

HOMEWORK, TO BE HANDED BACK THE DAY OF THE EXAM

Exercice 1 (Whitehead Theorem for model categories). The goal is to prove that in a model category C , if X, Y are both fibrant and cofibrant objects, then a map $f : X \rightarrow Y$ is a weak equivalence if and only if it is an homotopy equivalence.

1. Let $f \sim^l g$ be left homotopic. Show that f is a weak equivalence if and only if g is a weak equivalence.
2. Let $i : X \xrightarrow{\sim} C$ be an acyclic cofibration where X is both fibrant and cofibrant and C is fibrant. Prove that there is a retraction r of i and then show that r is an homotopy inverse of i .
3. Deduce from the previous question that a weak equivalence between fibrant and cofibrant objects is an homotopy equivalence.
4. Let $f : X \rightarrow Y$ be an homotopy equivalence between fibrant and cofibrant objects, and let $f : X \xrightarrow{\sim} C \xrightarrow{p} Y$ be a factorization where the first map is an acyclic cofibration.
 - (a) Prove that C is both fibrant and cofibrant and that if g is an homotopy inverse of f , with left homotopy $H : C' \rightarrow Y$ between id_Y and $f \circ g$, there is a lift $H' : C' \rightarrow C$ such that $p \circ H' = H$ and $H' \circ i_0 = i \circ g$.
 - (b) Deduce that $H' \circ i_1 \circ p$ is homotopical to id_C (one can note that i has an homotopy inverse) and then that it is a weak equivalence.
 - (c) Prove that p is a retract of a weak equivalence and then conclude.

Exercice 2. Let G a finite group and \mathbf{Top}^G be the category of topological spaces endowed with a continuous G -action with morphisms given by continuous G -equivariant map: for all $g \in G$, $x \in X$, $f(g \cdot x) = g \cdot f(x)$. Denote BG the category with a single object and with arrows given by elements of G with multiplication for composition.

1. Prove that the category of functors $\text{Fun}(BG, \mathbf{Top})$ is equivalent to \mathbf{Top}^G and deduce a model structure on \mathbf{Top}^G (which will be called the projective model structure).
2. Prove that the forget functor $\mathbf{Top}^G \hookrightarrow \mathbf{Top}$ is right Quillen for the projective structure
3. Prove that the fixed points $(-)^G : \mathbf{Top}^G \rightarrow \mathbf{Top}$ and orbits functors $(-)_G : \mathbf{Top}^G \rightarrow \mathbf{Top}$, defined by $X^G = \{x \in X, \forall g \in G, g \cdot x = x\}$ and $X_G = X/x \sim g \cdot x$ have left and right adjoints respectively. Identify their adjoints.
4. Deduce that there exist right and left total derived functor, denoted $(-)^{hG}$ and $(-)_{hG}$ and interpret them as homotopy (co)limits.
5. Let EG be cell complex with a free and cellular continuous G -action. Show that EG is cofibrant in $\text{Fun}(BG, \mathbf{Top})$ for the projective structure.
6. Deduce a formula for $(-)_{hG}$ and then that $(\{*\})_{\mathbb{Z}/2\mathbb{Z}} \cong \mathbb{R}P^\infty$ (indic: consider $X \times_G Y = X \times Y/(g \cdot x, y) \sim (x, g \cdot y)$).
7. Find a formula for $(-)^{hG}$ in terms of EG and compute $(\{*\})^{hG}$.
8. Prove that $E\mathbb{Z} \simeq \mathbb{R}$.

9. or X be a compact metric space with trivial \mathbb{Z} -action, describe $(X)^{h\mathbb{Z}}$. Deduce that $(S^1)^{h\mathbb{Z}}$ (where the action is trivial) has infinitely many pathwise connected components.

Exercice 3. Let $Ch(R)$ be endowed with the projective model structure.

1. Prove that the functor $(A \xrightarrow{f} B) \mapsto \text{coker}(f)$ has a total left derived functor $\mathbb{L}\text{coker}$. Compute, for all module map $M \xrightarrow{g} N$ the homology groups of $\mathbb{L}\text{coker}(g)$. (Indic: one can rewrite coker as a colimit).
2. Compute the homotopy pullback $\{0\} \times_{X_*}^h \{0\}$ and its homology groups for X_* a chain complex

Exercice 4 (Eilenberg Mac Lane spaces). We equip **sSet** with its usual model structure and $Ch_{\geq 0}(R)$ with its projective model structure. For a simplicial set X_* , let $D_n(X_*)$ be the subset of degenerate¹ simplices of X_n . We define the normalized chain complex $N_*(X_*)$ given in degree n as the quotient

$$N_n(X_*) = \left(\bigoplus_{X_n} \mathbb{R} \right) / \bigoplus_{D_n(X_*)} R$$

with differential given by $d = \sum_{i=0}^n (-1)^i d_i$ where d_i are the face maps.

1. Check that $N_*(X_*)$ is indeed a chain complex. **We admit² in what follows that this functor has a right adjoint $B : Ch_{\geq 0}(R) \rightarrow \text{sSet}$.**
2. Prove that the adjunction $N_* : \text{sSet} \rightleftarrows Ch_{\geq 0}(R) : B$ is a Quillen adjunction.
3. For C a chain complex, we call $K(C) := |B(C)|$ its (generalized) Eilenberg-Mac Lane space. Prove that there is a natural isomorphism of topological spaces

$$\text{Hom}_{\text{HoTop}}(X, K(S^n(R))) \cong H^n(X, R)$$

where $S^n(M)$ is the complex given by M in degree n and 0 else. (Hint: use the relationship in between left homotopy and chain homotopy when appropriate cofibrancy and fibrancy are satisfied).

4. Prove that we have a natural isomorphism of chain complexes

$$\text{hom}_{\text{Ho}Ch_{\geq 0}(R)}(S^n(R), C) \cong H_n(C).$$

5. Prove that $N_*(\Delta^n / \partial\Delta^n) \cong S^n(R)$.

6. Deduce that for any chain complex C , the homotopy groups of the Eilenberg mac Lane spaces are given by

$$\pi_n(K(C)) \cong H_n(C).$$

7. **bonus : link with exercice 2:** Let G be abelian group (seen as a discrete topological group) and take $R = \mathbb{Z}$.

- (a) Prove that $K(S^0(\mathbb{Z})) \cong G$ and $K(D^1(\mathbb{Z}))$ is contractible.
- (b) *we admit that there is are weak-equivalences $B(C) \times B(D) \xrightarrow{\sim} B(C \otimes D)$. Deduce that $B(D^1(G))$ is homotopy equivalent to EG and that $K(S^1(G))$ is a model for the classifying space BG of G of exercice 2.*

¹that is those in the image of a degeneracy

²this follows from the Dold-Kan correspondance and forget-free adjunction in between simplicial R -module and **sSet**