
CHAPTER III

Strichartz inequalities

III.1. Introduction

In view of Plancherel theorem and the Fourier representation formulas for the
wave equation, it is natural to study consider the wave equation in L2(RN ) or

in L2 based spaces such as the Sobolev spaces Ḣs considered in the preceding
chapter. However, this is not sufficient for the study of nonlinear wave equations,
since ∥|f |p∥L2(RN ) = ∥f∥2pL2p , the appearance of Lebesgue spaces Lq with q ̸= 2 is
unavoidable. A first way to deal with this issue is to use Sobolev inequalities. For
example, if one wants to consider solutions in the energy spaces for the equation

(III.1.1) ∂2
t u−∆u = u3, x ∈ R3,

the energy inequality will yields terms of the form1 ∥u3∥L1(0,T ;L2) = ∥u∥3L3(0,T ),L6 ≲
T∥u∥L∞(0,T,Ḣ1), which is sufficient to prove the existence and uniqueness of finite

energy solutions for (III.1.1). However this strategy will not work for higher order
nonlinearities, and in particular the quintic one which we will focus on in several
chapters of this course. In this chapter I will introduce the celebrated Strichartz
inequalities, that use the dipsersive properties of the wave equation to improve
over Sobolev type inequalities. This type of inequalities was introduced by Robert
Strichartz in an article published in 1977 [10], and generalized later by several
authors. See e.g. [6] or the book [9].

The original inequalities of Strichartz were formulated in terms of Lebesgue
spaces Lq(R×RN ) on the whole space time R×RN . Having in minds applications
to nonlinear wave equations, it is useful to consider more general spaces where the
Lebesgue exponents in space and times are distinct. If I is an interval, we will
define Lp(I, Lq(RN )) as the set of integrable function f : I 7→ Lq(RN ) such that

(III.1.2) ∥u∥Lp(R,Lq(RN )) =
∥u(t)∥Lq(RN )


Lp(R)t =

�Z

R
∥u(t)∥pLqdt

�1/p

.

if finite (with the usual modification if p = ∞). The notion of integrable functions
with values in a Banach space can be rigorously defined by the theory of Bochner’s
integration, see e.g. section 1.2 in the book [3]. An element of Lp(I, Lq(RN )) can be
identified with a (class) of measurable function on I×RN . With the identification,
we can use the density of C∞

0 (RN ) in Lq(RN ), q < ∞, to prove that C∞
0 (RN ) is

dense in Lp(I, Lq) if q and p are finite (or if q < ∞, q = ∞ and I has finite length).
Using this fact, we will only work on LpLq norms of smooth functions, for which the
definition of (III.1.2) is clear. We will often use the generalized Hölder inequality
in these spaces:

1See below for the notations Lp(0, T ;Lq)
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32 III. STRICHARTZ INEQUALITIES

Proposition III.1.1. Let θ ∈ [0, 1], p, q, p1, q1, p2, q2 in [1,∞] with

1

p
=

θ

p1
+

1− θ

p2
,

1

q
=

θ

q1
+

1− θ

q2
.

Let f ∈ Lp1Lq1 and g ∈ Lp2Lq2 . Then fg ∈ LpLq and

∥fg∥LpLq ≤ ∥f∥Lp1Lq1 ∥g∥Lp2Lq2 .

We will often write Lp(I, Lq) instead of Lp(I, Lq(RN )) to lighten notations.
When I = R, we will also use the notation LpLq.

III.2. Statement of the estimate

The Strichartz inequalities in space dimension 3 with initial data in the energy
space read as follows:

Theorem III.2.1. Let (u0, u1) ∈ (Ḣ1 × L2)(R3) and f ∈ L1(R× L2(R3)). Let

(III.2.1) u(t) = cos(t|D|)u0 +
sin(t|D|)u1

|D| +

Z t

0

sin
�
(t− s)|D|

�

|D| f(s)ds.

Then for any (p, q) with p > 2,

(III.2.2)
1

p
+

3

q
=

1

2
,

one has u ∈ Lp(R, Lq(R3)) and

(III.2.3) ∥u∥Lp(R,Lq) ≤ C
�
∥(u0, u1)∥Ḣ1×L2 + ∥f∥L1(R,L2)

�
.

for a constant C > 0 depending only on p.

We have focused on solutions with initial data Ḣ1×L2 in space dimension 3, in
view of application to the quintic wave equation in space dimension 3. Analogs of
Theorem III.2.1 exist in all space dimensions N ≥ 2, with data in Ḣσ × Ḣσ−1, and
different conditions on the right hand-side f . The condition (III.2.2) is necessary
by the scaling. of the equation. For solutions in space dimension N with initial
data in Ḣσ × Ḣσ−1, it becomes

1

p
+

N

q
=

N

2
− σ.

Let us mention that there is in general another condition on p and q (see the
exercises below). This condition does not appear in Theorem III.2.1 as it is implied
by the scaling condition (III.2.2).

Of particular interest is the case σ = 1/2 in space dimension 3, which was
considered by R. Strichartz in his article [10], and which is useful to solve the cubic
wave equation. We state this inequality and will leave some of the details of the
proof to the reader:

Theorem III.2.2. Let u be defined by (III.2.1) with

(u0, u1) ∈ Ḣ1/2(R3)× Ḣ−1/2(R3), f ∈ L4/3(R× R3).

Then u ∈ L4(R× R3) and

∥u∥L4(R×R3) ≤ C
�
∥f∥L4/3(R×R3) + ∥(u0, u1)∥Ḣ1/2×H−1/2

�
.
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In the sequel of this chapter we will prove Theorem III.2.1 for p ≥ 4, which will
be sufficient for our applications to the nonlinear equations below.

We will use the following notations. If A and B are positive quantities, we will
write A ≲ B when there exists a constant C, independent of the parameters, such
that A ≤ CB, and A ≡ B when A ≲ B and B ≲ A.

By the energy inequality and Sobolev embedding, we have for all t.

∥u(t)∥L6 ≲ ∥u(t)∥Ḣ1 ≲ ∥(u0, u1)∥Ḣ1×L2 + ∥f∥L1(R,L2),

which solves the case p = ∞, q = 6. Next, we notice that by Hölder inequality, if p
and q satisfy (III.2.2) with p ∈ (4,∞), we have

(III.2.4) ∥u∥LpLq ≲ ∥u∥1−θ
L∞L6∥u∥θL4L12

where θ = 4
p . Thus the inequality (III.2.3) for this pair (p, q) will follows from

the same equality for p = 4, q = 12. We are just reduced to prove the estimate

(III.2.3) for p = 4, q = 12. By density, we can assume (u0, u1) ∈
�
C∞

0 (R3)
�2
,

f ∈ C∞
0 (R× R3).

The inequality will follow from a dispersion inequality which is a quantita-
tive version of the inequality |u(t)| ≲ 1 obtained for compactly supported, smooth
functions in Chapter I. This inequality is proved in Section III.3. To deduce the
Strichartz inequality from the dispersion inequality many tooled one needs a few
tools from harmonic analysis are needed. These tools, that include dyadic decom-
position, Littlewood-Paley theory, interpolation of Lebesgue spaces, are recalled in
Section III.4. Section III.6 is devoted to the end of the proof of Theorem III.2.1.

III.3. Dispersion inequality

For any function in S(RN ), and s ∈ N, we will denote

(III.3.1) ∥φ∥Ẇ s,p = sup
|α|=s

∥∂α
xφ∥Lp(RN ) .

In this section we prove

Theorem III.3.1. Let (u0, u1) ∈
�
S(R3)

�2
and u the solution of (I.1.1), (I.1.3).

Then for all t > 0,

∥u(t)∥L∞(R3) ≲
1

t
(∥u0∥Ẇ 2,1 + ∥u1∥Ẇ 1,1) .

Proof. By space translation invariance it is sufficient to bound for |u(t, 0)|.
We have

u(t, 0) = t

Z

S2

u1(ty)dσ(y) +

Z

S2

u0(ty)dσ(y) + t

Z

S2

y ·∇u0(ty)dσ(y).

By the divergence theorem,

(III.3.2) t

Z

S2

u1(ty)dσ(y)

= t

Z

B3

∇ · (yu1(ty)) dy = 3t

Z

B3

u1(ty)dy + t2
Z

B3

y ·∇u1(ty)dy.

We have

(III.3.3)

����
Z

B3

y ·∇u1(ty)dy

���� ≤
1

t3

Z

tB3

|∇u1(y)|dy ≤ 3

t3
∥u1∥Ẇ 1,1 ,
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and

(III.3.4)

Z

B3

|u1(ty)|dy ≤ t

Z

R3

|∂x1
u1(ty)|dy ≤ 1

t2
∥u1∥Ẇ 1,1 ,

where we have used the Sobolev type inequality
R
B3 |φ|dx ≲

R
R3 |∂x1φ|, that fol-

lows immediately from the formula φ(x1, x2, x3) =
R
∞ ∂x1φ(t, x2, x3)dt. Combining

(III.3.2), (III.3.3) and (III.3.4), we obtain

(III.3.5)

����t
Z

S2

u1(ty)dσ(y)

���� ≲
1

t
∥u1∥Ẇ 1,1 .

By the same proof, using also the inequality
R
B3 |φ| ≲

R
R3 |∂x1

∂x2
φ|, we have

(III.3.6)

����
Z

S2

u0(ty)dσ(y)

����+
����
Z

S2

y ·∇u0(ty)dσ(y)

���� ≲
1

t
∥u0∥Ẇ 2,1 .

This concludes the proof of the dispersion inequality. □

III.4. Some tools from harmonic analysis

We first recall an interpolation Theorem for a linear operator between Lp space.

Theorem III.4.1. Let (X,µ), (Y, ν) be measure spaces. Let

θ ∈]0, 1[, (p0, p1, q0, q1, p, q) ∈ [1,∞]6

with

(III.4.1)
1

p
=

θ

p0
+

1− θ

p1
,

1

q
=

θ

q0
+

1− θ

q1
.

Let A be a linear operator defined on Lp0(X) + Lp1(X) which is bounded from
Lp0(X) to Lq0(X) and from Lp1(X) to Lq1(X). Then A is a bounded linear operator
from Lp(X) to Lq(Y ), and

∥A∥Lp(X)→Lq(Y ) ≤ ∥A∥θLp0 (X)→Lq0 (Y )∥A∥1−θ
Lp1 (X)→Lq1 (Y ).

In the theorem, ∥A∥E→F denotes the operator norm of the bounded operator
A : E → F , where E and F are Banach spaces.

We next recall Young’s inequality for the convolution

Theorem III.4.2. Let f ∈ Lq(RN ), g ∈ Lr(RN ) with 1/q + 1/r ≥ 1, and p
defined by 1

p + 1 = 1
q + 1

r . Then

f ∗ g(x) =
Z

f(x− y)g(y)dy

is defined for almost every x ∈ RN and

(III.4.2) ∥f ∗ g∥Lp ≤ ∥f∥Lq∥g∥Lr ,

Exercice III.1. Prove Young’s inequality. Hint: start with the cases (p, q) =
(1, 1), (p, q) = (∞, 1), (p, q) = (∞,∞) and use the interpolation theorem III.4.1.

When N = 1 and θ ∈]0, 1[, the function t 7→ 1/tθ, is not in L1/θ due to a
logarithmic divergence at 0 and ∞. The Hardy-Littlewood-Sobolev inequality says
that this function behaves as a L1/θ function from the point of view of convolution.
We will use this inequality in the particular case θ = 1/2, p = 4/3, q = 4. We refer
e.g. to [1, Theorem 1.7] for the proof.
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Theorem III.4.3 (Hardy Littlewood Sobolev). Let θ ∈]0, 1[, (p, q) ∈]1,∞[2

satisfy
1

p
+ θ = 1 +

1

q
.

Let f ∈ Lp(RN ). Let, for t ∈ R,

(III.4.3) g(t) =

Z

R
f(s)

1

|t− s|θ ds.

Then the integral defining g converges for almost every t, and

∥g∥Lq(R) ≲ ∥f∥Lp(R).

We next give a few elements of Littlewood-Paley theory, which is a useful tool
to study Lp spaces with p ̸= 2 by Fourier transformation. What follows is by no
mean a complete account on Littlewood-Paley theory: we will just state the needed
results, and with sketches of proof. We refer to [1, Chapter 2] for a complete
introduction to the subject.

We start with some inequalities on frequency localized function.

Theorem III.4.4 (Berstein-type estimates). Let ψ ∈ C∞
0 (RN ). Then if 1 ≤

q ≤ p ≤ ∞
(III.4.4) ∀f ∈ S(RN ), ∀j ∈ Z, ∀λ > 0, ∥ψ(λD)f∥Lp ≲ λ(

N
p −N

q )
f


Lq

Assume furthermore ψ(ξ) = 0 for ξ close to 0. Then, if s ∈ R and p ∈ [1,∞],

(III.4.5) ∀f ∈ S(RN ), ∀j ∈ Z,
|D|sψ(λD)f


Lp

≈ λ−s
ψ(λD)f


Lp

Moreover, if s ∈ N,

(III.4.6) ∀f ∈ S(RN ), ∀j ∈ Z, sup
|α|=s

∂α
x (ψ(λD)f)


Lp

≈ λ−s
ψ(λD)f


Lp

In the theorem, the implicit constants might depend on ψ, but of course not
on f and λ > 0.

Proof. Step 1.
We first prove (III.4.4) for λ = 1. We have

(III.4.7) ψ(D)u = (Fψ) ∗ u,
where f ∗ g is the convolution of f and g, defined by

(f ∗ g)(x) =
Z

f(x− y)g(y)dy =

Z
f(y)g(x− y)dy.

This is a classical property of the Fourier transform, we can be checked by an
explicit computation of F(ψ(D)u). Note that Fψ ∈ S ⊂ T

1≤p≤∞ Lp. Using
Young’s inequality

we obtain that (III.4.4) holds for λ = 1, i.e. that there exists C > 0 such that

∀f ∈ S(RN ), ∥ψ(D)f∥Lp ≤ ∥f∥Lq .

Step 2: rescaling. Denote by Tλu(x) = u(λx). By a simple change of variable, one
can prove

Ψ(D)(Tλu) = Tλ (ψ(λD)u)

Thus by Step 1,
∥Tλ (ψ(λD)u)∥Lp ≲ ∥Tλu∥Lq .



36 III. STRICHARTZ INEQUALITIES

Since ∥Tλf∥Lp = 1
λN/p ∥f∥Lp , we obtain (III.4.4) for any λ > 0.

Step 3: proof of (III.4.5).
Let χ ∈ C∞

0 (Rd \ {0}), such that χ(ξ) = 1 if ξ ∈ supp(ψ). Then

|D|sψ(λD)u = |D|sχ(λD)ψ(λ|D|)u =
1

λs
Ξ(λD)ψ(λD)u,

where Ξ(ξ) = |ξ|sχ(ξ). Using (III.4.4) with p = q, we obtain

(III.4.8)
|D|sψ(λ|D|)u


Lp ≲ 1

λs

ψ(λ|D|)u

Lp .

Using (III.4.8), with s replaced by −s and u replaced by |D|sχ(λD)u, we obtain
ψ(λ|D|)u


Lp =

|D|−sψ(λ|D|)|D|su

Lp ≲ λs

ψ(λ|D|)|D|su

Lp .

This concludes the proof of (III.4.5).
Step 4: proof of (III.4.6). First, we have

(III.4.9)
ψ(λD)∂α

x f

Lp

=
∂α

xχ(λD)ψ(λD)f

Lp

=
1

|λ||α|
Ξα(λD)ψ(λD)f


Lp

,

where χ is as above and Ξα(ξ) = (iξ)αχ(ξ). The estimate ≲ in (III.4.6) then follows
from Bernstein with q = p.

Next, if s is even, we have |D|s = (−∆)s/2, which shows that (III.4.5) implies
the other estimate in (III.4.6).

If s is odd, we write
ψ(λD)|D|sf

 = ∥ψ(λD)|D|s+1 1

|D|f∥Lp ≲ sup
|α|=s+1

∂α
x |D|−1ψ(λD)f


Lp

≈ 1

λ
sup

|α|=s+1

∥∂α
xψ(λD)f∥Lp ,

and we conclude with (III.4.9) that the inequality ≳ in (III.4.6) holds in this case
also. □

The Littlewood-Paley theory is based on a dyadic decomposition of a distri-
bution f ∈ S ′(RN ). We fix once and for all a radial function φ ∈ C∞

0 (RN ) with
φ(ξ) = 1 if |ξ| ≤ 1/2, and φ(x) = 0 if |x| ≥ 1. We let

Θj(ξ) = φ

�
ξ

2j+1

�
− φ

�
ξ

2j

�
= Θ

�
ξ

2j

�
, Θ(ξ) = φ(ξ/2)− φ(ξ).

We have

suppΘj ⊂
�
2j−1 ≤ |ξ| ≤ 2j+1

	
,

+∞X

j=−∞
Θj(ξ) = 1, (ξ ̸= 0),

where the sum is, for any fixed ξ, a finite sum. We denote

∆jf = Θj(D),

so that (at least formarly) f =
P

j∈Z Θj(D)f (Dyadic decomposition of f in fre-

quencies). If f ∈ S0, it is easy to prove that this sum converges in S.
We have the inequality

(III.4.10)
1

2
≤

X

j∈Z
Θ2

j (ξ) ≤ 1.

Exercice III.2. Prove (III.4.10).
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Combining with Plancherel identity, it follows that if f ∈ S(RN ),

(III.4.11) ∥f∥2L2(RN ) ≈
X

j∈Z
∥∆jf∥2L2(RN ),

and more generally,

∥f∥2
Ḣs ≈

X

j∈Z
∥∆j |D|sf∥2L2 ≈

X

j∈Z
(22j)s∥∆jf∥2L2 .

The situation is more complicated for p ̸= 2. Nevertheless, we have the following
estimates:

Theorem III.4.5. For all p ∈ (1, 2], for any f ∈ S

(III.4.12)
X

j∈Z
∥∆jf∥2Lp ≲ ∥f∥2Lp

For all p ∈ [2,∞), for any f ∈ Lp,

(III.4.13) ∥f∥2Lp ≲
X

j∈Z
∥∆jf∥2Lp .

We omit the proof refering the interested reader to [1, Theorem 2.40].

Exercice III.3. Prove:

• For all p ∈ [1, 2], for any f ∈ S

(III.4.14) ∥f∥pLp ≲
X

j∈Z
∥∆jf∥pLp

• For all p ∈ [2,∞], for any f ∈ Lp,

(III.4.15)
X

j ∈Z
∥∆jf∥pLp ≲ ∥f∥pLp

(with the usual modification if p = ∞).

Hint: Start with the cases p = 1 and p = 2 for (III.4.14) and p = ∞ and p = 2 for
(III.4.15), then use an interpolation argument.

The two estimates of Exercise III.3 complete the estimates of Theorem III.4.5.
The proofs are simpler than the proof of Theorem III.4.5, but we did not detail
them here since we will not need them in the sequel.

Note that there is no perfect equivalence between the norm ∥f∥Lp and a norm
defined as a ℓq norm of the sequence (∥∆jf∥Lp)j if p ̸= 2.

Let us mention that the quantities

(III.4.16) ∥f∥q
Ḃ0

p,q

=
X

j∈Z
∥∆jf∥qLp

appearing in (III.4.12), (III.4.13), (III.4.14) and (III.4.15) defines the norm of the

so-called Besov space Ḃ0
p,q. See Sections 2.3, 2.4 and 2.5 of [1] for more details on

Besov spaces.
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III.5. A Strichartz inequality for the half wave equation

It is sometimes useful to decompose the wave equation in two first-order equa-
tions in the time-variable. This is particularly the case when dealing with Fourier
analysis tools. We thus introduced the half-wave equations

∂tu+ i|D|u = 0, ∂tu− i|D|u = 0,

and their solutions (given in term of Fourier representations) e−it|D|φ and eit|D|φ.
Note that the solution to the usual wave equation (I.1.1), (I.1.3) is given by

2u(t) = eit|D|u0 + e−it|D|u0 +
eit|D|

i|D| u1 −
e−it|D|

i|D| u1

Note also that if v(t) = eit|D|φ, then e−it|D|u0 = v(−t), thus it is sufficient to
consider only the solution eit|D|φ. The function eit|ξ| is not smooth at ξ = 0, so that
eit|D| does not map S(RN ) to S(RN ). However it maps S0(RN ) to S0(RN ) (where
as before S0(RN ) is the space of functions φ in S(RN ) such that φ̂ is identically 0
in a neighborhood of the origin).

In this Section, we will prove

Proposition III.5.1. There exists C > 0 such that

(III.5.1) ∀φ ∈ S(RN ),


eit|D|

|D| φ


L4(R,L12)

≲ ∥φ∥L2 .

Proof. Step 1: frequency-localized dispersion estimate.
We will use the Littlewood-Paley decomposition of φ, φ =

P
j∈Z ∆jφ. In this

step we prove the following frequency localized version of the dispersion inequality
for the wave equation

(III.5.2) ∀j,

eit|D|

|D| ∆jφ


L∞

≲ 2j

t
∥∆jφ∥L1 .

We let φj = ∆jφ. By the dispersion inequality for the full wave equation and
Theorem III.4.4, we have


sin(t|D|)

|D| φj


L∞

≲ 1

|t|∥φj∥Ẇ 1,1 ≈ 2j

|t|∥φj∥L1

and

∥cos(t|D|)φj∥L∞ ≈ 1

2j
∥cos(t|D|)φj∥L∞ ≲ 1

2jt
∥φj∥Ẇ 2,1 ≈ 2j

t
∥φj∥L1 .

Step 2. A L4/L4/3 dispersion inequality

We next introduce e∆jf = ∆j−1f + ∆jf + ∆j+1f . Noting that Θj−1 + Θj +

Θj+1 = 1 on the support of Θj , we see that e∆h∆jf = ∆jf . For fixed t > 0 and

j, consider the operator eit|D|

|D|
e∆j . By Step 1, it is a bounded operator from L1 to

L∞, with norm ≲ 2j/t. By Plancherel and Theorem III.4.4, it is bounded from L2

to L2 with norm ≲ 2−j . Using the interpolation Theorem III.4.1, we obtain that

eit|D||D|−1 e∆j is a bounded operator from L4/3 to L4 with operator norm ≲ t−1/2.

Using that e∆j∆j = ∆j , we deduce

(III.5.3)

eit|D| 1

|D|∆jφ


L4

≲ 1

|t|1/2 ∥∆jφ∥L4/3
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Step 3. A frequency localized Strichartz inequality.
Next, we consider the operator Tj defined by

(Tjφ)(t, x) =
�
eit|D||D|−1/2∆jφ

�
(x)

In this step we prove that Tj extends to a bounded operator from L2(R3) to L4(R×
R3), with an operator norm that is independent of j, i.e.

(III.5.4) ∀φ ∈ S(R3),
eit|D||D|−1/2∆jφ


L4(R×R3)

≲ ∥φ∥L2 .

We will use a so-called TT ∗ argument to reduce the proof of (III.5.4) to the proof
of the boundedness of an operator acting on functions on R× R3.

The inequality (III.5.4) is equivalent to the following statement:

∀φ ∈ S(R3), ∀g ∈ C∞
0 (R× R3),

����
ZZ

(Tjφ)gdxdt

���� ≲ ∥φ∥L2(R3)∥g∥L4/3(R×R3).

Using Plancherel equality in the space variable for every t ∈ R, we obtain
ZZ

(Tjφ)gdxdt =

Z
φ(x)(T ∗

j g)(x)dx,

where the (formal) adjoint T ∗
j of Tj is defined by

T ∗
j g(x) =

Z

R
e−it|D||D|−1/2∆jg(t)dt.

We are thus reduced to prove

(III.5.5) ∀g ∈ C∞
0 (R× R3),

T ∗
j g


L2(R3)

≲ ∥g∥L4/3(R×R3).

We have

(III.5.6)
T ∗

j g
2
L2 =

Z

R3

T ∗
j gT

∗
j gdx =

ZZ

R×R3

TjT
∗
j ggdxdt,

and (III.5.5) would follow from the inequality

(III.5.7)
TjT

∗
j g


L4(R×R3)

≲ ∥g∥L4/3(R×R3).

We have

TjT
∗
j g(t, x) =

Z

R
ei(t−s)|D||D|−1∆jg(s)ds.

Using the L4/L4/3 dispersion inequality of Step 2, we obtain at fixed t,

(TjT
∗
j g)(t)


L4(R3)

≲
Z

R

1

|t− s|1/2 ∥∆jg(s)∥L4/3(R3) ds

By Hardy Littlewood Sobolev inequality, we deduce

∥TT ∗g∥L4(R×R3) ≲ ∥∆jg∥L4/3(R×R3),

which yields (III.5.7) and thus concludes the proof of (III.5.4). Note that we can

also localize the right-hand side in (III.5.4). Indeed, using e∆j = ∆j+1+∆j +∆j−1,

we see that (III.5.4) remains valid when ∆j is replaced by e∆j . Applying this

inequality to ∆jφ, and using that e∆j∆j = ∆j , we obtain

(III.5.8) ∀φ ∈ S(R3),
eit|D||D|−1/2∆jφ


L4(R×R3)

≲ ∥∆jφ∥L2 .
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Step 5. The L4L12 localized in frequency Strichartz inequality. We next proveeit|D|∆jφ

L4(R,L12(R3))

≲ ∥∆jφ∥Ḣ1

Indeed by the Bernstein type’s inequalities of Theorem III.4.4,
eit|D||D|−1∆jφ


L4(R,L12(R3))

≈ 1

2j/2

eit|D||D|−1/2∆jφ

L4(R,L12(R3))

≲
eit|D||D|−1/2∆jφ


L4(R×R3)

≲ ∥∆jφ∥L2 .

Step 6. Summing up the frequencies.
In this step, we conclude the proof of Proposition III.5.1, by summing up the

estimate of Step 5 with respect to j. We fix φ ∈ S0(R3). We have

(III.5.9)
X

j∈Z

eit|D|∆jφ

2

L4L12
≲

X

j∈Z

|D|∆jφ

2

L2
.

The right-hand side is ≈ ∥φ∥2
Ḣ1 by Plancherel equality (see (III.4.11)). We must

prove that the left-hand side dominates
eit|D|φ


L4L12 . Let u = eit|D|φ and uj =

∆ju. By Minkowski inequality (i.e. the triangle inequality for the L2(R) norm),
we see that

X

j∈Z
∥uj∥2L4L12 =

X

j∈Z

∥uj(t)∥2L12(R3)


L2(R)

≥


X

j∈Z
∥uj(t)∥2L12


L2(R)

By Theorem III.4.5, at fixed t,

∥u(t)∥2L12 ≲
X

j∈Z
∥uj(t)∥2L12 .

This shows X

j∈Z
∥uj∥2L4L12 ≳

∥u(t)∥2L12(R3)


L2(R)

= ∥u∥1/2L4L12 ,

which together with (III.5.9) concludes the proof of Proposition III.5.1. □

Remark III.5.2. An alternative, somehow simpler approach is to sum up over
j the frequency localized dispersion inequality of Step 2 of the preceding proof.
Using Theorem III.4.5, one obtains a L4/L4/3 dispersion inequality for the half-
wave equation: eit|D||D|−1φ


L4

≲ 1

|t|1/2 ∥φ∥L4/3 .

It is then possible to forget about frequency cut-off and run the preceding arguments
to obtain Strichartz inequalities for the half-wave equation directly.

III.6. Proof of the Strichartz estimate for the full wave equation

We are now ready to prove Theorem III.2.1. We can treat separately the terms

uL(t) = cos(t|D|)u0 +
sin(t|D|)u1

|D|
and

(III.6.1) (Bf)(t) =

Z t

0

sin
�
(t− s)|D|

�

|D| f(s)ds.
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Using that cos(t|D|) = 1
2

�
eit|D| + e−it|D|�, sin(t|D|) = 1

2i

�
eit|D| − e−it|D|�, we ob-

tain immediately from Proposition III.5.1

∥uL∥L4(R×R3) ≲ ∥u0∥Ḣ1 + ∥u1∥L2 .

The other term is more delicate. We first consider

ua(t) =

Z ∞

0

ei(t−s)|D|

|D| f(s)ds = eit|D|F, F =

Z ∞

0

e−is|D|

|D| f(s)ds

and

ub(t) =

Z ∞

0

e−i(t−s)|D|

|D| f(s)ds

Using that e−is|D|/|D| is a bounded operator from L2 to Ḣ1, we obtain that F ∈ Ḣ1

with

∥F∥Ḣ1 ≲ ∥f∥L1(R,L2(R3)).

By the Strichartz estimate for the half-wave equation, Proposition III.5.1, we deduce

∥ua∥L4(R,L12(R3)) ≲ ∥f∥L1(R,L2(R3)).

Similarly

∥ub∥L4(R,L12(R3)) ≲ ∥f∥L1(R,L2(R3)).

Combining, we obtain

(III.6.2) ∥Af∥L4(R,L12(R3)) ≲ ∥f∥L1(R,L2(R3)),

where A is the operator defined by

Af(t) =

Z ∞

0

sin
�
(t− s)|D|

�

|D| f(s)ds.

Note that Af is analogous to Bf defined above, the only difference between the
two being that the integral defining Af is on [0,∞), whereas the integral defining
Bf is on [0, t[. An important functional analysis result, due to Michael Christ and
Alexander Kiselev [4], shows that the boundedness of A implies the boundedness of
the operator B. We state this result in a version that was proposed by Christopher
Sogge:

Lemma III.6.1. Let X and Y be Banach spaces. Let 1 ≤ p < q ≤ ∞. Let K
a continuous function from R2 to the space of bounded linear operators from X to
Y . Let

(Af)(t) =

Z ∞

−∞
K(t, τ)f(τ)dτ,

and assume that A is a bounded operator from Lp(R, X) to Lq(R, Y ), with operator
norm C. Define the operator B by

(Bf)(t) =

Z t

−∞
K(t, τ)f(τ)dτ.

Then B extends to a bounded operator from Lp(R, X) to Lq(R, Y ), with operator

norm ≤ 2Cθ2

1−θ , where θ = 2
1
q− 1

p .
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Applying Christ and Kiselev Lemma to

(III.6.3) K(t, τ) = 11τ>0

sin
�
(t− τ)|D|

�

|D| χ(ε|D|),

where χ ∈ C∞
0 (R3) is equal to 1 close to 0, one obtains

∀ε > 0, ∀f ∈ L1(R, L2), ∥χ(εD)Bf∥L4L12 ≲ ∥f∥L1L2 ,

where Bf is as in (III.6.1). Letting ε → 0 we obtain the desired result.

Exercice III.4. Justify this last argument.
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