
CHAPTER II

The Linear Equation in Sobolev Spaces

II.1. Reminders on the Fourier Transform

Here, we recall the definition of the Fourier transform on RN , in the most
general framework possible, that of tempered distributions. We omit the proofs.
For more details, one can consult, for example, the foundational writings of Laurent
Schwartz [5], the course of Jean-Michel Bony [2], as well as [1, Section 1.2] for a
quick introduction, and [4] for a more in-depth exposition (the first two references
are in French).

We begin by introducing a notation: amulti-index is an element α = (α1, . . . ,αN )

of NN . The order of α is |α| = PN
j=1 αj . The derivative with respect to α of a

function f of class C |α| on RN is then defined by:

∂α
xφ =

NY

j=1

∂αj
xj
f.

1.a. Fourier Transform on S.
Definition II.1.1. The Schwartz space S(RN ) is the space of functions f of

class C∞ on RN such that for every p ∈ N,

Np(f) := sup
x∈RN |α|≤p

(1 + |x|)p|∂α
x f(x)| < ∞.

It can be observed that each Np is a norm on S(RN ), but Np is not complete
for any of these norms.

We equip S(RN ) with the distance

(II.1.1) d(φ,ψ) = sup
p≥0

1

2p
min

�
Np(φ− ψ), 1

�
.

It can be seen that d(φn,φ) tends towards 0 as n tends towards infinity if and only
if Np(φn − φ) tends towards 0 for every p.

It is verified that S, equipped with the topology defined by this distance, is
complete.1

The Fourier transform of an element φ of S is defined by the formula

(II.1.2) bφ(ξ) = Hφ(ξ) =

Z

RN

e−ix·ξφ(x)dx.

It is verified that H is a continuous application from S into S.

1A complete and metrizable vector space, whose topology is defined by a family of semi-

norms, is called a Fr’echet space.
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20 II. THE LINEAR EQUATION IN SOBOLEV SPACES

Fubini’s theorem immediately implies the duality formula:

(II.1.3)

Z

RN

bφ(ξ)ψ(ξ)dξ =

Z

RN

φ(x) bψ(x)dx,

for φ,ψ ∈ S(RN ).
The Fourier transformation is a bijection of S: by defining

(II.1.4) F(ψ)(x) =
1

(2π)N

Z

RN

eix·ξψ(ξ)dξ =
1

(2π)N
bψ(−x),

we have the Fourier inversion formula: for all φ ∈ S(RN ),

(II.1.5) HHφ = HHφ = φ.

By combining the Fourier inversion formula (II.1.5) and the duality formula (II.1.3),
we obtain the Plancherel theorem:

(II.1.6)

Z

RN

φ(x)ψ(x)dx =
1

(2π)N

Z

RN

bφ(ξ) bψ(ξ)dξ.

The Fourier transform exchanges multiplication by powers of x and differentiation.
For all φ ∈ S(RN )

(II.1.7) ∀α ∈ NN ,
1

i|α|
H∂α

xφ = ξα bφ(ξ), i|α|H(xαφ) = ∂α
ξ bφ(ξ).

1.b. Fourier Transform of Tempered Distributions.

Definition II.1.2. The space S ′(RN ) of tempered distributions is the topolog-
ical dual of S(RN ), i.e., the vector space of continuous linear forms on S.

In the definition, continuity must be interpreted in the sense of the topology
induced by the distance d defined by (II.1.1). It is easily verified that a linear form
f on S is an element of S ′ if and only if:

∃p ∈ N, ∀φ ∈ S, |⟨f,φ⟩| ≤ CNp(φ).

We equip S ′ with the topology of pointwise convergence: a sequence (fn)n of
elements of S ′ converges to f in S ′ if and only if

∀φ ∈ S, lim
n→∞

⟨fn,φ⟩ = ⟨f,φ⟩ .

Several function spaces continuously embed into S ′(RN ) in the following manner.
If f is a measurable, locally integrable function on f such that

∀R > 0,

Z

|x|≤R

|f(x)|dx ≤ C(1 +R)C

for some constant C > 0, we define an element Lf of S ′(RN ) by

⟨Lf ,φ⟩ =
Z

RN

f(x)φ(x)dx.

It is verified that the preceding application is injective, i.e., Lf is null if and
only if f is null almost everywhere on RN . We then identify f with the linear form
Lf , also denoted f . The preceding identification allows us to consider S, Lebesgue
spaces Lp(RN ) (1 ≤ p ≤ ∞), Ck

b (the space of Ck functions on RN that are bounded
along with all their derivatives up to order k) as subspaces of S ′.
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Examples of tempered distributions that are not functions are given by the
Dirac delta function at a, denoted δa and defined by ⟨δa,φ⟩ = φ(a), as well as the
surface measure σ on the sphere SN−1, defined by:

⟨σ,φ⟩ =
Z

SN−1

φ(y)dσ(y).

By duality, several actions can be defined on the elements of S ′.
Differentiation. Let α ∈ NN and f ∈ S ′. The derivative of f of order α is the

element ∂α
x of S ′ defined by:

∀φ ∈ S, ⟨∂α
x f,φ⟩ = (−1)|α| ⟨f, ∂α

xφ⟩ .
The integration by parts formula shows that if f ∈ C

|α|
b , its derivative of order α

in the sense of distributions coincides with its derivative in the classical sense.
Multiplication by a Function. We denote by P the space of C∞ functions with

slow growth, i.e., such that

∀α, ∃M,C > 0 ∀x ∈ RN , |∂α
x g(x)| ≤ C(1 + |x|)M .

It is easily verified that multiplication by an element of P is a continuous application
from S into S. We then define, for f ∈ S ′ and g ∈ P, the product fg by:

⟨fg,φ⟩ = ⟨f, gφ⟩ .
It is shown that fg is an element of S ′ and that f 7→ fg is a continuous application
from S ′ into S ′.

Fourier Transform. We define the Fourier transform of an element f of S ′ by

∀φ ∈ S,
D
bf,φ
E
= ⟨f, bφ⟩

The duality formula (II.1.3) shows that if f ∈ S, its Fourier transform according
to formula (II.1.2) and its Fourier transform in the sense of S ′ coincide.

It is recalled that L1(RN ) and L2(RN ) are subspaces of S ′(RN ). The Fourier
transform on S ′ thus applies to elements of these two spaces. On L1(RN ), we
recover the Fourier transform in the classical sense.

Proposition II.1.3 (Fourier Transform in L1). Let f ∈ L1(RN ), and bf be its

Fourier transform in S ′. Then bf is identified with the continuous function given by
the formula:

bf(ξ) =
Z

RN

e−ix·ξf(x)dx.

The second proposition immediately follows from the Plancherel theorem:

Proposition II.1.4 (Fourier Transform in L2). Let f ∈ L2(RN ) then bf ∈
L2(RN ) and

∥f∥L2 =
1

(2π)N/2
∥ bf∥L2 .

The properties of the Fourier transform on S are transmitted by duality to the
Fourier transform:

• We define the inverse Fourier transform F of an element f of S ′ by


Ff,φ

�
=



f, Fφ

�
.

Then we have the Fourier inversion formula:

∀f ∈ S ′, HHf = HHf = f.
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• Property (II.1.7) remains valid for φ ∈ S ′.

II.2. Sobolev Spaces

2.a. Definition. (cf [1, Section 1.3]) Here, we will mainly focus on homo-
geneous Sobolev spaces based on L2. We refer to the exercise sheet for classical
Sobolev spaces Hσ.

Sobolev spaces on RN are easily defined using the Fourier transform:

Definition II.2.1. Let σ ∈ R. The Sobolev space Ḣσ(RN ) is the set of f ∈
S ′(RN ) such that bf ∈ L1(K) for every compact set K, and such that the following
quantity is finite:

∥f∥2
Ḣσ =

1

(2π)N

Z

RN

|ξ|2σ| bf(ξ)|2dξ.

The space Ḣσ, equipped with the inner product:

(f, g)Ḣσ =
1

(2π)N

Z

RN

|ξ|2σ bf(ξ)bg(ξ)dξ

is a pre-Hilbert space.

Theorem II.2.2. The space Ḣσ(RN ) is complete if and only if σ < N/2. In
this case, the vector space S0 of functions in S whose Fourier transform vanishes
in a neighborhood of 0 is dense in Ḣσ(RN ).

Note that Ḣ0 is exactly the space L2.

2.b. Sobolev Inequalities. We have the following Sobolev inclusion on RN .

Theorem II.2.3. Let σ ∈]0, N/2[, and p ∈ (2,∞) such that 1
p = 1

2 − σ
N . Then

Ḣσ(RN ) is contained in Lp, and this inclusion is continuous.

The result is well-known. We give a proof based on the Fourier transform,
which yields a slightly stronger result that we will need later.

By the density result in Theorem II.2.2, it suffices to show that there exists a
constant C > 0 such that

(II.2.1) ∀f ∈ S(RN ), ∥f∥Lp(RN ) ≤ C∥f∥Ḣσ(RN ).

Let f ∈ S. We denote

∥f∥2
Ḃσ = sup

k

1

(2π)N

Z

2k≤|x|≤2k+1

|ξ|2σ| bf(ξ)|2dξ,

and observe that ∥f∥Ḃσ ≤ ∥f∥Ḣσ . We will prove the following result, which implies
(II.2.1):

Theorem II.2.4 (Improved Sobolev Inequality). Let σ and p be as in the pre-
vious theorem. Then there exists a constant C > 0 such that

∀f ∈ S(RN ), ∥f∥pLp ≤ ∥f∥p−2

Ḃσ
∥f∥2

Ḣσ .

Notation II.2.5. Let φ be a function on RN . For u ∈ S ′(RN ), we denote

φ(D)u = F (φ(ξ)bu(ξ)) .
The operator φ(D) is called the Fourier multiplier.
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The tempered distribution φ(D)u is not well-defined for all functions φ and
u ∈ S ′: we need φ bu to define a tempered distribution. This is for example the case
if φ ∈ L∞ and u ∈ Ḣσ (in this case φ(D)u ∈ Ḣσ), or if φ ∈ P(RN ) (the space of
C∞ functions with slow growth).

Proof. We fix a parameter A > 0 and decompose f into a high-frequency part
f>A and a low-frequency part f<A:

f>A = F
�
11|ξ|>A

bf(ξ)
�
= 11|D|>Af, f<A = 11|D|<Af = 1− f.

Let k(A) be the largest integer such that 2k(A) ≤ A. By using the Cauchy-Schwarz
inequality, then the fact that σ < N/2, we obtain:

|f<A(x)| =
1

(2π)N

�����

Z

|ξ|<A

eix·ξ bf(ξ)dξ
����� ≤

1

(2π)N

X

k≤k(A)

Z

2k≤|ξ|≤2k+1

| bf(ξ)|dξ

≤ 1

(2π)N

X

k≤k(A)

2k(N/2−σ)

 Z

2k≤|ξ|≤2k+1

|ξ|2σ| bf(ξ)|2dξ
!1/2

≤ CNAN/2−σ∥f∥Ḃσ ,

where CN depends only on the dimension N . Then we write (using Fubini’s equal-
ity):

∥f∥pLp =

Z
|f(x)|pdx =

Z

RN

p

Z |f(x)|

0

λp−1dλdx

= p

Z +∞

0

λp−1
���
n
x ∈ RN : |f(x)| ≥ λ

o��� dλ.

Let A(λ) be such that

CNA(λ)
N
2 −σ|f |Ḃσ = λ/2.

For any x in RN ,

|f< A(λ)(x)| ≤ λ

2
.

Thus |f(x)| > λ =⇒ |f>A(λ)(x)| > λ/2. Hence:

∥f∥pLp ≤ p

Z ∞

0

λp−1
���
�
x ∈ RN : |f>A(λ)(x)| > λ/2

	 ���dλ

By integrating |f>A(λ)|2 over the set
�
x ∈ RN : |f>A(λ)(x)| > λ/2

	
, we get

���
�
x ∈ RN : |f>A(λ)(x)| > λ/2

	 ��� ≤ 4

λ2
∥f>A(λ)∥2L2 .

Combining with the Plancherel theorem, then Fubini’s theorem, we obtain

∥f∥pLp ≤ 4p

(2π)N

Z ∞

0

λp−1

Z

|ξ|>A(λ)

| bf(ξ)|2dξdλ

=
4p

(2π)N

Z

RN

��� bf(ξ)
���
2
Z c(f,ξ)

0

λp−3dλdξ = Cp,N

Z

RN

��� bf(ξ)
���
2

c(f, ξ)p−2dξ,

where c(f, ξ) = 2CN∥f∥Ḃσ |ξ|N2 −s, and Cp,N depends only on N and p. It can be

easily verified that (N2 −s)(p−2) = 2s, which proves the announced inequality. □
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We will focus more particularly on the case s = 1. According to the above,

the Sobolev space Ḣ1(RN ), N ≥ 3, is a Hilbert space, contained in L
2N

N−2 , which

can be defined as the closure of the space S(RN ) under the norm Ḣ1(RN ). We can
characterize this norm with the first-order partial derivatives of f . Indeed,

|f |2
Ḣ1 =

1

(2π)N

Z
|ξ|2

�� bf(ξ)
��2dξ =

NX

j=1

Z ��ξj bf(ξ)
��2dξ,

which shows by Plancherel’s theorem and formula (II.1.7)

∥f∥2
Ḣ1 =

Z
|∇f(x)|2dx.

The attentive reader will have noticed that the space Ḣ1(RN ) is not the set of
φ ∈ S ′(RN ) such that for all j, ∂xj

φ ∈ L2(RN ): indeed, constant functions are

in this space, but not in Ḣ1(RN ). However, the density result of Theorem II.2.2

implies that Ḣ1(RN ) is the closure of C∞
0 (RN ) under the norm ∥ · ∥2

Ḣ1 .

II.3. The Wave Equation in the Schwartz Space

Let (u0, u1) ∈ S(RN ). We will write the solution u of (I.1.1), (I.1.3) using the
Fourier transformation. We start with a formal calculation, assuming that u(t) ∈ S
for all t (which we will prove later). We denote bu(t) as the Fourier transform of u
with respect to the spatial variable, i.e.,

bu(t, ξ) =
Z

RN

e−ix·ξu(t, x)dx.

Thus, we have
c∆u(t, ξ) = −|ξ|2bu(t, ξ),

and the wave equation (I.1.1) is formally equivalent to the linear differential equa-
tion

∂2
t bu(t, ξ) + |ξ|2bu(t, ξ),

where the variable ξ is considered as a parameter. The solution to this equation,
with initial conditions (bu(0), ∂tbu(0)) = (u0, u1), yields

bu(t, ξ) = cos(t|ξ|)bu0(ξ) +
sin(t|ξ|)

|ξ| bu1(ξ),

or, with the previously introduced notation,

(II.3.1) u(t) = cos(t|D|)u0 +
sin(t|D|)

|D| u1.

Theorem II.3.1. Let (u0, u1) ∈ S(RN )2. Then u defined by (II.3.1) is an
element of C∞(R× RN ). It is the unique C2 solution of (I.1.1), (I.1.3).

Proof. Uniqueness follows from Theorem I.4.1. Hence, it suffices to prove
that u, defined by (II.3.1), is C∞ and satisfies (I.1.1), (I.1.3). We have

u(t, x) =
1

(2π)N

Z
RNeix·ξ

�
cos(t|ξ|)bu0(ξ) +

sin(t|ξ|)
|ξ| cu1(ξ)

�
dξ.

By writing
sin(t|ξ|)

|ξ| = t
X

k≥0

(−1)k(t|ξ|)2k
(2k + 1)!

,
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we see that it is a C∞ function of (t, ξ). Moreover,
|∂j

t sin(t|ξ|)|
|ξ| ≤ |t||ξ|j . Similarly,

(t, ξ) 7→ cos(t|ξ|) is C∞ and
���∂j

t cos(t|ξ|)
��� ≤ |ξ|j . Using the fact that bu0 and bu1 are

elements of S(RN ), by the theorem of differentiation under the integral sign, we
obtain that u is C∞ and satisfies (I.1.1). The Fourier inversion formula shows that
u also satisfies the initial conditions (I.1.3). □

II.4. The wave equation in Sobolev spaces

4.a. The equation in general homogeneous Sobolev spaces. Let (u0, u1) ∈
Ḣσ × Ḣσ−1, σ < N/2. We define as before u by (II.3.1). We also define the formal
derivative of u with respect to time:

u′(t, x) = cos(t|D|)u1 − |D| sin(t|D|)u0.

Then u and u′ satisfy the following properties:

Claim II.4.1. u ∈ C0(R, Ḣσ), u′ ∈ C0(R, Ḣσ−1), u(0) = u0, u
′(0) = u1.

Using that bu0 ∈ L2(|ξ|2σdξ) and bu1 ∈ L2(|ξ|2σ−2dξ), it is easy to see that

(II.4.1) bu ∈ C0(R, |ξ|2σ), bu′ ∈ C0(R, |ξ|2σ−2),

which yields the announced continuity property. The facts that bu(0) = u0 and
bu′(0) = u1 follow immediately from the definition.

Claim II.4.2. ∀t, ∥(u(t), u′(t))∥Ḣσ×Ḣσ−1 = ∥(u0, u1∥Ḣσ×Ḣσ−1 .

Indeed,
Z

RN

|bu(t, ξ)|2|ξ|2σdξ +
Z

RN

bu′(t, ξ)|ξ|2σ−2dξ

=

Z

RN

����cos(t|ξ|)bu0(ξ) +
sin(t|ξ|)

|ξ| bu1(ξ)

����
2

|ξ|2σdξ

+

Z

RN

���− |ξ| sin(t|ξ|)bu0(ξ) + cos(t|ξ|)bu1(ξ)
���
2

|ξ|2σ−2dξ

=

Z

RN

�
|bu0(ξ)|2 + |bu1(ξ)|2|ξ|−2

�
|ξ|2σdξ,

which gives the desired property.

Claim II.4.3. Let (u0,n, u1,n) ∈ (S0(RN ))2 such that (u0,n, u1,n) converges to

(u0, u1) in Ḣσ × Ḣσ−1. Let un be the solution of (I.1.1) with data (u0,n, u1,n).
Then

lim
n→∞

sup
t∈R

∥un(t)− u(t)∥Ḣσ + ∥∂tun(t)− u′(t)∥Ḣσ−1 = 0.

It follows immediately from the preceding point, applied to (u−un, u
′−∂tun).

Claim II.4.4. One can identify u with a distribution on R×RN , and it satisfies
the wave equation (I.1.1) in the distributional sense. Furthermore u′ = ∂tu in the
sense of distribution.

We first give a “concrete” proof of these facts for the reader which is not familiar
with the theory of distributions, assuming that σ is large enough so that the object
considered are all functions on R× RN .
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Let σ ≥ 0. We let un be as in Claim II.4.3. Using that un is a C∞ solution of
(I.1.1) and integrating by parts, we obtain

ZZ
un(t, x)(∂

2
t −∆)φdxdt = 0.

Using the Sobolev embedding Ḣσ ⊂ Lp, 1
p = 1

2 − σ
N , and the point (II.4.3), we see

that

lim
n→∞

∥u− un∥Lp(K) = 0,

for all compact K of RN . This implies

0 = lim
n→∞

ZZ
un(t, x)(∂

2
t −∆)φdxdt = lim

n→∞

ZZ
u(t, x)(∂2

t −∆)φdxdt,

and thus

∀φ ∈ C∞
0 (R× RN ),

ZZ
u(∂2

t −∆)φdtdx = 0,

which is precisely the meaning of ∂2
t u−∆u in the distributional sense.

Let σ ≥ 1. The equality

∂tun = −|D| sin(t|D|)u0,n + cos(t|D|)u1,n.

holds by differentiation below the integral sign. By integration by parts,

∀φ ∈ C∞
0 (R× RN ),

ZZ
∂tunφdtdx = −

ZZ
un∂tφdtdx,

Letting n → ∞, we obtain

∀φ ∈ C∞
0 (R× RN ),

ZZ
u′φdtdx = −

ZZ
u∂tφdtdx,

which means that u′ = ∂tu in the distributional sense.
The proof for general σ is essentially the same, and can be skipped by the

reader who is not familiar with distributions.
If φ ∈ C∞

0 (R × RN ) (the space of smooth functions with compact support on
R× RN ), one defines the action of u on S by

⟨u,φ⟩ =
Z +∞

−∞
⟨u(t),φ(t)⟩S′,S dt,

where φ(t) is the function t 7→ φ(t, ·). It is a straightforward exercise to prove
that u is well-defined and that is is a distribution on R × RN . The facts that u
satisfies the wave equation in the distributional sense and that u′(t) = ∂tu(t) follow
immediately from Claim II.4.3, that implies that limun = u in the distributional
sense, where un is a in Claim II.4.3. This last fact is an immediate consequence of
Claim II.4.3.

In the sequel of the proof, we will use the formula (II.1.2) as the definition of

the solution u of (I.1.1), (I.1.3) with (u0, u1) ∈
�
S(RN )

�2
. The preceding claims

show that such a u is a limit of smooth, classical solutions of (I.1.1), (I.1.3), and
that it satisfies (I.1.1) in a weak sense. Also, we have

∂tu = −|D| sin(t|D|)bu0 + cos(t|D|)bu1

in the sense of distribution. In the sequel, we will always use the notation ∂tu to
denote this quantity.
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4.b. The wave equation in the energy space. Of particular interest for us
is the case s = 1. We will call “finite energy solutions” the weak solutions with initial
data Ḣ1 × L2 given by the preceding subsection in the case s = 1, N ≥ 3. We will

focus on the caseN = 3. We note that if (u0, u1) ∈ (C3×C2)(R3)∩
�
Ḣ1 × L2

�
(R3),

we have two ways of defining the solution u: by integrals on spheres, as in Theorem
I.5.2, and using the Fourier transform, i.e. by formula (II.3.1). Let us prove that
these two definitions coincide:

Proposition II.4.5. Let u ∈ C2(R × R3) be a solution of (I.1.1), (I.1.3).

Assume furthermore u0 = u(0) ∈ Ḣ1, u1 = ∂tu(0) ∈ L2. Then

u(t) = cos(t|D|)u0 +
sin(t|D|)

|D| u1, ∂tu(t) = −|D| sin(t|D|)u0 + cos(t|D|)u1.

Proof. Let (u0,n, u1,n) ∈
�
S(RN )

�2
with

lim
n→∞

∥u0,n − u0∥Ḣ1 + ∥u1,n − u1∥L2 = 0.

Let un be the corresponding solution of (I.1.1) given by (II.3.1) (note that by
uniqueness it is also the solution given by Theorem I.5.2). Since u − un is a C2,
finite energy solution of (I.1.1), Theorem I.6.1 yields

∀t, ∥u(t)− un(t)∥2Ḣ1 + ∥∂tu(t)− ∂tun(t)∥2L2 = ∥u0 − u0,n∥2Ḣ1 + ∥u1 − u1,n∥2L2 ,

which tends to 0 as n goes to infinity. This proof the result, since un(t) converges

to cos(t|D|)u0 +
sin(t|D|)

|D| u1 in Ḣ1(R3) and ∂tun(t) converges to −|D| sin(t|D|)u0 +

cos(t|D|)u1 in L2 by Claim II.4.3. □

Using the approximation of finite energy solutions by solutions with initial data
in S, we can transfer several results of Chapter I to general finite energy solutions.
This is the case of the decay of energy on past wave cones, which imply finite speed
of propagation. If u is a finite energy solution (in any dimension N ≥ 3) and R > 0,
x0 ∈ RN , t0 ∈ R, we denote by

Eloc(t) =

Z

|x−x0|<R−|t−t0|
eu(t, x)dx.

Then

Theorem II.4.6. Eloc(t) is nonincreasing for t ≥ t0.

Proof. It follows immediately from Theorem I.4.1 the fact that this quantity
is nonincreasing when (u0, u1) ∈ S, and that for the approximation given by Claim
II.4.3, we obviously have, as a consequence of this claim,

∀t, lim
n→∞

Z

|x−x0|<R−|t−t0|
eun(t, x)dx =

Z

|x−x0|<R−|t−t0|
eu(t, x)dx

□

We note that for general finite energy solution the integration by parts used
in the proof of Theorem I.4.1 is no longer valid (since the boundary terms are not
always well-defined).
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4.c. Equation with a source term. We next consider the wave equation
with a source term (I.1.4). By linearity, it is sufficient to study the equation with
zero initial data:

(II.4.2) ∂2
t u−∆u = f, u⃗↾t=0 = (0, 0).

Proposition II.4.7. Assume f ∈ C0
�
R,S(RN )

�
. Then u defined by

(II.4.3) u(t) =

Z s

0

sin ((t− s)|D|)
|D| f(s)ds

is the unique solution of (II.4.2).

Proof. The uniqueness follows as usual by Theorem I.4.1. It is thus sufficient
to check that u defined by (II.4.3) is of class C2, and is a solution of (II.4.2). We
consider F the function defined on R× R× RN by

F (t, s, x) =

 
sin

�
(t− s)|D|

�

|D| f(s)

!
(x).

Thus

F (t, s, x) =
1

(2π)N

Z
eix·ξ

sin
�
(t− s)|ξ|

�

|ξ|
bf(s, ξ)dξ

Using that bf ∈ C0
�
R,S(RN )

�
, it is easy to check that F is continuous and C∞

with respect to the variable (t, x), and that one can differentiate below the integral
sign. The result follows since by integration by parts in the ξ variable,

∆F (t, s, x) = − 1

(2π)N

Z
|ξ|2eix·ξ sin

�
(t− s)|ξ|

�

|ξ|
bf(s, ξ)dξ

□

We note that Duhamel formula (II.4.3) is still valid when f ∈ L1([−T,+T ], Ḣσ−1)
for all T , where σ is a fixed real number (assumed to be < N/2 for simplicity), and

that it yields a function u ∈ C0(R, Ḣσ) with ∂tu ∈ C0(R, Ḣσ−1),

(II.4.4) ∂tu =

Z t

0

cos
�
(t− s)|D|

�
f(s)ds,

in the sense of distribution, and such that

(II.4.5) ∥u⃗(t)∥Ḣσ×Ḣσ−1 ≤
Z t

0

∥f(s)∥Ḣσ−1ds.

Note that (II.4.5) is exactly the energy inequality proved in Chapter I when σ = 1.
We can approximate f by a sequence of functions (fn) with

fn ∈ C0(R,S), ∀t, lim
n→∞

Z +T

−T

∥f(s)− fn(s)∥Ḣσ−1ds = 0.

The corresponding solutions un defined by

un(t) =

Z t

0

sin
�
(t− s)|D|

�

|D| fn(s)ds

are C2 solutions of (II.4.2) and satisfy

(II.4.6) sup
−T≤t≤T

∥u⃗n(t)− u⃗(t)∥Ḣσ×Ḣσ−1 −→
n→∞

0.
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As in the case of the free wave equation, this proves that u satisfies (I.1.1) in
the sense of distribution. In this situation, we will take the formula (II.4.3) as a
definition of the solution u of (I.1.1).

Exercice II.1. Assume that σ = 1. Let f defined on R × RN , such that
f ∈ L1([−T,+T, L2(RN )). Prove that there exists a sequence of functions fn ∈
C∞

0 (R× RN ) such that

∀T > 0, lim
n→∞

∥fn − f∥L1([−T,+T ],L2(RN )) = 0.

Exercice II.2. Let u be a C2 solution of (I.1.1) for some f ∈ C0(R × RN ).
Assume that f ∈ L1([−T,+T ], L2(RN )) for all T > 0. Show that u satisfies (II.4.3).


