Master 1 — Mathématiques — 2008

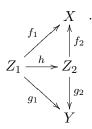
Devoir d'algèbre et topologie I

Grégory Ginot

Exercice 1 (Produit tensoriel des Z-modules de type fini). Le but de cet exercice est de déterminer le produit tensoriel de deux groupes abéliens de type fini.

- (1) Montrer qu'il y a un isomorphisme canonique $\mathbb{Z}/n\mathbb{Z} \otimes \mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}/\gcd(n,m)\mathbb{Z}$ où $\gcd(n,m)$ désigne le plus grand diviseur commun de n et m.
- (2) Soit M et N deux groupes abéliens de type fini. En utilisant le théorème de structure, déterminer à quel \mathbb{Z} -module de type fini est isomorphe $M \otimes N$.

Exercice 2. Soit C une catégorie et X, Y deux objets de C. On considère la catégorie C_{XY} dont les objets sont les paires $(Z \xrightarrow{f} X, Z \xrightarrow{g} Y)$ de flèches de C avec la même source. Un morphisme de C_{XY} entre $(Z_1 \xrightarrow{f_1} X, Z_1 \xrightarrow{g_1} Y)$ est la donnée d'un diagramme commutatif



- (1) Montrer que C_{XY} est bien une catégorie.
- (2) Montrer le produit $X \times Y$ existe dans C si et seulement si la catégorie C_{XY} a un objet terminal. Expliciter l'objet terminal quand $X \times Y$ existe.
- (3) Enoncer et démontrer un résultat analogue pour le coproduit.

Exercice 3. Soit G un groupe et k un anneau. On note k[G] le k-module libre de base $\{g \in G\}$. il est canoniquement muni d'une structure de k-algèbre (non commutative si G n'est pas abélien) par la formule

$$\sum \lambda_i g_i * \sum \nu_j h_j = \sum \lambda_i \nu_j g_i h_j$$

dont l'unité est l'élèment $e \in k[G]$ (on ne demande pas de le démontrer). Si A est une k-algèbre, on note A^{\times} le sous-ensemble des éléments inversibles. La structure multiplicative de A donne une structure de groupe à A^{\times} . Montrer que $G \mapsto k[G]$ est un foncteur $Gps \to k$ – alg de la catégorie des groupes vers la catégorie des k-algèbres (associatives, non nécessairement commutatives) et que $A \mapsto A^{\times}$ est un foncteur k – alg \to Gps. Montrer ensuite que $G \to k[G]$ est adjoint à gauche de $A \mapsto A^{\times}$.

Exercice 4 (Utilisation du lemme du serpent). Le but de cet exercice est d'utiliser le lemme du serpent pour redémontrer des résultats de la feuille de TD 2. Soit A un anneau commutatif unitaire.

- (1) (Exercice 3.(1)) Soit A un anneau et $M' \xrightarrow{i} M \xrightarrow{\pi} M''$ une suite exacte de A-modules. Soit N, P deux sous-modules de M tels que $i^{-1}(N) = i^{-1}(P)$ et $\pi(N) = \pi(P)$. On suppose que $N \subset P$. Déduire du lemme du serpent que N = P (on pourra considérer $\operatorname{coker}(N \subset P)$).
- (2) (Exercice 4.(3)) Soit A un anneau, M un A-module et N et P des sous-modules de M. Soit $f: N\cap P\longrightarrow N\oplus P, x\longmapsto (x,x)$ et $g: N\oplus P\longrightarrow N+P, (y,z)\longmapsto y-z$. Rappelons que la suite suite $0\longrightarrow N\cap P\stackrel{f}\longrightarrow N\oplus P\stackrel{g}\longrightarrow N+P\longrightarrow 0$ est exacte. En déduire en utilisant le lemme du serpent l'existence d'une suite exacte $0\longrightarrow \frac{M}{N\cap P}\longrightarrow \frac{M}{N}\oplus \frac{M}{P}\longrightarrow \frac{M}{N+P}\longrightarrow 0$.

Exercice 5. Soit C une catégorie munie d'un objet initial \emptyset et d'un objet final pt. On suppose que $\text{Hom}_{\mathcal{C}}(\text{pt},\emptyset)$ est non vide. Montrer que $\emptyset \cong \text{pt}$, autrement dit qu'il y a un objet nul.