ

0

u1(y)dy +
1

2
u0(ξ)− c,

where c ∈ R (the choice of this constant is irrelevant). Hence, we deduce:

(2.3) u(t, x) =
1

2
(u0(x+ t) + u0(x− t)) +

1

2

Z x+t

x−t

u1(y)dy.

Conversely, it is easy to verify that formula (2.3) gives a C2 solution of (2.1), (1.3).
Therefore, we have shown:

Proposition 2.1. Let (u0, u1) ∈ C2(R)× C1(R). Then, there exists a unique
solution u ∈ C2(R×R) of (1.1) satisfying the initial condition (1.3). This solution
satisfies formula (2.3).

On formula (2.2), we observe that a solution of the wave equation in dimension
1 is the sum of two waves: one, φ(x − t), moving at speed 1 to the right (called a
progressive wave), and the other ψ(x+ t), moving at the same speed to the left.2

It is also possible to obtain a formula for the equation with the right-hand
side (1.4). We leave this as an exercise to the reader. Further on, we will provide
a general method giving the solution of the equation with the right-hand side in
terms of the equation without the right-hand side.

We can see from formula (2.3) that u(t, x) depends only on the values of (u0, u1)

over
h
x− |t|, x+ |t|

i
. This is a prime example of ”finite speed of propagation” which

holds in all spatial dimensions.

3. Integral on the Sphere and Divergence Theorem

We denote SN−1 = {x ∈ RN , |x| = 1}, where | · | represents the Euclidean
norm on RN :

|x|2 =
NX

j=1

x2
j .

More generally, SN−1
R will denote the sphere of radius R: {x ∈ RN , |x| = R}.

We denote dσ as the volume element on one of these spheres. Thus, the integral
of a function f ∈ L1(SN−1

R ) (i.e., a function integrable on SN−1
R ) is written as

Z

SN−1
R

f(y)dσ(y).

In dimension 3, this integral can, for example, be calculated using spherical coor-
dinates:
Z

S2
R

f(y)dσ(y) = R2

Z 2π

0

Z π

0

f(R sin θ cosφ, R sin θ sinφ, R sinφ) sin(θ)dθdφ.

2Note that the equations (1.1), (2.1) have been normalized, so that the speed of propagation

is exactly 1.
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We denote BN
R (x0) as the ball centered at x0 with radius R:

BN
R (x0) =

�
x ∈ RN , |x− x0| < R

	

and simply BN
R = BN

R (0).
We will use the following formulas:

Scale change:
Z

SN−1
R

f(y)dσ(y) = RN−1

Z

SN−1

f(Ry)dσ(y)n f ∈ L1(SN−1
R ).

Integral in radial coordinates: if f ∈ L1({|x| ≤ R}),
Z

BN
R

f(x)dx =

Z R

0

Z

SN−1
r

f(y)dσ(y)dr =

Z R

0

Z

SN−1

f(rω)dσ(ω)rN−1dr

Divergence theorem: if F ∈ C1(BR,RN ),
Z

|x|≤R

∇ · F (x)dx =

Z

SN−1
R

y

|y| · F (y)dσ(y),

where ∇ · F =
PN

j=1 ∂xj
Fj is the divergence of the vector field F .

4. Energy Density. Uniqueness and Finite Propagation Speed

Before giving an explicit formula for the wave equation in dimension 3, we prove
a uniqueness result valid in any dimension:

Theorem 4.1. Let (t0, x0) ∈ R1+N , t1 > t0, R > 0. We denote Γ =
n
(t, x) ∈

R×RN : t0 ≤ t ≤ t1, |x−x0| ≤ R− |t− t0|
o
Let u ∈ C2(Γ) be a solution of (1.1)

on Γ. We suppose (u, ∂tu)(t0, x) = 0 for all x ∈ BR(x0). Then u is identically zero
on Γ.

The proof of the theorem is based on a monotonicity law that has its own
interest.

We denote, for (t, x) ∈ Γ,

eu(t, x) =
1

2
|∇u(t, x)|2 + 1

2
(∂tu(t, x))

2,

where |∇u|2 =
PN

j=1(∂xj
u)2, and we consider, for t0 ≤ t ≤ t1, the local energy

Eloc(t) =

Z

BR−(t−t0)(x0)

eu(t, x)dx =

Z

|x−x0|<R−(t−t0)

eu(t, x)dx.

Lemma 4.2. The function Eloc is decreasing on [t0, t1].

The lemma immediately implies Theorem 4.1. Indeed, if u⃗(t0) vanishes on
B(x0, R), then Eloc(t0) = 0, and thus Eloc(t) = 0 for all t ∈ [t0, t1], showing that u
is zero on Γ.

Proof of Lemma 4.2. We notice that

(4.1)
∂e

∂t
=

NX

j=1

�
∂xj

u∂t∂xj
u+ ∂2

xj
u∂tu

�
=

NX

j=1

∂

∂xj

�
∂xj

u∂tu
�
= ∇ · (∂tu∇u) .
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Without loss of generality, we can assume for simplification of notations that x0 = 0
and t0 = 0. By the integration formula in radial coordinates,

Eloc(t) =

Z R−t

0

sN−1

Z

SN−1

eu(t, sω)dσ(ω)ds.

By the differentiation formula under the sum sign, we get that Eloc is differentiable
and

E′
loc(t) = −(R− t)N−1

Z

SN−1

eu(t, (R− t)ω)dσ(ω) +

Z

BN
R−t

∂eu
∂t

(t, x)dx.

By formula (4.1), then the divergence formula
Z

BN
R−t

∂eu
∂t

(t, x)dx =

Z

BN
R−t

∇ · (∂tu∇u) (t, x)dx =

Z

SN−1
R−t

y

|y|∇u∂tu(t, y)dσ(y).

We thus have

E′
loc(t) = −

Z

SN−1
R−t

�
1

2
|∇u|2 + 1

2
(∂tu)

2 +
y

|y|∇u∂tu(t, y)

�
dσ(y)

≤ −1

2

Z

SN−1
R−t

�
y

|y|∇u+ ∂tu(t, y)

�2

dσ(y).

□

5. Explicit formulas.

We now consider higher space dimensions. In dimension N = 3, we will show
that for any initial data (u0, u1) ∈ C2 × C3, there exists a unique solution u ∈
C2(R1+3) of (1.1), (1.3), and provide an explicit formula for this solution. We will
also provide a formula in dimension N = 2. We refer the reader to [1, Chapter 5B]
for expressions of solutions when N ≥ 4.

5.1. The radial case in dimension 3. When the initial conditions depend
only on the variable r = |x|, the explicit formula is very simple.

We start by showing that if f depends only on the variable r, then the function
f is C2 as a function on R3 if and only if it is C2 as a function of the variable r on
[0,∞[, and satisfies df

dr (0) = 0. Moreover,

∆f =
d2f

dr2
+

2

r

df

dr

(cf Exercise 1.1). We notice that we can rewrite this formula as

r∆f =
d2

dr2
(rf).

Now let u be a C2 solution of (1.1), (1.3) with initial conditions (u0, u1) that are
radial. We assume that for all t, u(t) is radial. We will show a posteriori that this
assumption is satisfied. The previous formula gives

�
∂2

∂t2
− ∂2

∂r2

�
(ru) = 0.
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The function (t, r) 7→ ru(t, r) is thus a solution of the wave equation in dimension
1, on Rt × (0,∞). To obtain a function on R2 as a whole, we extend ru(t, r) to an
odd function:

v(t, y) = yu(t, |y|).
One can verify (using Exercise 1.1) that v is of class C2 on R2, and that

�
∂2

∂t2
− ∂2

∂y2

�
v = 0.

Formula (2.3) then gives:

v(t, y) =
1

2
(v0(y + t) + v0(y − t)) +

1

2

Z y+t

y−t

v1(σ)dσ,

where (v0, v1) = v⃗↾ t = 0, thus

(5.1) u(t, r) =
1

2r

�
(r + t)u0(|r + t|) + (r − t)u0(|r − t|)

�
+

1

2r

Z r+t

r−t

σu1(|σ|)dσ.

Notice that when t > 0 (to fix ideas),
Z r+t

r−t

σu1(|σ|)dσ =

Z r+t

|r−t|
σu1(|σ|)dσ.

The finite speed of propagation is well verified: the solution u(t, r) depends only
on the initial condition (u0, u1) on the ball centered at r with radius |t|.

The formula (5.1) defines a function u(t, r) of class C2 outside the origin x = 0,
as soon as the initial conditions (u0, u1) have the expected regularity C2 × C1.
However, there is a subtle phenomenon of loss of regularity at the origin of the
solution u compared to the initial data: there exist data (u0, u1) ∈ C2 × C1 such
that u, defined by formula (5.1), cannot be extended by a C2 function up to r = 0.
To convince oneself, the reader can verify that (with t fixed),

(5.2) lim
r→0

u(t, r) = u0(t) + tu′
0(t) + tu1(t),

which shows that if (u0, u1) are Ck × Ck−1 functions, then u(t, 0) is only Ck−1

(see also Exercise 1.2). We can interpret this phenomenon physically as follows:
a singularity on the circle r = r0 at the initial time 0 that travels at speed 1
towards the origin will concentrate at the origin at time t = r0, causing a stronger
singularity.

The limit (5.2) suggests a maximal loss of regularity of a derivative with respect
to the initial data, which is indeed the case:

Proposition 5.1. Let (u0, u1) ∈ (C3 × C2)(R3) be radial functions. Then
formula (2.3) extended by u(t, 0) = u0(t) + tu′

0(t) + tu1(t), defines a C2 function
on R× R3, radial with respect to the variable x, and satisfying (1.1), (1.3).

The Proposition 5.1 is left as an exercise to the reader.
The formula (5.1) is remarkably simple. In higher space dimensions, we also

have an explicit formula for radial solutions, which becomes more complicated as the
dimension increases (see Exercise 1.3). The loss of regularity observed in dimension
3 (and absent in dimension 1) increases with dimension, as the reader can verify.

There is no simple formula in the radial case in even dimensions.
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We also have explicit formulas (of course more complicated) without radiality
assumptions, in all dimensions. We will explicitly state these formulas when N = 3,
then N = 2.

5.2. General solutions in dimension 3: averaging over spheres. If f ∈
C0(R3), we define

(5.3) (Mf )(t, x) =
1

4π

Z

S2

f(x+ ty)dσ(y) =
1

4πt2

Z

S2
|t|

f(x+ z)dσ(z).

the average of f over the sphere of radius |t| and center x. The function Mf inherits
the regularity of f (cf exercise 1.5).

Theorem 5.2. Let (u0, u1) ∈ C3(R3)× C2(R3). Then the unique C2 solution
of the wave equation (1.1) with initial conditions (1.3) is given by

u(t, x) = tMu1(t, x) +
∂

∂t
(tMu0

(t, x)).

Proof. We start by verifying that tMu1(t, x) is the solution of the wave equa-
tion (1.1), with initial condition (0, u1). By the theorem of differentiation under
the sum sign, if g ∈ C2(R3),

∂

∂t
(Mg(t, x)) =

1

4π

Z

S2

(y ·∇g)(x+ ty)dσ(y).

Using the divergence formula,
Z

S2

(y ·∇g)(x+ ty)dσ(y) = t

Z

|y|≤1

(∇ · (∇g)) (x+ ty)dy

= t

Z

|y|≤1

(∆g)(x+ ty)dy =
1

t2

Z t

0

Z

|y|=1

(∆g)(x+ sy)s2ds.

Thus:

∂

∂t
(tMu1(t, x)) = Mu1(t, x) +

1

t

Z t

0

Z

|y|=1

(∆u1)(x+ sy)dys2ds.

and therefore

∂2

∂t2
(tMu1

(t, x)) =
1

4πt2

Z t

0

Z

|y|=1

(∆g)(x+ sy)dσ(y)s2ds

− 1

4πt2

Z t

0

Z

|y|=1

(∆u1)(x+sy)dσ(y)s2ds+
t

4π

Z

|y|=1

(∆u1)(x+ty)dσ(y) = ∆ (tMu1
(t, x)) .

This shows that tMu1
satisfies the wave equation (1.1). Furthermore, sinceMu1

(0, x) =
u1(0, x), the initial condition at t = 0 is indeed (0, u1).

Now let v(t, x) = tMu0
(t, x). Then, by the same reasoning, v is a solution of the

wave equation (1.1) with initial condition (0, u0). We deduce that ∂tv is a solution
of the wave equation with initial condition (u0, 0), which concludes the proof. □

Notice that we can rewrite the formula of the theorem as:

(5.4) u(t, x) = tMu1
(t, x) +Mu0

(t, x) + tMy·∇u0
(t, x).

We now give three consequences of the previous formula.
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Corollary 5.3 (Strong Huygens’ principle). The solution u(t, x) depends only
on the values of u0, ∇u0, and u1 on the sphere centered at x and of radius |t|.

Remark 5.4. The strong Huygens’ principle is a stronger version of the speed
of propagation, which states that u(t, x) depends only on the values of (u0, u1) on
the ball centered at x and of radius |t|. This principle remains valid in any odd
dimension ≥ 3 (the number of derivatives of u0 and u1 in the statement increases
with the dimension). In even dimension, solutions only satisfy the finite speed of
propagation: see §5.3. In dimension 1, as shown by formula (2.3), only solutions
even in time (with initial condition of the form (u0, 0)) satisfy the strong Huygens’
principle.

Corollary 5.5 (Dispersion). Let (u0, u1) ∈ (C3 × C2)(R3), with compact
support included in the ball B(0, R). Then |t|− R ≤ |x| ≤ t+ R on the support of
x and

|u(t, x)| ≲ C

|t| .

Proof. The assertion on the support follows from the strong Huygens’ princi-
ple (Corollary 5.3). The second assertion is a consequence of formula (5.4). Indeed,
we have: Mu1(t, x) =

1
4πt2

R
S2
t
u1(x+ y)dy. The integrand is zero outside the set

{y ∈ S2
t : x+ y ∈ supp(u)},

whose measure is uniformly bounded independently of t and x. Thus we have

|tMu1(t, x)| ≤
C

t
,

where the constant C depends only on supx |u1(x)| and R. The same reasoning
allows to bound the other terms. □

Finally, we state a positivity property of the wave equation in space dimension
3. This property also holds if N = 1, 2, but is false if N ≥ 4.

Corollary 5.6 (Positivity). Let u1 ∈ C2(R3) such that

∀t ≥ 0, ∀x ∈ R3, u1(x) ≥ 0.

Then

∀t ≥ 0, ∀x ∈ R3, u(t, x) ≥ 0.

Proof. This follows immediately from formula (5.4). □

5.3. Dimension 1 + 2. A solution u of equation (1.1) with N = 2 is also a
solution of the same equation with N = 3, constant with respect to the 3rd spatial
coordinate. From Theorem 5.2, one can derive an expression of u from the initial
data. This strategy is called ”descent method”.

Theorem 5.7. Let (u0, u1) ∈ (C3×C2)(R2). Then equation (1.1) has a unique
C2 solution on R× R2, given by the formula

(5.5) u(t, x) =
1

2π

"
∂

∂t

 
t

Z

|y|≤1

u0(x+ ty)p
1− |y|2

dy

!
+ t

Z

|y|≤1

u1(x+ ty)p
1− |y|2

dy

#
.
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Proof. Uniqueness follows from Theorem 4.1. Moreover, as in the proof of
Theorem 5.2, the formula for even solutions in time (with initial condition (u0, 0))
can be easily deduced from the formula for odd solutions in time (with initial
condition (0, u1)). So we only consider this second case.

Let u be a C2 solution of (1.1) on R×R2, with initial data (u, ∂tu)(0) = (0, u1),
where u1 ∈ C2(R2). By Theorem 5.2, considering u as a solution on R × R3, we
obtain:

u(t, x1, x2) =
t

4π

Z

S2

ũ1((x1, x2, 0) + ty)dσ(y)dy,

where by definition ũ1(x1, x2, x3) = u1(x1, x2). Passing to spherical coordinates,
we get

Z

S2

ũ1((x1, x2, 0)+ty)dσ(y) =

Z 2π

0

Z π

0

u1(x1+t sin θ cosφ, x2+t sin θ sinφ) sin θdθdφ

= 2

Z 2π

0

Z π/2

0

u1(x1 + t sin θ cosφ, x2 + t sin θ sinφ) sin θdθdφ.

The announced formula then follows from the change of variable y1 = t sin θ cosφ,
y2 = t sin θ sinφ. □

It can be seen from the formula in Theorem 5.7 that the strong Huygens prin-
ciple is not verified in dimension 1+2: the solution u(t, x) depends on the values of
the initial condition over the entire ball B|t|(x), not just on the sphere x : |x| = |t|.

6. Conservation Laws

The energy of a solution u on R× RN is defined as:

E(u⃗(t)) =

Z

RN

eu(t, x)dx =
1

2

Z

RN

�
(∂tu(t, x))

2 + |∇u(t)|2
�
dx.

This is the global version of the local energy considered in §4. The energy of a
solution is conserved over time.

Theorem 6.1. Let u ∈ C2(R1+N ) be a solution of (1.1), (1.3). Assume (u0, u1)
has finite energy. Then for any t, E(u⃗(t)) is finite and E(u⃗(t)) = E(u0, u1).

Proof. One might be tempted to write

d

dt
(E(u⃗(t))) =

Z
∂teu(t, x)dx =

Z
∇ · (∂tu∇u)dx = 0,

but the last equality, obtained by integration by parts ignoring the ”boundary”
term (i.e., when |x| → ∞) is purely formal. To justify the preceding calculation,
we can use the decay of the local energy (Lemma 4.2). For R > 0, we define:

E<R(u⃗(t)) =

Z

|x|<R

eu(t, x)dx.

Notice that this quantity is finite as soon as u ∈ C1(R1+N ). Let’s fix t > 0. By
Lemma 4.2, for any R > t,

E<R−t(u⃗(t)) ≤ E<R(u⃗(0)) ≤ E(u0, u1).

As we let R tend to +∞, we obtain that E(u⃗(t)) is finite, and

E(u⃗(t)) ≤ E(u0, u1).
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Reversing the direction of time, we also obtain the inequality

E(u0, u1) ≤ E(u⃗(t)).

We have shown that the energy is conserved for t ≥ 0. By applying this result
to the solution (t, x) 7→ u(−t, x), we obtain energy conservation for t ≤ 0, which
concludes the proof. □

There exists another conserved quantity (vectorial), the momentum, defined as

P (u⃗(t)) =

Z
∂tu(t, x)∇u(t, x)dx ∈ RN .

Proposition 6.2. Let u ∈ C2(R1+N ) be a solution of (1.1) with finite energy.
Then

∀t ∈ R, P (u⃗(t)) = P (u0, u1).

The proof of this proposition is left as an exercise (see Exercise 1.7).

7. Lorentz Transformations. Time-like Hyperplanes

The Minkowski spacetime of dimension N is the space R1+N , equipped with
the quadratic form of signature (1, N):

g(X) = x2
0 −

NX

j=1

x2
j = t2 − |x|2 = tXJX,

where tX is the transpose of X,

X = (x0, x1, . . . , xN ), t = x0, x = (x1, . . . , xN ),

and J = [Jµ,ν ]0 ≤ µ ν ≤ N is the matrix such that J0, 0 = 1, Jℓ,ℓ = −1 if ℓ ∈
1, . . . , N , and Jµ,ν = 0 if µ ̸= ν.

The Lorentz group O(1, N) is the group of real square matrices P of size 1+N
which leave the quadratic form g invariant, i.e., such that g(PX) = g(X) for all X
in R1+N . In other words, if P is a (1 +N)× (1 +N) matrix,

P ∈ O(1, N) ⇐⇒ tPJP = J.

Lemma 7.1. Let P ∈ O(1, N), v ∈ C2(R1+N ), and w(X) = v(PX). Then

(∂2
t −∆)v = 0 ⇐⇒ (∂2

t −∆w) = 0.

Proof. It can be noted that a function v of class C2 on R1+N satisfies the
wave equation (1.1) if and only if Tr(Jv′′) = 0, where v′′ is the Hessian matrix�
∂xµ

∂xνv

�
0≤µ ν≤N

.

An explicit calculation yields w′′(X) = tPv′′(Px)P , and thus

Tr(Jw′′(X)) = Tr(J, tPv′′(PX)P ) = Tr(PJ, tPv′′(PX)) = Tr(v′′(PX)),

which proves the claimed result. □
Two important examples of elements in O(1, N) are given by space rotations:

(7.1)

�
1 0
0 R

�
, R ∈ ON

and Lorentz transformations, such as:

(7.2) Rσ =

�
Rσ 0
0 IN−1.

�
, Rσ =

�
cosh(σ) sinh(σ)
sinh(σ) cosh(σ)

�
,
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where IN−1 denotes the identity matrix (N − 1) × (N − 1) and σ ∈ R. In these
formulas, 0 always denotes a matrix of appropriate size.

In the preceding sections, we considered the Cauchy problem with initial con-
ditions on a hyperplane in R1+N of the form {t = t0}. We now seek to solve the
same problem by prescribing an initial condition on other hyperplanes. Therefore,
we consider a hyperplane of the form

(7.3) Π = {X ∈ R1+N : tAX = 0}
where A ∈ R1+N \ {0}, A = (a0, a1, . . . , aN ) = (a0, a).

We have:

Theorem 7.2. Suppose |a0| > |a|. Then there exists a transformation P ∈
O(A,N) such that

Π = P
�
{(0, x), x ∈ RN}

�
.

The proof of this theorem is left as an exercise. See Exercise 1.10.
If the condition of the preceding theorem is satisfied, we can therefore reduce

the Cauchy problem with an initial condition

u↾Π = u0, A ·∇u↾Π = u1,

to a Cauchy problem with initial conditions at t = 0 as treated above.

Definition 7.3. The hyperplane Π is called time-like when A = (a0, a) with
a0 ∈ R, A ∈ RN , and |a0| > A.

It can be shown that Π is time-like if and only if the restriction of the quadratic
form g to Π is negatively defined.

8. Equation with a source term

We now consider the equation with a source term (1.4). We will express this
solution in terms of the propagator of the free equation (1.1). For (u0, u1) ∈ C3 ×
C2(R3), let SL(t)(u0, u1) denote the solution of (1.1) with initial data (u0, u1) at
t = 0. We denote S(t)u1 = SL(t)(0, u1), such that

SL(t)(u0, u1) =
∂

∂t
(S(t)u0) + S(t)u1.

For u1 ∈ C2, we recall that

(S(t)u1)(x) = tMu1(t, x) = t

Z

S2

u1(x+ ty)dσ(y).

Theorem 8.1 (Duhamel’s Formula). Let (u0, u1) ∈ (C2 × C3)(R3) and f ∈
C2(R×R3). Then the equation (1.4), (1.3) has a unique C2 solution, given by the
formula:

u(t) = SL(t)(u0, u1) +

Z t

0

S(t− s)f(s)ds.

Remark 8.2. The term involving Duhamel’s formula can be explicitly ex-
pressed, see (8.1).

Proof of Theorem 8.1. Uniqueness follows immediately from Theorem 4.1,
since the difference of 2 solutions of (1.4) with the same source term f is a solution
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of (1.1). For existence, taking into account Theorem 5.2, it suffices to verify that
the function

U : (t, x) 7→
Z t

0

S(t− s)f(s)ds

is C2 and satisfies equation (1.4) with zero initial conditions.
We have:

(8.1) U(t, x) =
1

4π

Z t

0

(t− s)

Z

S2

f(s, x+ (t− s)y)dσ(y)ds,

and the fact that U is C2 follows from the theorem on differentiation under the
integral sign.

Furthermore, using that S(0)g = 0 for any function g,

∂U

∂t
=

Z t

0

∂

∂t

�
S(t− s)f(s)

�
ds.

Upon further differentiation, we obtain

∂2U

∂t2
=

∂

∂t

�
S(t− s)f(s)

�
↾ s = t+

Z t

0

∂2

∂t2

�
S(t− s)f(s)

�
ds

= f(t) +

Z t

0

∆
�
S(t− s)f(s)

�
ds = f(t) +∆U.

where we used that ∂
∂t (S(t)g)↾t=0 = g for any function g of class C2. □

Remark 8.3. Duhamel’s formula is certainly not specific to dimension 3, as
shown by the calculation leading to this formula, which is completely independent
of dimension. The reader is invited to explicitly rewrite the solution of equation
(1.4) when N = 1 and N = 2.

From Duhamel’s formula, we deduce the energy inequality:

Proposition 8.4. Let u be a C2 solution of (1.4) with N = 3 with initial
data (u0, u1), such that f ∈ C2(R1+3). Suppose furthermore that (u0, u1) has finite

energy, and for all T > 0,
R
[−T,+T ]

qR
R3 |f(t, x)|2dxdt < ∞. Then for all t > 0,

p
E(u(t)) ≤

p
E(u0, u1) +

Z t

0

sZ

R3

|f(s, x)|2dxds.

Proof. From Duhamel’s formula and the conservation of energy for the free
equation (1.1), it suffices to verify that for all T > 0,

s
E

�Z t

0

S(t− s)f(s)ds, ∂t

Z t

0

S(t− s)f(s)ds

�
≤
Z t

0

sZ

R3

|f(s, x)|2dxds.

By conservation of energy (Theorem 6.1), we have
√
E(S(t − s)f(s)ds, ∂t

R t

0
S(t −

s)f(s)ds) = |f(s)|L2. This implies (using that
√
E is a norm)

s
E

�Z t

0

S(t− s)f(s)ds, ∂t

Z t

0

S(t− s)f(s)ds

�
≤
Z t

0

|f(s)|L2ds,

completing the proof. □
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9. Exercises

Exercice 1.1. Let f : RN → R (N ≥ 1). Suppose f is radial, meaning it

depends only on the variable r = |x| =
p

x2
1 + x2

2 + . . .+ x2
N . Denote f(x) = g(|x|),

where g : [0,∞[→ R.
(1) Show that f is continuous on RN if and only if g is continuous on [0,∞[.
(2) Show that f is C1 on RN if and only if g is C1 on [0,∞[ and g′(0) = 0.
(3) Show that for any k ≥ 2, f is Ck on RN if and only if g is Ck on RN and

g(j)(0) = 0 for all odd integers j ≤ k.

(4) Assuming f is C1, determine ∂f
∂xj

in terms of g′, j = 1, . . . , N . Determine

g′(r) in terms of ∇f .
(5) Assuming f is C2 on RN , prove the formula

∆f(x) = g′′(|x|) + N − 1

|x| g′(|x|).

In practice, we use the same notation (f) for functions f and g, and denote g′ = df
dr ,

etc...

Exercice 1.2. Let k ≥ 0 and f ∈ C0(R3) be a radial function. Define a
function u on R× (R3 \ {0}), radial with respect to the space variable, by

u(t, r) =
1

2r
((r + t)f(|r + t|) + (r − t)f(|r − t|)) .

It is noted that u defines a function of class Ck on R×
�
R3 \ {0}

�
.

(1) Suppose f has support in the annulus { 1
2 ≤ |x| ≤ 2}, such that for |η−1| ≤

1/10,

f(η) =

(
2− η if η > 1

η if η < 1
.

Calculate limr→0 u(t, r) when t = 1, t > 1, and t < 1 (close to 1). Con-
clude that u cannot be extended to a continuous function on R× R3.

(2) Similarly, give an example of a C2 function f such that u cannot be
extended to a C2 function on R× R3.

(3) Assume f is C3. Show that u defines a C2 function on R× R3.
(4) Let g be a radial function on R3, C2. Show that

u(t, r) =
1

2r

Z r+t

r−t

σg(|σ|)dσ,

extends to a C2 function on R3.

Exercice 1.3 (Solution of the radial wave equation in odd dimension). Let
N ≥ 3 be an odd integer, written as N = 2k+1. Let Tk be the operator defined by

Tkϕ =

�
r−1 d

dr

�k−1 �
r2k−1ϕ(r)

�
.

(1) Show that

Tkφ =
k−1X

j=0

cjr
j+1ϕ(j)r,

for some cj ∈ R. Determine c0 and ck−1.
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(2) Show that for any function φ ∈ Ck+1([0,+∞[),

d2

dr2
(Tkφ) =

�
r−1 d

dr

�k

(r2kφ′(r)).

Hint: You can start by verifying that the formula is true when φ(r) = rm

for any integer m.
(3) Given a solution u(t, x) of the linear wave equation in space dimension

N , assumed to be radial with respect to the space variable. Suppose u is
Ck+1 on R1+N . Show

(∂2
t − ∂2

r )(Tku) = 0.

Deduce an expression of Tku in terms of u0 and u1.
(4) Express u(t, r) in terms of u0 and u1 when N = 5. What regularity of u0

and u1 is required for u to be C2 on R1+5?

Exercice 1.4. Let u be a solution of the wave equation (1.1) in spatial di-
mension N ≥ 3, radial with respect to the space variable. Recall that ∆u =
d2

dr2 + N−1
r

d
dr . Suppose u ∈ C2(R1+N ), with compactly supported initial data. Let

v(t, r) =

Z ∞

r

ρ∂tu(t, ρ)dρ.

Show that v defines a radial solution, of class C2, to the wave equation in spatial
dimension N − 2.

Exercice 1.5. Let f ∈ Ck(R3). Show that the function Mf , defined by (5.3),
is also of class Ck.

Exercice 1.6. Let u ∈ C2(R × RN ) be a solution of (1.1) with finite energy.
Show

∀ε > 0, ∃R > 0, ∀t ∈ R,
Z

|x|>R+|t|
eu(t, x)dx ≤ ε.

Exercice 1.7 (Conservation of momentum). (1) Let u be a C2 solution
of (1.1) on R × RN , and j ∈ 1, . . . N . Let pj,u(t, x) = ∂xj

u(t, x)∂tu(t, x).
Show

∂pj,u
∂t

=
1

2

∂

∂xj

�
(∂tu)

2 − |∇u|2
�
+∇ · V,

where V is a certain C1 vector field that you will specify.
(2) Justify that

Pj(u⃗(t)) =

Z

RN

pj,u(t, x)dx

is defined for all times. Show that this quantity is independent of time.
You can start by considering a local version of the momentum

Z

[−R,R]N
pj,u(t, x)dx or

Z

RN

pj,u(t, x)φ
� x

R

�
dx

then let R tend to +∞. Here φ denotes a C2 function with compact
support equal to 1 in a neighborhood of the origin.
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Exercice 1.8. Suppose N = 1 or N = 2. Let u be the solution of (1.1), (1.3),
with (u0, u1) ∈ C3 × C2 (if N = 2) or C2 × C1 (if N = 1).

Show that if u1 ≥ 0 and u0 = 0 then u(t, x) has the sign of t for all x and t ̸= 0.
When N = 1, give a weaker sufficient condition on (u0, u1) such that:

∀t ≥ 0, ∀x ∈ R, u(t, x) ≥ 0.

Exercice 1.9. Assume N = 1 or N = 2. Let u be a solution of (1.4), with
u0 = u1 = 0, and f of class C1 (if N = 1) or C2 (if N = 2). Express u in terms of
f .

Exercice 1.10. (1) Prove Theorem 7.2. You can use compositions of
transformations defined in (7.1) and (7.2).

(2) Prove that Π is of timelike type if and only if the restriction of the qua-
dratic form g to Π is negatively defined.

(3) Under what condition on A does there exist B = (b0, b1, . . . , bN ) ∈ RN+1

such that the function

eA·X+iB·X

is a solution of (1.1)?
(4) Now assume that the hyperplane Π is not of timelike type. Let Y /∈ Π.

Construct a sequence of solutions (un)n of (1.1) such that un(X) = 0 on
Π, such that for any differential operator D =

Q
j = 1N∂α1

x1
. . . ∂αN

xN
(of

arbitrarily large order), there exists C > 0 such that |Dun(X)| ≤ Ce−n

on Π, but |un(Y )| → +∞ as n → ∞.
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