Devoir d'Algèbre et Topologie III Un peu de faisceaux et de cohomologie...

Grégory Ginot

Dans ce devoir, k désigne un corps (commutatif).

Exercice 1 (Examen de Mai 2005). Soit P le polynôme $P(z) = (z(1-z))^2$, définissant donc une application continue de $Y = \mathbb{C}$ dans $X = \mathbb{C}$. On note $Z = \{y \in Y : P'(y) = 0\}$ et $S = P(Z) \subset X$. Montrer que la restriction à $X \setminus S$ du faisceau $P_*(k_Y)$ est localement constant de rang 4 et n'est pas un faisceau constant.

Exercice 2. Soit $f: \mathbb{R} \to \mathbb{R}/\mathbb{Z} \cong S^1$ l'application naturelle $t \mapsto f(t) = \exp(2i\pi t)$. Soit $E \in \text{mod}(k)$ et φ un automorphisme de E. Pour tout ouvert U de S^1 , on pose

$$F_{E,\varphi}(U) = \{ s \in f_* E_X(U), \ \forall x \in X : s(x+1) = \varphi(s(x)) \}.$$

- (1) Montrer que $U \mapsto F_{E,\varphi}(U)$ est un faisceau sur S^1 .
- (2) Montrer que $F_{E,\varphi}$ est constant si et seulement si φ est l'identité.
- (3) Esquisser une preuve du fait que tout faisceau localement constant d'espaces vectoriels sur S^1 est isomorphe à un faisceau du type $F_{E,\varphi}$ (on ne demande pas d'écrire tous les détails techniques; seulement les grandes lignes du raisonnement).

Exercice 3. Soit F, G deux faisceaux abéliens sur un espace X et $(F_i)_{i \in \mathfrak{I}}$ une famille de faisceaux abéliens sur X.

- (1) Montrer que, pour tout $x \in X$, il y a un isomorphisme naturel $(F \oplus G)_x \cong F_x \oplus G_x$
- (2) On va montrer, qu'en général, $\left(\prod_{i\in\mathfrak{I}}F_i\right)_x\ncong\prod_{i\in\mathfrak{I}}(F_i)_x$. On considère les faisceaux $k_{\mathbb{R}]-1/n,1/n[}$ avec $n\in\mathbb{N}^*$.
 - i) Montrer que le germe en 0 du produit est $\left(\prod_{n\in\mathbb{N}^*}k_{\mathbb{R}]-1/n,1/n[}\right)_0\cong k^{(\mathbb{N}^*)}=\bigoplus_{n\in\mathbb{N}^*}k.$
 - ii) Calculer le produit des germes en 0 $\prod_{n\in\mathbb{N}^*}(k_{\mathbb{R}]-1/n,1/n}[)_0$ et en déduire le résultat demandé.
- (3) On suppose désormais que $(F_i)_{i\in\mathfrak{I}}$ est localement finie, c'est à dire que pour tout $x\in X$, il existe un voisinage ouvert U_x tel que seul un nombre fini de $F_{i|U_x}$ sont non nuls.
 - i) Montrer qu'alors il y a un isomorphisme naturel $\left(\prod_{i\in\mathfrak{I}}F_i\right)_x\cong\prod_{i\in\mathfrak{I}}(F_i)_x$.
 - ii) Montrer que si chaque F_i est injectif, alors $\prod_{i \in \Im} F_i$ est injectif.
 - iii) Montrer qu'on peut trouver des résolutions injectives F_i^{\bullet} de chaque F_i telles que $\prod_{i \in \mathfrak{I}} F_i^{\bullet}$ soit une résolution injective de $\prod_{i \in \mathfrak{I}} F_i$ (on pourra reprendre la démonstration du théorème du cours assurant que $\operatorname{mod}(k_X)$ a assez d'injectifs et vérifier que l'on peut prendre une résolution localement finie).
 - iv) Montrer que $H^{\bullet}(X, \prod_{i \in \Im} F_i) \cong \prod_{i \in \Im} H^{\bullet}(X, F_i)$.

Exercice 4 (Sphères et tores, I). Rappelons que $H^i(S^n, k_{S^n}) = 0$ si $i \neq 0, n$ et $H^0(S^n, k_{S^n}) = H^n(S^n, k_{S^n}) = k$.

- (1) Quelle est la cohomologie $H^j(T_n, k_{T_n})$ d'un "tore" $T_n = S^1 \times \cdots \times S^1 = (S^1)^n$. Pour quelles valeur de n, m, existe-t-il un homéomorphisme entre T_n et S^m ?
- (2) Soit $X = S^1 \times S^2 \times S^3 \cdots \times S^{2008}$. Montrer que, pour tout $j \in \mathbb{N}$, $H^j(X, k_X) \cong k^{c(j)}$ où c(j) est le nombre de façons d'écrire j comme une somme $j = n_1 + \cdots + n_r$ avec $1 \le n_1 < n_2 < n_3 < \cdots < n_r \le 2008$ (le nombre r n'est pas fixé).
- (3) Soit $Y = S^0 \times S^1 \times S^2 \times S^3 \cdots \times S^{2008}$. Montrer que $H^j(Y, k_Y) \cong H^j(X, k_X) \oplus H^j(X, k_X)$.

Exercice 5 (Sphères et tores, II (Examen de Mai 2007)). Soit D^1 , le disque fermé (dans \mathbb{R}^2) de bord S^1 et soit $S^1 \times D^1$ le tore plein que l'on pourra considéré comme plongé dans \mathbb{R}^3 . Considérons quatre points dis- tincts $\{a, b, c, d, \}$ de S^1 et posons $X = S^1 \times S^1 \cup \{a, b, c, d\} \times D^1$. Autrement dit, X est l'espace obtenu en collant quatre disques disjoints dans le tore T_2 .

- (i) Calculer pour tout i les groupes $H^i(X; k_X)$.
- (ii) Soit $\{p\}$ un point de X n'appartenant à aucun des cercles $\{x\} \times S^1$, x = a, b, c, d. Calculer $H^i(X|p;k_X)$.
- (iii) Soit $e \in S^1$ avec $e \neq a, b, c, d$. On considère les applications suivantes de S^1 dans X:

$$f_1: p \mapsto (a, p), \qquad f_2: p \mapsto (e, p).$$

Calculer les applications $f_i^{\#1}: H^1(X; k_X) \longrightarrow H^1(S^1; k_{S^1})$ pour i = 1, 2.