Corrigé de la TD Feuille de TD 4 d'algèbre et topologie – : Limites inductives et projectives; catégories additives

Grégory Ginot

Exercice 1 (Limites dans A - mod). Soit A un anneau et k un corps.

- (1) Soit I un ensemble filtrant. Montrer que $\lim_{i \to \infty} M_i$ existe (on pourra considérer $\coprod_i M_i$ modulo la relation $x_i \sim y_j$ si $u_{ki}(x_i) = u_{kj}(x_j)$ pour un $k \geq \max(i, j)$).
- (2) Montrer que tout A-module M est limite inductive filtrante de modules de type fini.
- (3) Montrer que tout A-module de type fini est limite inductive filtrante de modules de présentation finie. (On dit qu'un A-module M est de présentation finie s'il existe un morphisme $f: A^m \to A^n$ tel que $M = \operatorname{coker} f$.)
- (4) Soit $\alpha: I \to A$ -mod un foncteur avec I filtrant. Montrer que l'application naturelle

$$\lim \operatorname{Hom}_{\mathcal{C}}(M,\alpha) \to \operatorname{Hom}_{\mathcal{C}}(M,\lim \alpha)$$

est injective si M est de type fini et bijective si M est de présentation finie.

- (5) On note $k_n[x]$ les polynômes de degré $\leq n$. Calculer $\lim_{\longrightarrow} k_n[x]$ et $\lim_{\longleftarrow} k[x]/(x^n)$. En déduire que $\lim_{\longrightarrow} \operatorname{Hom}_{\mathcal{C}}(M, k_n[x]) \to \operatorname{Hom}_{\mathcal{C}}(M, \lim_{\longrightarrow} k_n[x])$ n'est pas bijective en général.
- Solution 1. (1) On doit définir une addition et une action de A sur l'ensemble $\coprod M_i/\sim$. Il est clair que la relation est une relation d'équivalence puisque I est filtrant. Soit $a,b\in\coprod M_i/\sim$. Par définition, il existe $i,j\in I$ tel que $a=[a_i],\ b=[b_j]$ (on note [x] la classe de $x\in\coprod M_i$ dans le quotient par la relation \sim). Comme I est filtrant, il existe $k\geq i,j$. On pose $a+b:=[u_{i\to k}(a_i)+u_{j\to k}(b_j)]$. Il faut évidemment vérifier que ceci est indépendant des choix faits. Déjà, si $k'\geq i,j$, alors il existe $k''\geq k,k'$ et on a $u_{i\to k}(a_i)\sim u_{i\to k''}(a_i)\sim u_{i\to k'}(a_i)$. On en déduit que a+b est indépendant du choix de k. De même, si $a_i\sim x_l$, alors il existe $s\geq i,l$ et $k\geq j,s$. On a $u_{i\to k}(a_i)=u_{l\to k}(x_l)$. D'où a+b est indépendant du choix d'un représentant de a et (de même) pour b. Il reste à voir que $\lim_i M_i=\coprod_i M_i/\sim$. Les applications $\phi_i:M_i\to\coprod_i M_i\to\coprod_i M_i/\sim$ vérifient $\phi_k\circ u_{i\to k}=\phi_i$ par contruction. De plus soient $f_i:M_i\to Z$ des applications linéaires vérifiant $f_k\circ u_{i\to k}=f_i$. Une application $g:\coprod_i M_i/\sim Z$ vérifie nécessairement que pour $a=[a_i]\in\coprod_i M_i/\sim$, on a $f([a])=f_i(a_i)$. On vérifie que cette application est bien définies et de plus linéaire. Il en découle que $\coprod_i M_i$ vérifie la propriété universelle de $\lim_i M_i$.
- (2) Soit I l'ensemble des partie finies de M. Si $i = \{x_1, \ldots, x_n\} \in I$ on note M_i le sous-modules de M engendré par $\{x_1, \ldots, x_n\}$. On définit sur I la relation de préordre suivante : $i \leq j \iff M_i \subset M_j$. Ce préordre est évidement filtrant car si $i, j \in I$ alors $i \leq i \cup j$ et $j \leq i \cup j$. De plus $x_i \sim x_j$ si et seulement si $x_i = x_j$ dans M (cela a du sens car M_i et M_j sont inclus dans M). on déduit de la question (1) que $M = \bigcup_{i \in I} M_i = \lim_{i \in I} M_i$.
- (3) Soit M un module de type fini, $\{x_1, \ldots, x_n\}$ un système de générateurs, $g: A^n \to M$ l'application surjective définie par $g(a_1, \ldots, a_n) = \sum_{i=1}^n a_i . x_i$ et $K = \ker g$.

D'après la question (1) on sait que K est la limite inductive de ses sous-modules de type fini K_i $(i \in I, \text{ où } I \text{ est l'ensemble des partie finies de } K)$. On a donc des injections naturelles $K_i \, \stackrel{\leftarrow}{\hookrightarrow} \, f_i \, A^n$. On pose $M_i = \operatorname{coker} f_i$; on a alors pour tout $i \in I$ un diagramme commutatif:

$$0 \longrightarrow K \xrightarrow{f} A^n \xrightarrow{g} M \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

De plus si $i \leq j$ alors on a un diagramme commutatif :

$$0 \longrightarrow K_{j} \xrightarrow{f_{j}} A^{n} \xrightarrow{g_{j}} M_{j} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

La famille de module $\{M_i\}_{i\in I}$ forme donc un système inductif filtrant.

On en déduit que $\varinjlim_{i \in I} M_i \simeq \operatorname{coker}(\varinjlim_{i \in I} K_i \to A^n) \simeq \operatorname{coker}(K \xrightarrow{f} A^n) \simeq M$. Comme, par hypothèse K_i est de type fini, il existe un épimorphisme $A^{m_i} \to K_i$ et $\operatorname{coker}(A^{m_i} \to K_i \to A^n) = M_i$. Ceci termine la preuve en prenant M_i comme système filtrant.

(4) Pour tout $i \in I$, on a un morphisme $\operatorname{Hom}_A(M, \alpha(i)) \xrightarrow{u_i \circ} \operatorname{Hom}_A(M, \lim_{\longrightarrow} \alpha)$ vérifiant $u_k \circ u_{i \to k} = u_i \circ$ par fonctorialité de $\operatorname{hom}_A(M, -)$. La propriété universelle de la limite inductive donne donc une application naturelle $u : \lim_{\longrightarrow} \operatorname{Hom}_A(M, \alpha) \to \operatorname{Hom}_A(M, \lim_{\longrightarrow} \alpha)$. Si M est de type fini, alors il est de la forme $M \cong \operatorname{coker}(K \xrightarrow{f} A^n)$ où $K = A^m$ si M est de présentation finie. Par fonctorialité de $\operatorname{Hom}_A(-, N)$, on a un diagramme commutatif

$$0 \longrightarrow \lim_{\to} \operatorname{Hom}_{A}(M, \alpha) \longrightarrow \lim_{\to} \operatorname{Hom}_{A}(A^{n}, \alpha) \xrightarrow{\circ f} \lim_{\to} \operatorname{Hom}_{A}(K, \alpha)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

dont les lignes sont exactes car $\operatorname{Hom}_A(-,N)$ commute avec les conoyaux (on pourrait invoquer son exactitude à gauche aussi) et \varinjlim commute avec les noyaux puisque I est filtrant. Pour conclure il suffit donc de montrer que u: \varinjlim $\operatorname{Hom}_A(A^p,\alpha) \to \operatorname{Hom}_A(A^p,\lim_{\longrightarrow}\alpha)$ est un isomorphisme. Ceci est évident car il y a un isomorphisme naturel $\operatorname{Hom}_A(A^p,N) \cong N^p$ et que \varinjlim commute aux produits (puisque elle est filtrante).

(5) On applique le (1). On a $\lim_{n \to \infty} k_n[x] = \coprod_{n \to \infty} k_n[x] / \infty$. Or dans le cas présent, les applications $k_n[x] \to k_{n+1}[x]$ sont des inclusions. On déduit de la question 1 que $\lim_{n \to \infty} k_n[x] = \bigcup_{n \to \infty} K_n[x] = k[x]$. Considérons le système projectif $k[x]/(x^n)$. Il y a des applications évidentes $p_n : k[[x]] \to k[x]/(x^n)$ obtenues en ne gardant que les termes de degré $\le n-1$. Ces applications commutent avec les surjections $k[x]/(x^n) \to k[x]/(x^{n-1})$. Par ailleurs, soient $g_n : Z \to [x]/(x^n)$ des applications commutant aux surjections $k[x]/(x^n) \to k[x]/(x^{n-1})$. En particulier, il existe une suite $(a_n)_{n \in \mathbb{N}}$ telle que, pour tout $n, g_n(x) = \sum_{i=0}^n a_i x^i$. On pose $g(z) = \sum_{i=0}^\infty a_i x^i \in k[[x]]$. Cette application est bien linéaire et factorise les applications g_n . Donc $\lim_{n \to \infty} k[x]/(x^n) \cong k[[x]]$. Regardons le morphisme

$$\lim_{\stackrel{\rightarrow}{\longrightarrow}} \operatorname{Hom}_k(k[x],k_n[x]) \to \operatorname{Hom}_k(k[x],\lim_{\stackrel{\rightarrow}{\longrightarrow}} k_n[x]) \cong \operatorname{Hom}_k(k[x],k[x]).$$

Le membre de gauche contient l'application $\mathrm{Id}: k[x] \to k[x]$; Ce n'est pas le cas du membre de droite, car, sinon, par la question 1, $\mathrm{Id}_{k[x]}$ serait inclus dans un $\mathrm{Hom}_k(k[x], k_n[x])$ ce qui est impossible (puisqu'il existe des polynômes de tout degré).

Exercice 2 (Limites dans **Ring**). Soit $\{A_i\}_{i\in I}$ un système inductif filtrant d'anneaux commutatifs unitaires.

- (1) Montrer que $A = \lim_{i \to \infty} A_i$ est naturellement muni d'une structure d'anneau.
- (2) Montrer que si $A \simeq 0$ alors il existe $i \in I$ tel que $A_i \simeq 0$.
- (3) Définir la notion de système inductif $\{M_i\}_{i\in I}$ de A_i -modules et montrer l'existence de la limite inductive $\lim M_i$ comme A-module.
- (4) Soient $\{M_i\}_{i\in I}$ et $\{N_i\}_{i\in I}$ des systèmes inductifs de A_i -modules. Etablir l'isomorphisme canonique

$$\underset{i \in I}{\varinjlim} (M_i \otimes_{A_i} N_i) \xrightarrow{\sim} \underset{i \in I}{\varinjlim} M_i \otimes_A \underset{i \in I}{\varinjlim} N_i$$

Solution 2. Pour tout $i \leq j$ on note $\varphi_{j,i}: A_i \to A_j$ le morphisme d'anneau donné par le système inductif, et pour tout $i \in I$ on note $\varphi_i: A_i \to A$ l'application naturelle à valeur dans la limite inductive (dont on ne sait rien a priori). On a pour tout $i \leq j \leq k: \varphi_{k,j} \circ \varphi_{j,i} = \varphi_{k,i}$ et pour tout $i \leq j: \varphi_i = \varphi_j \circ \varphi_{j,i}$.

- (1) Soient $a,b \in A$; comme le système est filtrant on sait qu'il existe $i \in I$ et $a_i \in A_i$ tel que $a = \varphi_i(a_i)$ et $j \in I$ et $b_j \in A_j$ tel que $b = \varphi_j(b_j)$; on considère alors $k \in I$ tel que $k \geq i, j$ et on pose $a_k = \varphi_{k,i}(a_i)$ et $b_k = \varphi_{k,j}(b_j)$; on pose alors $a + b = \varphi_k(a_k + b_k)$ et $a.b = \varphi_k(a_k.b_k)$. Si l'on choisit d'autres éléments i', $a_{i'}$, j', $b_{j'}$, k', $a_{k'} = \varphi_{k',i'}(a_{i'})$ et $b_{k'} = \varphi_{k',j'}(b_{j'})$ alors il existe $n \in I$ tel que $n \geq k, k'$. On a alors $\varphi_{n,k}(a_k) = \varphi_{n,k'}(a_{k'}) = a_n$ et $\varphi_{n,k}(b_k) = \varphi_{n,k'}(b_{k'}) = b_n$ car tous ces éléments représentent les éléments $a, b \in \varinjlim_{i \in I} A_i$; sachant que $\varphi_k(a_k+b_k) = \varphi_n(a_n+b_n) = \varphi_k(a_{k'}+b_{k'})$ et $\varphi_k(a_k.b_k) = \varphi_n(a_n.b_n) = \varphi_k(a_{k'}.b_{k'})$, on montre que la définition de a + b et de a.b ne dépend d'aucun choix. On vérifie aisément que (A, +, .) un bien un anneau et que les applications φ_i sont des morphismes d'anneaux.
- (2) Si $A \simeq 0$ alors $1_A = 0_A$ donc il existe i tel que $1_{A_i} = 0_{A_i}$ et donc $A_i \simeq 0$.
- (3) Un système inductif $\{M_i\}_{i\in I}$ de A_i -modules est la donnée, pour tout i d'un A_i -module et pour tout $i \leq j$ d'un morphisme de A_i -modules $\psi_{j,i}: M_i \to M_j$. (En effet si $i \leq j$ alors M_j a une structure de A_i -module définie par $a_i.x_j = \varphi_{j,i}(a_i).x_j$.) Soit $x \in M = \varinjlim_{i \in I} M_i$ et $a \in A \varinjlim_{i \in I} A_i$; on définit a.x comme en (1): on choisit $k \in I$ tel que $x = \psi_k(x_k)$ et $a = \varphi_k(a_k)$ et on pose $a.x = \psi_k(a_k.x_k)$. Cette définition ne dépend pas de k. Le lecteur vérifiera sans peine que M un bien un A-module et que les applications ψ_i sont des morphismes de A_i -modules.
- (4) On utilise la lettre ψ pour les morphismes associés au système inductif $\{M_i\}_{i\in I}$, la lettre χ pour $\{N_i\}_{i\in I}$ et la lettre ω pour $\{M_i\otimes_{A_i}N_i\}_{i\in I}$. Les morphismes $\psi_i:M_i\to \varinjlim_{i\in I}M_i$ et $\chi_i:N_i\to \varinjlim_{i\in I}N_i$ déterminent un morphisme de A_i -modules $\psi_i\otimes\chi_i:M_i\otimes_{A_i}N_i\to \varinjlim_{i\in I}M_i\otimes_{A_i}\varinjlim_{i\in I}N_i$. Le morphisme $\phi_i:A_i\to A$ détermine un morphisme de A_i -modules $\varinjlim_{i\in I}M_i\otimes_{A_i}\varinjlim_{i\in I}N_i\to \varinjlim_{i\in I}M_i\otimes_{A_i}\varinjlim_{i\in I}N_i$. Par composition on obtient un morphisme de A_i -module $f_i:M_i\otimes_{A_i}N_i\to \varinjlim_{i\in I}M_i\otimes_{A_i}\varinjlim_{i\in I}N_i$, et par propriété universelle de la limite inductive, un morphisme de A-modules

$$f: \varinjlim_{i\in I} (M_i \otimes_{A_i} N_i) \longrightarrow \varinjlim_{i\in I} M_i \otimes_A \varinjlim_{i\in I} N_i.$$

Ce morphisme est défini élémentairement de la manière suivante : si $t \in \underline{\lim}(M_i \otimes_{A_i} N_i)$ alors il existe $i \in I$ et $t_i = \sum_{k=1}^n x_{i,k} \otimes y_{i,k} \in M_i \otimes_{A_i} N_i$ tels que $t = \omega_i(t_i)$; on pose alors $f(t) = \sum_{k=1}^n \psi_i(x_{i,k}) \otimes \chi_i(y_{i,k}).$

$$f(t) = \sum_{k=1}^{n} \psi_i(x_{i,k}) \otimes \chi_i(y_{i,k}).$$

De même on a un morphisme bilinéaire de A_i -modules $M_i \times N_i \to \varinjlim_{i \in I} (M_i \otimes_{A_i} N_i)$. Par propriété universelle de la limite inductive (qui commute à la somme directe) on a donc un morphisme bilinéaire de A_i -modules $\underline{\lim} M_i \times \underline{\lim} N_i \to \lim (M_i \otimes_{A_i} N_i)$ et par propriété universelle du produit $i \in I$ tensoriel, un morphisme de A-modules

$$g: \varinjlim_{i \in I} M_i \otimes_A \varinjlim_{i \in I} N_i \to \varinjlim_{i \in I} (M_i \otimes_{A_i} N_i).$$

Ce morphisme est défini élémentairement de la façon suivante : si $x \in \varinjlim_{i \in I} M_i$ $y \in \varinjlim_{i \in I} N_i$ alors il existe $i \in I$, $x_i \in M_i$ et $y_i \in N_i$ tels que $x = \psi_i(x_i)$ et $y = \chi_i(y_i)$; on pose alors

$$g(x \otimes y) = \omega_i(x_i \otimes y_i).$$

Les expressions élémentaires des deux morphismes f et q permettent de vérifier aisément qu'ils sont réciproques.

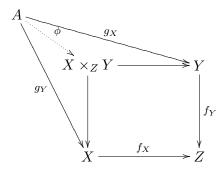
Remarque 1. La morale à retenir de la question (1) de l'exercice 1 et de l'exercice précédent est la suivante. Etant donné un nombre fini d'éléments i_1, \ldots, i_n dans I, il existe un élément $k \in I$ et des flèches $i_j \to k$. Cela permet de ramener l'étude de structures algébriques/identités remarquables sur une limite filtrante $\lim X_i$, à leur étude sur le seul objet X_k .

Exercice 3 (Produit fibré). Soit C une catégorie qui admet des produits fibrés. Rappelons qu'un produit fibré est la limite projective d'un foncteur $\alpha: I \to \mathcal{C}$ où I est la catégorie définie par le diagramme :

$$\bullet_1 \longrightarrow \bullet_0 \longleftarrow \bullet_2$$

c'est à dire que I a 3 objets et seulement deux morphismes non triviaux.

(1) Rappeler pourquoi un produit fibré est la donnée de morphismes $f_X: X \to Z$, $f_Y: Y \to Z$ et d'un objet universel $X \times_Z Y$ muni de flèches $p_X : X \times_Z Y \to X$, $p_Y : X \times_Z Y \to Y$ telles que $f_X \circ p_X = f_Y \circ p_Y$; c'est à dire que pour tout diagramme commutatif :

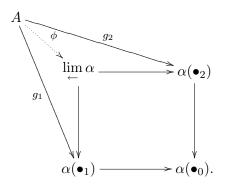


l'application $\phi: A \to X \times_Z Y$ existe et est unique.

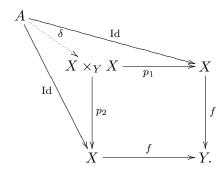
- (2) Montrer que si $f_X: X \to Z$ est un monomorphisme, alors $X \times_Z Y \to Y$ est un monomorphisme.
- (3) i) Montrer que pour tout $f: X \to Y$, il existe un morphisme canonique $\delta: X \to X \times_Y X$ et deux projections canoniques $p_1, p_2 : X \times_Y X \to X$.
 - ii) Montrer que δ est un monomorphisme et p_1, p_2 des épimorphismes.

iii) Montrer que f est un monomorphisme $\iff \delta$ est un isomorphisme $\iff p_1 = p_2$.

Solution 3. (1) D'après le cours, $\lim \alpha$ est la solution universelle du diagramme



- (2) Soient $g, h : B \to X \times_Z Y$ deux morphismes tels que $f \circ g = f \circ h$ où $f : X \times_Z Y \to Y$ est le morphisme naturel du diagramme. Alors $f_X \circ h = f_X \circ g$ par commutativité du diagramme et g = h puisque f_X est un monomorphisme.
- (3) (i) C'est immédiat d'après le diagramme



- ii) Soit $g, h : B \to X$ deux morphismes tels que $\delta \circ g = \delta \circ h$. Alors $p_1 \circ \delta \circ g = p_1 \circ \delta \circ h$ et comme $p_1 \delta = \operatorname{Id}_X$, on a g = h d'où δ est un monomorphisme. Soient $q, r : X \to Z$ tels que $qp_1 = rp_1$. En composant à droite par δ on obtient q = r puisque $p_1 \circ \delta = p_2 \circ \delta = \operatorname{id}$.
- iii) Supposons que f est un monomorphisme. Puisque $fp_1 = fp_2$, on a $p_1 = p_2$. Soient $g, h : Z \to X$ sont deux morphismes vérifiant fg = fh, alors le couple g, h définit un unique morphisme $\phi : Z \to X \times_Y X$ tel que $p_1 \circ \phi = f$, $p_2 \circ \phi = g$. Donc si $p_1 = p_2$, on a g = h. Il reste à montrer l'équivalence δ isomorphisme $\iff p_1 = p_2$. On a déjà $p_1 \delta = \operatorname{Id}_X$. D'où $p_1 \delta = p_2 \delta$ et $p_1 = p_2$ si δ est un isomorphisme. Réciproquement, supposons $p_1 = p_2$. On a $p_1 \delta = \operatorname{Id}_X$; montrons que $\delta p_1 = \operatorname{Id}_{X \times_Y X}$ ce qui donnera que δ est inversible, d'inverse p_1 . On a $p_1 \delta p_1 = p_1$, d'où l'application $\delta p_1 : X \times_Y X \to X \times_Y X$ est une application vérifiant la même propriété de factorisation que $\operatorname{Id}_{X \times_Y X}$. Par unicité de la factorisation, $\delta p_1 = \operatorname{id}_{X \times_Y X}$.

Exercice 4 (Catégories additives). Soit \mathcal{C}, \mathcal{D} , deux catégories additives. Un foncteur $F: \mathcal{C} \to \mathcal{D}$ est dit additif si, pour tout X, Y objets de \mathcal{C} , l'application $\operatorname{Hom}_{\mathcal{C}}(X, Y) \xrightarrow{F} \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$ est un morphisme de groupes. On notera 0 l'objet nul de \mathcal{C} et par 0 les morphismes nuls canoniques $: X \to 0$, $0 \to X$, $X \to 0 \to X$.

(1) i) Montrer que pour tout $f,g \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$, la somme $f+g \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$ est égale à la composée

$$X \stackrel{\delta}{\longrightarrow} X \times X \stackrel{(f,g)}{\longrightarrow} Y \times Y \stackrel{\sim}{\longrightarrow} Y \oplus Y = Y \coprod Y \stackrel{\sigma}{\longrightarrow} Y$$

où δ et σ sont les applications naturelles induites par $\mathrm{Id}_X:X\to X$ et $\mathrm{Id}:Y\to Y$.

ii) Montrer que F est additif si et seulement si il commute à la somme directe (c'est à dire $F(X \oplus Y) = F(X) \oplus F(Y)$).

5

(2) Montrer que tout objet X de C est un objet en groupe, c'est à dire qu'il existe des applications $\mu: X \times X \to X$, $a: X \to X$, telles que les diagrammes suivants sont commutatifs :

$$X \times X \times X \xrightarrow{\mu \times \operatorname{Id}} X \times X \qquad X \xrightarrow{\operatorname{(Id}, a)} X \times X \qquad X \xrightarrow{\operatorname{(a, Id)}} X \times X \qquad (0.1)$$

$$\downarrow^{\operatorname{Id} \times \mu} \qquad \downarrow^{\mu} \qquad X \times X \xrightarrow{\operatorname{(Id}, 0)} X \times X \qquad X \xrightarrow{\operatorname{(Id}, 0)} X \times X \qquad X \xrightarrow{\operatorname{(Id}, 0)} X \times X \qquad (0.2)$$

$$\downarrow^{\operatorname{Id}} \qquad \downarrow^{\mu} \qquad \downarrow^{\mu}$$

Montrer de plus que μ est commutatif. (on pourra montrer qu'il existe un morphisme canonique $X \oplus X \to X$ et regarder la composée $X \times X \stackrel{\sim}{\leftarrow} X \oplus X \to X$).

Solution 4. (1) i) Rappelons que la somme directe $A \oplus B$ est caractérisée par l'existence de morphismes $i_A: A \to A \oplus B \leftarrow B: i_B$ et $A \stackrel{p_A}{\leftarrow} A \oplus B \stackrel{p_B}{\rightarrow} B$ vérifiant $i_A p_A + i_B p_B = \operatorname{Id}_{A \oplus B}$, $p_A i_A = \operatorname{Id}_A$, $p_B i_B = \operatorname{Id}_B$, $p_B i_A = 0$ et $p_A i_B = 0$. En particulier

$$\sigma \circ (f,g) \circ \delta = \sigma \circ (f,g)(i_A p_A + i_B p_B) \circ \delta$$
$$= \sigma \circ f \circ i_A + \sigma \circ g \circ i_B$$
$$= f + g.$$

On a utilisé que la composition est un morphisme de groupes et les définitions de σ et δ dans les égalités ci-dessus.

ii) On a $F(X \oplus Y) \cong F(X) \oplus F(Y)$, en particulier F((f,g)) = (F(f), F(g)). Comme $F(\mathrm{Id}) = \mathrm{Id}$, alors $F(\sigma_X) = \sigma_{F(X)}$ et de même $\delta_{F(X)} = F(\delta_X)$. Il suit alors du i) que

$$F(f+g) = F(\sigma \circ (f,g) \circ \delta). = \sigma \circ (F(f),F(g)) \circ \delta = F(f) + F(g).$$

La réciproque est immédiate en utilisant la caractérisation des sommes directes en fonction des applications i_A, p_A, i_B, p_B . Par exemple on a

$$F(p_A) \circ F(i_A) = F(p_A \circ i_A) = F(\mathrm{Id}_A) = \mathrm{Id}_{F(A)}$$

et les autres identités se démontrent de la même façon.

(2) L'application μ est définie par la composition $X \times X \cong X \oplus Y \xrightarrow{\sigma} X$. On définit $a: X \to X$ come l'application $-\operatorname{Id}_X$. La commutativité des diagrammes résulte alors immédiatement de la propriété universelle du produit.