CHAPTER II

The Linear Equation in Sobolev Spaces

II.1. Reminders on the Fourier Transform

Here, we recall the definition of the Fourier transform on \mathbb{R}^{N}, in the most general framework possible, that of tempered distributions. We omit the proofs. For more details, one can consult, for example, the foundational writings of Laurent Schwartz [5], the course of Jean-Michel Bony [2], as well as [1, Section 1.2] for a quick introduction, and [4] for a more in-depth exposition (the first two references are in French).

We begin by introducing a notation: a multi-index is an element $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ of \mathbb{N}^{N}. The order of α is $|\alpha|=\sum_{j=1}^{N} \alpha_{j}$. The derivative with respect to α of a function f of class $C^{|\alpha|}$ on \mathbb{R}^{N} is then defined by:

$$
\partial_{x}^{\alpha} \varphi=\prod_{j=1}^{N} \partial_{x_{j}}^{\alpha_{j}} f
$$

1.a. Fourier Transform on \mathcal{S}.

Definition II.1.1. The Schwartz space $\mathcal{S}\left(\mathbb{R}^{N}\right)$ is the space of functions f of class C^{∞} on \mathbb{R}^{N} such that for every $p \in \mathbb{N}$,

$$
\left.N_{p}(f):=\sup _{x \in \mathbb{R}^{N}}|\alpha| \leq p,|x|\right)^{p}\left|\partial_{x}^{\alpha} f(x)\right|<\infty .
$$

It can be observed that each N_{p} is a norm on $\mathcal{S}\left(\mathbb{R}^{N}\right)$, but N_{p} is not complete for any of these norms.

We equip $\mathcal{S}\left(\mathbb{R}^{N}\right)$ with the distance

$$
\begin{equation*}
d(\varphi, \psi)=\sup _{p \geq 0} \frac{1}{2^{p}} \min \left(N_{p}(\varphi-\psi), 1\right) . \tag{II.1.1}
\end{equation*}
$$

It can be seen that $d\left(\varphi_{n}, \varphi\right)$ tends towards 0 as n tends towards infinity if and only if $N_{p}\left(\varphi_{n}-\varphi\right)$ tends towards 0 for every p.

It is verified that \mathcal{S}, equipped with the topology defined by this distance, is complete. ${ }^{1}$

The Fourier transform of an element φ of \mathcal{S} is defined by the formula

$$
\begin{equation*}
\widehat{\varphi}(\xi)=\mathcal{H} \varphi(\xi)=\int_{\mathbb{R}^{N}} e^{-i x \cdot \xi} \varphi(x) d x \tag{II.1.2}
\end{equation*}
$$

It is verified that \mathcal{H} is a continuous application from \mathcal{S} into \mathcal{S}.

[^0]Fubini's theorem immediately implies the duality formula:

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \widehat{\varphi}(\xi) \psi(\xi) d \xi=\int_{\mathbb{R}^{N}} \varphi(x) \widehat{\psi}(x) d x \tag{II.1.3}
\end{equation*}
$$

for $\varphi, \psi \in \mathcal{S}\left(\mathbb{R}^{N}\right)$.
The Fourier transformation is a bijection of \mathcal{S} : by defining

$$
\begin{equation*}
\overline{\mathcal{F}}(\psi)(x)=\frac{1}{(2 \pi)^{N}} \int_{\mathbb{R}^{N}} e^{i x \cdot \xi} \psi(\xi) d \xi=\frac{1}{(2 \pi)^{N}} \widehat{\psi}(-x) \tag{II.1.4}
\end{equation*}
$$

we have the Fourier inversion formula: for all $\varphi \in \mathcal{S}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\mathcal{H} \overline{\mathcal{H}} \varphi=\overline{\mathcal{H}} \mathcal{H} \varphi=\varphi \tag{II.1.5}
\end{equation*}
$$

By combining the Fourier inversion formula (II.1.5) and the duality formula (II.1.3), we obtain the Plancherel theorem:

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \varphi(x) \bar{\psi}(x) d x=\frac{1}{(2 \pi)^{N}} \int_{\mathbb{R}^{N}} \widehat{\varphi}(\xi) \overline{\widehat{\psi}(\xi)} d \xi \tag{II.1.6}
\end{equation*}
$$

The Fourier transform exchanges multiplication by powers of x and differentiation. For all $\varphi \in \mathcal{S}\left(\mathbb{R}^{N}\right)$

$$
\begin{equation*}
\forall \alpha \in \mathbb{N}^{N}, \quad \frac{1}{i^{|\alpha|}} \mathcal{H} \partial_{x}^{\alpha} \varphi=\xi^{\alpha} \widehat{\varphi}(\xi), \quad i^{|\alpha|} \mathcal{H}\left(x^{\alpha} \varphi\right)=\partial_{\xi}^{\alpha} \widehat{\varphi}(\xi) \tag{II.1.7}
\end{equation*}
$$

1.b. Fourier Transform of Tempered Distributions.

Definition II.1.2. The space $\mathcal{S}^{\prime}\left(\mathbb{R}^{N}\right)$ of tempered distributions is the topological dual of $\mathcal{S}\left(\mathbb{R}^{N}\right)$, i.e., the vector space of continuous linear forms on \mathcal{S}.

In the definition, continuity must be interpreted in the sense of the topology induced by the distance d defined by (II.1.1). It is easily verified that a linear form f on \mathcal{S} is an element of \mathcal{S}^{\prime} if and only if:

$$
\exists p \in \mathbb{N}, \quad \forall \varphi \in \mathcal{S}, \quad|\langle f, \varphi\rangle| \leq C N_{p}(\varphi)
$$

We equip \mathcal{S}^{\prime} with the topology of pointwise convergence: a sequence $\left(f_{n}\right) n$ of elements of \mathcal{S}^{\prime} converges to f in \mathcal{S}^{\prime} if and only if

$$
\forall \varphi \in \mathcal{S}, \quad \lim _{n \rightarrow \infty}\left\langle f_{n}, \varphi\right\rangle=\langle f, \varphi\rangle
$$

Several function spaces continuously embed into $\mathcal{S}^{\prime}\left(\mathbb{R}^{N}\right)$ in the following manner. If f is a measurable, locally integrable function on f such that

$$
\forall R>0, \quad \int_{|x| \leq R}|f(x)| d x \leq C(1+R)^{C}
$$

for some constant $C>0$, we define an element L_{f} of $\mathcal{S}^{\prime}\left(\mathbb{R}^{N}\right)$ by

$$
\left\langle L_{f}, \varphi\right\rangle=\int_{\mathbb{R}^{N}} f(x) \varphi(x) d x
$$

It is verified that the preceding application is injective, i.e., L_{f} is null if and only if f is null almost everywhere on \mathbb{R}^{N}. We then identify f with the linear form L_{f}, also denoted f. The preceding identification allows us to consider \mathcal{S}, Lebesgue spaces $L^{p}\left(\mathbb{R}^{N}\right)(1 \leq p \leq \infty), C_{b}^{k}$ (the space of C^{k} functions on \mathbb{R}^{N} that are bounded along with all their derivatives up to order k) as subspaces of \mathcal{S}^{\prime}.

Examples of tempered distributions that are not functions are given by the Dirac delta function at a, denoted δ_{a} and defined by $\left\langle\delta_{a}, \varphi\right\rangle=\varphi(a)$, as well as the surface measure σ on the sphere S^{N-1}, defined by:

$$
\langle\sigma, \varphi\rangle=\int_{S^{N-1}} \varphi(y) d \sigma(y) .
$$

By duality, several actions can be defined on the elements of \mathcal{S}^{\prime}.
Differentiation. Let $\alpha \in \mathbb{N}^{N}$ and $f \in \mathcal{S}^{\prime}$. The derivative of f of order α is the element ∂_{x}^{α} of \mathcal{S}^{\prime} defined by:

$$
\forall \varphi \in \mathcal{S}, \quad\left\langle\partial_{x}^{\alpha} f, \varphi\right\rangle=(-1)^{|\alpha|}\left\langle f, \partial_{x}^{\alpha} \varphi\right\rangle
$$

The integration by parts formula shows that if $f \in C_{b}^{|\alpha|}$, its derivative of order α in the sense of distributions coincides with its derivative in the classical sense.

Multiplication by a Function. We denote by \mathcal{P} the space of C^{∞} functions with slow growth, i.e., such that

$$
\forall \alpha, \quad \exists M, C>0 \quad \forall x \in \mathbb{R}^{N}, \quad\left|\partial_{x}^{\alpha} g(x)\right| \leq C(1+|x|)^{M} .
$$

It is easily verified that multiplication by an element of \mathcal{P} is a continuous application from \mathcal{S} into \mathcal{S}. We then define, for $f \in \mathcal{S}^{\prime}$ and $g \in \mathcal{P}$, the product $f g$ by:

$$
\langle f g, \varphi\rangle=\langle f, g \varphi\rangle .
$$

It is shown that $f g$ is an element of \mathcal{S}^{\prime} and that $f \mapsto f g$ is a continuous application from \mathcal{S}^{\prime} into \mathcal{S}^{\prime}.

Fourier Transform. We define the Fourier transform of an element f of \mathcal{S}^{\prime} by

$$
\forall \varphi \in \mathcal{S}, \quad\langle\widehat{f}, \varphi\rangle=\langle f, \widehat{\varphi}\rangle
$$

The duality formula (II.1.3) shows that if $f \in \mathcal{S}$, its Fourier transform according to formula (II.1.2) and its Fourier transform in the sense of \mathcal{S}^{\prime} coincide.

It is recalled that $L^{1}\left(\mathbb{R}^{N}\right)$ and $L^{2}\left(\mathbb{R}^{N}\right)$ are subspaces of $\mathcal{S}^{\prime}\left(\mathbb{R}^{N}\right)$. The Fourier transform on \mathcal{S}^{\prime} thus applies to elements of these two spaces. On $L^{1}\left(\mathbb{R}^{N}\right)$, we recover the Fourier transform in the classical sense.

Proposition II.1.3 (Fourier Transform in $\left.L^{1}\right)$. Let $f \in L^{1}\left(\mathbb{R}^{N}\right)$, and \widehat{f} be its Fourier transform in \mathcal{S}^{\prime}. Then \widehat{f} is identified with the continuous function given by the formula:

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{N}} e^{-i x \cdot \xi} f(x) d x
$$

The second proposition immediately follows from the Plancherel theorem:
Proposition II.1.4 (Fourier Transform in $\left.L^{2}\right)$. Let $f \in L^{2}\left(\mathbb{R}^{N}\right)$ then $\widehat{f} \in$ $L^{2}\left(\mathbb{R}^{N}\right)$ and

$$
\|f\|_{L^{2}}=\frac{1}{(2 \pi)^{N / 2}}\|\widehat{f}\|_{L^{2}}
$$

The properties of the Fourier transform on \mathcal{S} are transmitted by duality to the Fourier transform:

- We define the inverse Fourier transform \bar{F} of an element f of \mathcal{S}^{\prime} by

$$
\langle\bar{F} f, \varphi\rangle=\langle f, \bar{F} \varphi\rangle
$$

Then we have the Fourier inversion formula:

$$
\forall f \in \mathcal{S}^{\prime}, \quad \overline{\mathcal{H}} \mathcal{H} f=\mathcal{H} \overline{\mathcal{H}} f=f
$$

- Property (II.1.7) remains valid for $\varphi \in \mathcal{S}^{\prime}$.

II.2. Sobolev Spaces

2.a. Definition. (cf [1, Section 1.3]) Here, we will mainly focus on homogeneous Sobolev spaces based on L^{2}. We refer to the exercise sheet for classical Sobolev spaces H^{σ}.

Sobolev spaces on \mathbb{R}^{N} are easily defined using the Fourier transform:
Definition II.2.1. Let $\sigma \in \mathbb{R}$. The Sobolev space $\dot{H}^{\sigma}\left(\mathbb{R}^{N}\right)$ is the set of $f \in$ $\mathcal{S}^{\prime}\left(\mathbb{R}^{N}\right)$ such that $\widehat{f} \in L^{1}(K)$ for every compact set K, and such that the following quantity is finite:

$$
\|f\|_{\dot{H}^{\sigma}}^{2}=\frac{1}{(2 \pi)^{N}} \int_{\mathbb{R}^{N}}|\xi|^{2 \sigma}|\widehat{f}(\xi)|^{2} d \xi
$$

The space \dot{H}^{σ}, equipped with the inner product:

$$
(f, g)_{\dot{H}^{\sigma}}=\frac{1}{(2 \pi)^{N}} \int_{\mathbb{R}^{N}}|\xi|^{2 \sigma} \widehat{f}(\xi) \overline{\bar{g}(\xi)} d \xi
$$

is a pre-Hilbert space.
Theorem II.2.2. The space $\dot{H}^{\sigma}\left(\mathbb{R}^{N}\right)$ is complete if and only if $\sigma<N / 2$. In this case, the vector space \mathcal{S}_{0} of functions in \mathcal{S} whose Fourier transform vanishes in a neighborhood of 0 is dense in $\dot{H}^{\sigma}\left(\mathbb{R}^{N}\right)$.

Note that \dot{H}^{0} is exactly the space L^{2}.
2.b. Sobolev Inequalities. We have the following Sobolev inclusion on \mathbb{R}^{N}.

Theorem II.2.3. Let $\sigma \in] 0, N / 2\left[\right.$, and $p \in(2, \infty)$ such that $\frac{1}{p}=\frac{1}{2}-\frac{\sigma}{N}$. Then $\dot{H}^{\sigma}\left(\mathbb{R}^{N}\right)$ is contained in L^{p}, and this inclusion is continuous.

The result is well-known. We give a proof based on the Fourier transform, which yields a slightly stronger result that we will need later.

By the density result in Theorem II.2.2, it suffices to show that there exists a constant $C>0$ such that

$$
\begin{equation*}
\forall f \in \mathcal{S}\left(\mathbb{R}^{N}\right), \quad\|f\|_{L^{p}\left(\mathbb{R}^{N}\right)} \leq C\|f\|_{\dot{H}^{\sigma}\left(\mathbb{R}^{N}\right)} \tag{II.2.1}
\end{equation*}
$$

Let $f \in \mathcal{S}$. We denote

$$
\|f\|_{\dot{B}^{\sigma}}^{2}=\sup _{k} \frac{1}{(2 \pi)^{N}} \int_{2^{k} \leq|x| \leq 2^{k+1}}|\xi|^{2 \sigma}|\widehat{f}(\xi)|^{2} d \xi
$$

and observe that $\|f\|_{\dot{B}^{\sigma}} \leq\|f\|_{\dot{H}^{\sigma}}$. We will prove the following result, which implies (II.2.1):

Theorem II.2.4 (Improved Sobolev Inequality). Let σ and p be as in the previous theorem. Then there exists a constant $C>0$ such that

$$
\forall f \in \mathcal{S}\left(\mathbb{R}^{N}\right), \quad\|f\|_{L^{p}}^{p} \leq\|f\|_{\dot{B}^{\sigma}}^{p-2}\|f\|_{\dot{H}^{\sigma}}^{2}
$$

Notation II.2.5. Let φ be a function on \mathbb{R}^{N}. For $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{N}\right)$, we denote

$$
\varphi(D) u=\bar{F}(\varphi(\xi) \widehat{u}(\xi)) .
$$

The operator $\varphi(D)$ is called the Fourier multiplier.

The tempered distribution $\varphi(D) u$ is not well-defined for all functions φ and $u \in \mathcal{S}^{\prime}$: we need $\varphi \widehat{u}$ to define a tempered distribution. This is for example the case if $\varphi \in L^{\infty}$ and $u \in \dot{H}^{\sigma}$ (in this case $\varphi(D) u \in \dot{H}^{\sigma}$), or if $\varphi \in \mathcal{P}\left(\mathbb{R}^{N}\right)$ (the space of C^{∞} functions with slow growth).

Proof. We fix a parameter $A>0$ and decompose f into a high-frequency part $f_{>A}$ and a low-frequency part $f_{<A}$:

$$
f_{>A}=\overline{\mathcal{F}}\left(\mathbb{1}_{|\xi|>A} \widehat{f}(\xi)\right)=\mathbb{1}_{|D|>A} f, \quad f_{<A}=\mathbb{1}_{|D|<A} f=1-f .
$$

Let $k(A)$ be the largest integer such that $2^{k(A)} \leq A$. By using the Cauchy-Schwarz inequality, then the fact that $\sigma<N / 2$, we obtain:

$$
\begin{aligned}
& \left|f_{<A}(x)\right|=\frac{1}{(2 \pi)^{N}}\left|\int_{|\xi|<A} e^{i x \cdot \xi} \widehat{f}(\xi) d \xi\right| \leq \frac{1}{(2 \pi)^{N}} \sum_{k \leq k(A)} \int_{2^{k} \leq|\xi| \leq 2^{k+1}}|\widehat{f}(\xi)| d \xi \\
& \leq \frac{1}{(2 \pi)^{N}} \sum_{k \leq k(A)} 2^{k(N / 2-\sigma)}\left(\int_{2^{k} \leq|\xi| \leq 2^{k+1}}|\xi|^{2 \sigma}|\widehat{f}(\xi)|^{2} d \xi\right)^{1 / 2} \leq C_{N} A^{N / 2-\sigma}\|f\|_{\dot{B}^{\sigma}}
\end{aligned}
$$

where C_{N} depends only on the dimension N. Then we write (using Fubini's equality):

$$
\begin{aligned}
\|f\|_{L^{p}}^{p}=\int|f(x)|^{p} d x=\int_{\mathbb{R}^{N}} p \int_{0}^{|f(x)|} & \lambda^{p-1} d \lambda d x \\
& =p \int_{0}^{+\infty} \lambda^{p-1}\left|\left\{x \in \mathbb{R}^{N}:|f(x)| \geq \lambda\right\}\right| d \lambda
\end{aligned}
$$

Let $A(\lambda)$ be such that

$$
C_{N} A(\lambda)^{\frac{N}{2}-\sigma}|f| \dot{B}^{\sigma}=\lambda / 2
$$

For any x in \mathbb{R}^{N},

$$
|f<A(\lambda)(x)| \leq \frac{\lambda}{2}
$$

Thus $|f(x)|>\lambda \Longrightarrow\left|f_{>A(\lambda)}(x)\right|>\lambda / 2$. Hence:

$$
\|f\|_{L^{p}}^{p} \leq p \int_{0}^{\infty} \lambda^{p-1}\left|\left\{x \in \mathbb{R}^{N}:\left|f_{>A(\lambda)}(x)\right|>\lambda / 2\right\}\right| d \lambda
$$

By integrating $\left|f_{>A(\lambda)}\right|^{2}$ over the set $\left\{x \in \mathbb{R}^{N}:\left|f_{>A(\lambda)}(x)\right|>\lambda / 2\right\}$, we get

$$
\left|\left\{x \in \mathbb{R}^{N}:\left|f_{>A(\lambda)}(x)\right|>\lambda / 2\right\}\right| \leq \frac{4}{\lambda^{2}}\left\|f_{>A(\lambda)}\right\|_{L^{2}}^{2}
$$

Combining with the Plancherel theorem, then Fubini's theorem, we obtain

$$
\begin{aligned}
\|f\|_{L^{p}}^{p} & \leq \frac{4 p}{(2 \pi)^{N}} \int_{0}^{\infty} \lambda^{p-1} \int_{|\xi|>A(\lambda)}|\widehat{f}(\xi)|^{2} d \xi d \lambda \\
& =\frac{4 p}{(2 \pi)^{N}} \int_{\mathbb{R}^{N}}|\widehat{f}(\xi)|^{2} \int_{0}^{c(f, \xi)} \lambda^{p-3} d \lambda d \xi=C_{p, N} \int_{\mathbb{R}^{N}}|\widehat{f}(\xi)|^{2} c(f, \xi)^{p-2} d \xi
\end{aligned}
$$

where $c(f, \xi)=2 C_{N}\|f\|_{\dot{B}^{\sigma}}|\xi|^{\frac{N}{2}-s}$, and $C_{p, N}$ depends only on N and p. It can be easily verified that $\left(\frac{N}{2}-s\right)(p-2)=2 s$, which proves the announced inequality.

We will focus more particularly on the case $s=1$. According to the above, the Sobolev space $\dot{H}^{1}\left(\mathbb{R}^{N}\right), N \geq 3$, is a Hilbert space, contained in $L^{\frac{2 N}{N-2}}$, which can be defined as the closure of the space $\mathcal{S}\left(\mathbb{R}^{N}\right)$ under the norm $\dot{H}^{1}\left(\mathbb{R}^{N}\right)$. We can characterize this norm with the first-order partial derivatives of f. Indeed,

$$
|f|_{\dot{H}^{1}}^{2}=\frac{1}{(2 \pi)^{N}} \int|\xi|^{2}|\widehat{f}(\xi)|^{2} d \xi=\sum_{j=1}^{N} \int\left|\xi_{j} \widehat{f}(\xi)\right|^{2} d \xi
$$

which shows by Plancherel's theorem and formula (II.1.7)

$$
\|f\|_{\dot{H}^{1}}^{2}=\int|\nabla f(x)|^{2} d x
$$

The attentive reader will have noticed that the space $\dot{H}^{1}\left(\mathbb{R}^{N}\right)$ is not the set of $\varphi \in \mathcal{S}^{\prime}\left(\mathbb{R}^{N}\right)$ such that for all $j, \partial_{x_{j}} \varphi \in L^{2}\left(\mathbb{R}^{N}\right)$: indeed, constant functions are in this space, but not in $\dot{H}^{1}\left(\mathbb{R}^{N}\right)$. However, the density result of Theorem II.2.2 implies that $\dot{H}^{1}\left(\mathbb{R}^{N}\right)$ is the closure of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ under the norm $\|\cdot\|_{\dot{H}^{1}}^{2}$.

II.3. The Wave Equation in the Schwartz Space

Let $\left(u_{0}, u_{1}\right) \in \mathcal{S}\left(\mathbb{R}^{N}\right)$. We will write the solution u of (I.1.1), (I.1.3) using the Fourier transformation. We start with a formal calculation, assuming that $u(t) \in \mathcal{S}$ for all t (which we will prove later). We denote $\widehat{u}(t)$ as the Fourier transform of u with respect to the spatial variable, i.e.,

$$
\widehat{u}(t, \xi)=\int_{\mathbb{R}^{N}} e^{-i x \cdot \xi} u(t, x) d x
$$

Thus, we have

$$
\widehat{\Delta u}(t, \xi)=-|\xi|^{2} \widehat{u}(t, \xi)
$$

and the wave equation (I.1.1) is formally equivalent to the linear differential equation

$$
\partial_{t}^{2} \widehat{u}(t, \xi)+|\xi|^{2} \widehat{u}(t, \xi)
$$

where the variable ξ is considered as a parameter. The solution to this equation, with initial conditions $\left(\widehat{u}(0), \partial_{t} \widehat{u}(0)\right)=\left(u_{0}, u_{1}\right)$, yields

$$
\widehat{u}(t, \xi)=\cos (t|\xi|) \widehat{u}_{0}(\xi)+\frac{\sin (t|\xi|)}{|\xi|} \widehat{u} 1(\xi)
$$

or, with the previously introduced notation,

$$
\begin{equation*}
u(t)=\cos (t|D|) u_{0}+\frac{\sin (t|D|)}{|D|} u_{1} \tag{II.3.1}
\end{equation*}
$$

Theorem II.3.1. Let $\left(u_{0}, u_{1}\right) \in \mathcal{S}\left(\mathbb{R}^{N}\right)^{2}$. Then u defined by (II.3.1) is an element of $C^{\infty}\left(\mathbb{R} \times \mathbb{R}^{N}\right)$. It is the unique C^{2} solution of (I.1.1), (I.1.3).

Proof. Uniqueness follows from Theorem I.4.1. Hence, it suffices to prove that u, defined by (II.3.1), is C^{∞} and satisfies (I.1.1), (I.1.3). We have

$$
u(t, x)=\frac{1}{(2 \pi)^{N}} \int \mathbb{R}^{N} e^{i x \cdot \xi}\left(\cos (t|\xi|) \widehat{u}_{0}(\xi)+\frac{\sin (t|\xi|)}{|\xi|} \widehat{u_{1}}(\xi)\right) d \xi
$$

By writing

$$
\frac{\sin (t|\xi|)}{|\xi|}=t \sum_{k \geq 0} \frac{(-1)^{k}(t|\xi|)^{2 k}}{(2 k+1)!}
$$

we see that it is a C^{∞} function of (t, ξ). Moreover, $\frac{\left|\partial_{t}^{j} \sin (t|\xi|)\right|}{|\xi|} \leq|t||\xi|^{j}$. Similarly, $(t, \xi) \mapsto \cos (t|\xi|)$ is C^{∞} and $\left|\partial_{t}^{j} \cos (t|\xi|)\right| \leq|\xi|^{j}$. Using the fact that \widehat{u}_{0} and \widehat{u}_{1} are elements of $\mathcal{S}\left(\mathbb{R}^{N}\right)$, by the theorem of differentiation under the integral sign, we obtain that u is C^{∞} and satisfies (I.1.1). The Fourier inversion formula shows that u also satisfies the initial conditions (I.1.3).

II.4. The wave equation in Sobolev spaces

4.a. The equation in general homogeneous Sobolev spaces. Let $\left(u_{0}, u_{1}\right) \in$ $\dot{H}^{\sigma} \times \dot{H}^{\sigma-1}, \sigma<N / 2$. We define as before u by (II.3.1). We also define the formal derivative of u with respect to time:

$$
u^{\prime}(t, x)=\cos (t|D|) u_{1}-|D| \sin (t|D|) u_{0} .
$$

Then u and u^{\prime} satisfy the following properties:
Claim II.4.1. $u \in C^{0}\left(\mathbb{R}, \dot{H}^{\sigma}\right), u^{\prime} \in C^{0}\left(\mathbb{R}, \dot{H}^{\sigma-1}\right), u(0)=u_{0}, u^{\prime}(0)=u_{1}$.
Using that $\widehat{u}_{0} \in L^{2}\left(|\xi|^{2 \sigma} d \xi\right)$ and $\widehat{u}_{1} \in L^{2}\left(|\xi|^{2 \sigma-2} d \xi\right)$, it is easy to see that

$$
\begin{equation*}
\widehat{u} \in C^{0}\left(\mathbb{R},|\xi|^{2 \sigma}\right), \quad \widehat{u^{\prime}} \in C^{0}\left(\mathbb{R},|\xi|^{2 \sigma-2}\right) \tag{II.4.1}
\end{equation*}
$$

which yields the announced continuity property. The facts that $\widehat{u}(0)=u_{0}$ and $\widehat{u^{\prime}}(0)=u_{1}$ follow immediately from the definition.

Claim II.4.2. $\forall t, \quad\left\|\left(u(t), u^{\prime}(t)\right)\right\|_{\dot{H}^{\sigma} \times \dot{H}^{\sigma-1}}=\|\left(u_{0}, u_{1} \|_{\dot{H}^{\sigma} \times \dot{H}^{\sigma-1}}\right.$.
Indeed,

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}|\widehat{u}(t, \xi)|^{2}|\xi|^{2 \sigma} d \xi+\int_{\mathbb{R}^{N}} \widehat{u^{\prime}}(t, \xi)|\xi|^{2 \sigma-2} d \xi \\
& \quad=\int_{\mathbb{R}^{N}} \mid \cos (t|\xi|) \widehat{u}_{0}(\xi)+\left.\frac{\sin (t|\xi|)}{|\xi|} \widehat{u}_{1}(\xi)\right|^{2}|\xi|^{2 \sigma} d \xi \\
&+ \int_{\mathbb{R}^{N}}\left|-|\xi| \sin (t|\xi|) \widehat{u}_{0}(\xi)\right. \\
&+\left.\cos (t|\xi|) \widehat{u}_{1}(\xi)\right|^{2}|\xi|^{2 \sigma-2} d \xi \\
&=\int_{\mathbb{R}^{N}}\left(\left|\widehat{u}_{0}(\xi)\right|^{2}+\left|\widehat{u}_{1}(\xi)\right|^{2}|\xi|^{-2}\right)|\xi|^{2 \sigma} d \xi
\end{aligned}
$$

which gives the desired property.
Claim II.4.3. Let $\left(u_{0, n}, u_{1, n}\right) \in\left(\mathcal{S}_{0}\left(\mathbb{R}^{N}\right)\right)^{2}$ such that $\left(u_{0, n}, u_{1, n}\right)$ converges to $\left(u_{0}, u_{1}\right)$ in $\dot{H}^{\sigma} \times \dot{H}^{\sigma-1}$. Let u_{n} be the solution of (I.1.1) with data $\left(u_{0, n}, u_{1, n}\right)$. Then

$$
\lim _{n \rightarrow \infty} \sup _{t \in \mathbb{R}}\left\|u_{n}(t)-u(t)\right\|_{\dot{H}^{\sigma}}+\left\|\partial_{t} u_{n}(t)-u^{\prime}(t)\right\|_{\dot{H}^{\sigma-1}}=0
$$

It follows immediately from the preceding point, applied to $\left(u-u_{n}, u^{\prime}-\partial_{t} u_{n}\right)$.
Claim II.4.4. One can identify u with a distribution on $\mathbb{R} \times \mathbb{R}^{N}$, and it satisfies the wave equation (I.1.1) in the distributional sense. Furthermore $u^{\prime}=\partial_{t} u$ in the sense of distribution.

We first give a "concrete" proof of these facts for the reader which is not familiar with the theory of distributions, assuming that σ is large enough so that the object considered are all functions on $\mathbb{R} \times \mathbb{R}^{N}$.

Let $\sigma \geq 0$. We let u_{n} be as in Claim II.4.3. Using that u_{n} is a C^{∞} solution of (I.1.1) and integrating by parts, we obtain

$$
\iint u_{n}(t, x)\left(\partial_{t}^{2}-\Delta\right) \varphi d x d t=0
$$

Using the Sobolev embedding $\dot{H}^{\sigma} \subset L^{p}, \frac{1}{p}=\frac{1}{2}-\frac{\sigma}{N}$, and the point (II.4.3), we see that

$$
\lim _{n \rightarrow \infty}\left\|u-u_{n}\right\|_{L^{p}(K)}=0
$$

for all compact K of \mathbb{R}^{N}. This implies

$$
0=\lim _{n \rightarrow \infty} \iint u_{n}(t, x)\left(\partial_{t}^{2}-\Delta\right) \varphi d x d t=\lim _{n \rightarrow \infty} \iint u(t, x)\left(\partial_{t}^{2}-\Delta\right) \varphi d x d t
$$

and thus

$$
\forall \varphi \in C_{0}^{\infty}\left(\mathbb{R} \times \mathbb{R}^{N}\right), \quad \iint u\left(\partial_{t}^{2}-\Delta\right) \varphi d t d x=0
$$

which is precisely the meaning of $\partial_{t}^{2} u-\Delta u$ in the distributional sense.
Let $\sigma \geq 1$. The equality

$$
\partial_{t} u_{n}=-|D| \sin (t|D|) u_{0, n}+\cos (t|D|) u_{1, n}
$$

holds by differentiation below the integral sign. By integration by parts,

$$
\forall \varphi \in C_{0}^{\infty}\left(\mathbb{R} \times \mathbb{R}^{N}\right), \quad \iint \partial_{t} u_{n} \varphi d t d x=-\iint u_{n} \partial_{t} \varphi d t d x
$$

Letting $n \rightarrow \infty$, we obtain

$$
\forall \varphi \in C_{0}^{\infty}\left(\mathbb{R} \times \mathbb{R}^{N}\right), \quad \iint u^{\prime} \varphi d t d x=-\iint u \partial_{t} \varphi d t d x
$$

which means that $u^{\prime}=\partial_{t} u$ in the distributional sense.
The proof for general σ is essentially the same, and can be skipped by the reader who is not familiar with distributions.

If $\varphi \in C_{0}^{\infty}\left(\mathbb{R} \times \mathbb{R}^{N}\right)$ (the space of smooth functions with compact support on $\mathbb{R} \times \mathbb{R}^{N}$), one defines the action of u on \mathcal{S} by

$$
\langle u, \varphi\rangle=\int_{-\infty}^{+\infty}\langle u(t), \varphi(t)\rangle_{\mathcal{S}^{\prime}, \mathcal{S}} d t
$$

where $\varphi(t)$ is the function $t \mapsto \varphi(t, \cdot)$. It is a straightforward exercise to prove that u is well-defined and that is is a distribution on $\mathbb{R} \times \mathbb{R}^{N}$. The facts that u satisfies the wave equation in the distributional sense and that $u^{\prime}(t)=\partial_{t} u(t)$ follow immediately from Claim II.4.3, that implies that $\lim u_{n}=u$ in the distributional sense, where u_{n} is a in Claim II.4.3. This last fact is an immediate consequence of Claim II.4.3.

In the sequel of the proof, we will use the formula (II.1.2) as the definition of the solution u of (I.1.1), (I.1.3) with $\left(u_{0}, u_{1}\right) \in\left(\mathcal{S}\left(\mathbb{R}^{N}\right)\right)^{2}$. The preceding claims show that such a u is a limit of smooth, classical solutions of (I.1.1), (I.1.3), and that it satisfies (I.1.1) in a weak sense. Also, we have

$$
\partial_{t} u=-|D| \sin (t|D|) \widehat{u}_{0}+\cos (t|D|) \widehat{u}_{1}
$$

in the sense of distribution. In the sequel, we will always use the notation $\partial_{t} u$ to denote this quantity.
4.b. The wave equation in the energy space. Of particular interest for us is the case $s=1$. We will call "finite energy solutions" the weak solutions with initial data $\dot{H}^{1} \times L^{2}$ given by the preceding subsection in the case $s=1, N \geq 3$. We will focus on the case $N=3$. We note that if $\left(u_{0}, u_{1}\right) \in\left(C^{3} \times C^{2}\right)\left(\mathbb{R}^{3}\right) \cap\left(\dot{H}^{1} \times L^{2}\right)\left(\mathbb{R}^{3}\right)$, we have two ways of defining the solution u : by integrals on spheres, as in Theorem I.5.2, and using the Fourier transform, i.e. by formula (II.3.1). Let us prove that these two definitions coincide:

Proposition II.4.5. Let $u \in C^{2}\left(\mathbb{R} \times \mathbb{R}^{3}\right)$ be a solution of (I.1.1), (I.1.3). Assume furthermore $u_{0}=u(0) \in \dot{H}^{1}, u_{1}=\partial_{t} u(0) \in L^{2}$. Then

$$
u(t)=\cos (t|D|) u_{0}+\frac{\sin (t|D|)}{|D|} u_{1}, \quad \partial_{t} u(t)=-|D| \sin (t|D|) u_{0}+\cos (t|D|) u_{1}
$$

Proof. Let $\left(u_{0, n}, u_{1, n}\right) \in\left(\mathcal{S}\left(\mathbb{R}^{N}\right)\right)^{2}$ with

$$
\lim _{n \rightarrow \infty}\left\|u_{0, n}-u_{0}\right\|_{\dot{H}^{1}}+\left\|u_{1, n}-u_{1}\right\|_{L^{2}}=0
$$

Let u_{n} be the corresponding solution of (I.1.1) given by (II.3.1) (note that by uniqueness it is also the solution given by Theorem I.5.2). Since $u-u_{n}$ is a C^{2}, finite energy solution of (I.1.1), Theorem I.6.1 yields

$$
\forall t, \quad\left\|u(t)-u_{n}(t)\right\|_{\dot{H}^{1}}^{2}+\left\|\partial_{t} u(t)-\partial_{t} u_{n}(t)\right\|_{L^{2}}^{2}=\left\|u_{0}-u_{0, n}\right\|_{\dot{H}^{1}}^{2}+\left\|u_{1}-u_{1, n}\right\|_{L^{2}}^{2},
$$

which tends to 0 as n goes to infinity. This proof the result, since $u_{n}(t)$ converges to $\cos (t|D|) u_{0}+\frac{\sin (t|D|)}{|D|} u_{1}$ in $\dot{H}^{1}\left(\mathbb{R}^{3}\right)$ and $\partial_{t} u_{n}(t)$ converges to $-|D| \sin (t|D|) u_{0}+$ $\cos (t|D|) u_{1}$ in L^{2} by Claim II.4.3.

Using the approximation of finite energy solutions by solutions with initial data in \mathcal{S}, we can transfer several results of Chapter I to general finite energy solutions. This is the case of the decay of energy on past wave cones, which imply finite speed of propagation. If u is a finite energy solution (in any dimension $N \geq 3$) and $R>0$, $x_{0} \in \mathbb{R}^{N}, t_{0} \in \mathbb{R}$, we denote by

$$
E_{\mathrm{loc}}(t)=\int_{\left|x-x_{0}\right|<R-\left|t-t_{0}\right|} e_{u}(t, x) d x
$$

Then
Theorem II.4.6. $E_{\mathrm{loc}}(t)$ is nonincreasing for $t \geq t_{0}$.
Proof. It follows immediately from Theorem I.4.1 the fact that this quantity is nonincreasing when $\left(u_{0}, u_{1}\right) \in \mathcal{S}$, and that for the approximation given by Claim II.4.3, we obviously have, as a consequence of this claim,

$$
\forall t, \quad \lim _{n \rightarrow \infty} \int_{\left|x-x_{0}\right|<R-\left|t-t_{0}\right|} e_{u_{n}}(t, x) d x=\int_{\left|x-x_{0}\right|<R-\left|t-t_{0}\right|} e_{u}(t, x) d x
$$

We note that for general finite energy solution the integration by parts used in the proof of Theorem I.4.1 is no longer valid (since the boundary terms are not always well-defined).
4.c. Equation with a source term. We next consider the wave equation with a source term (I.1.4). By linearity, it is sufficient to study the equation with zero initial data:

$$
\begin{equation*}
\partial_{t}^{2} u-\Delta u=f, \quad \vec{u}_{\mid t=0}=(0,0) \tag{II.4.2}
\end{equation*}
$$

Proposition II.4.7. Assume $f \in C^{0}\left(\mathbb{R}, \mathcal{S}\left(\mathbb{R}^{N}\right)\right)$. Then u defined by

$$
\begin{equation*}
u(t)=\int_{0}^{s} \frac{\sin ((t-s)|D|)}{|D|} f(s) d s \tag{II.4.3}
\end{equation*}
$$

is the unique solution of (II.4.2).
Proof. The uniqueness follows as usual by Theorem I.4.1. It is thus sufficient to check that u defined by (II.4.3) is of class C^{2}, and is a solution of (II.4.2). We consider F the function defined on $\mathbb{R} \times \mathbb{R} \times \mathbb{R}^{N}$ by

$$
F(t, s, x)=\left(\frac{\sin ((t-s)|D|)}{|D|} f(s)\right)(x)
$$

Thus

$$
F(t, s, x)=\frac{1}{(2 \pi)^{N}} \int e^{i x \cdot \xi} \frac{\sin ((t-s)|\xi|)}{|\xi|} \widehat{f}(s, \xi) d \xi
$$

Using that $\widehat{f} \in C^{0}\left(\mathbb{R}, \mathcal{S}\left(\mathbb{R}^{N}\right)\right)$, it is easy to check that F is continuous and C^{∞} with respect to the variable (t, x), and that one can differentiate below the integral sign. The result follows since by integration by parts in the ξ variable,

$$
\Delta F(t, s, x)=-\frac{1}{(2 \pi)^{N}} \int|\xi|^{2} e^{i x \cdot \xi} \frac{\sin ((t-s)|\xi|)}{|\xi|} \widehat{f}(s, \xi) d \xi
$$

We note that Duhamel formula (II.4.3) is still valid when $f \in L^{1}\left([-T,+T], \dot{H}^{\sigma-1}\right)$ for all T, where σ is a fixed real number (assumed to be $<N / 2$ for simplicity), and that it yields a function $u \in C^{0}\left(\mathbb{R}, \dot{H}^{\sigma}\right)$ with $\partial_{t} u \in C^{0}\left(\mathbb{R}, \dot{H}^{\sigma-1}\right)$,

$$
\begin{equation*}
\partial_{t} u=\int_{0}^{t} \cos ((t-s)|D|) f(s) d s \tag{II.4.4}
\end{equation*}
$$

in the sense of distribution, and such that

$$
\begin{equation*}
\|\vec{u}(t)\|_{\dot{H}^{\sigma} \times \dot{H}^{\sigma-1}} \leq \int_{0}^{t}\|f(s)\|_{\dot{H}^{\sigma-1}} d s \tag{II.4.5}
\end{equation*}
$$

Note that (II.4.5) is exactly the energy inequality proved in Chapter I when $\sigma=1$.
We can approximate f by a sequence of functions $\left(f_{n}\right)$ with

$$
f_{n} \in C^{0}(\mathbb{R}, \mathcal{S}), \quad \forall t, \quad \lim _{n \rightarrow \infty} \int_{-T}^{+T}\left\|f(s)-f_{n}(s)\right\|_{\dot{H}^{\sigma-1}} d s=0
$$

The corresponding solutions u_{n} defined by

$$
u_{n}(t)=\int_{0}^{t} \frac{\sin ((t-s)|D|)}{|D|} f_{n}(s) d s
$$

are C^{2} solutions of (II.4.2) and satisfy

$$
\begin{equation*}
\sup _{-T \leq t \leq T}\left\|\vec{u}_{n}(t)-\vec{u}(t)\right\|_{\dot{H}^{\sigma} \times \dot{H}^{\sigma-1}} \underset{n \rightarrow \infty}{\longrightarrow} 0 . \tag{II.4.6}
\end{equation*}
$$

As in the case of the free wave equation, this proves that u satisfies (I.1.1) in the sense of distribution. In this situation, we will take the formula (II.4.3) as a definition of the solution u of (I.1.1).

Exercice II.1. Assume that $\sigma=1$. Let f defined on $\mathbb{R} \times \mathbb{R}^{N}$, such that $f \in L^{1}\left(\left[-T,+T, L^{2}\left(\mathbb{R}^{N}\right)\right)\right.$. Prove that there exists a sequence of functions $f_{n} \in$ $C_{0}^{\infty}\left(\mathbb{R} \times \mathbb{R}^{N}\right)$ such that

$$
\forall T>0, \quad \lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L^{1}\left([-T,+T], L^{2}\left(\mathbb{R}^{N}\right)\right)}=0 .
$$

Exercice II.2. Let u be a C^{2} solution of (I.1.1) for some $f \in C^{0}\left(\mathbb{R} \times \mathbb{R}^{N}\right)$. Assume that $f \in L^{1}\left([-T,+T], L^{2}\left(\mathbb{R}^{N}\right)\right)$ for all $T>0$. Show that u satisfies (II.4.3).

[^0]: ${ }^{1}$ A complete and metrizable vector space, whose topology is defined by a family of seminorms, is called a Fr'echet space.

