TD d'algèbre et topologie – Feuille de TD 4 : Limites inductives et projectives; catégories additives

Grégory Ginot

Exercice 1 (Limites dans A - mod). Soit A un anneau et k un corps.

- (1) Soit I un ensemble filtrant. Montrer que $\lim_{\to} M_i$ existe (on pourra considérer $\coprod_i M_i$ modulo la relation $x_i \sim y_j$ si $u_{ki}(x_i) = u_{kj}(x_j)$ pour un $k \geq \max(i, j)$.
- (2) Montrer que tout A-module M est limite inductive filtrante de modules de type fini.
- (3) Montrer que tout A-module de type fini est limite inductive filtrante de modules de présentation finie. (On dit qu'un A-module M est de présentation finie s'il existe un morphisme $f: A^m \to A^n$ tel que $M = \operatorname{coker} f$.)
- (4) Soit $\alpha: I \to A{\operatorname{\mathbf{-mod}}}$ un foncteur avec I filtrant. Montrer que l'application naturelle

$$\lim_{\longrightarrow} \operatorname{Hom}_{\mathcal{C}}(M,\alpha) \to \operatorname{Hom}_{\mathcal{C}}(M,\lim_{\longrightarrow} \alpha)$$

est injective si M est de type fini et bijective si M est de présentation finie.

(5) On note $k_n[x]$ les polynômes de degré $\leq n$. Calculer $\lim_{\longrightarrow} k_n[x]$ et $\lim_{\longleftarrow} k[x]/(x^n)$. En déduire que $\lim_{\longrightarrow} \operatorname{Hom}_{\mathcal{C}}(M, k_n[x]) \to \operatorname{Hom}_{\mathcal{C}}(M, \lim_{\longrightarrow} k_n[x])$ n'est pas bijective en général.

Exercice 2 (Limites dans Ring). Soit $\{A_i\}_{i\in I}$ un système inductif filtrant d'anneaux commutatifs unitaires.

- (1) Montrer que $A = \lim_{i \to \infty} A_i$ est naturellement muni d'une structure d'anneau.
- (2) Montrer que si $A \simeq 0$ alors il existe $i \in I$ tel que $A_i \simeq 0$.
- (3) Définir la notion de système inductif $\{M_i\}_{i\in I}$ de A_i -modules et montrer l'existence de la limite inductive $\varinjlim M_i$ comme A-module.
- (4) Soient $\{M_i\}_{i\in I}$ et $\{N_i\}_{i\in I}$ des systèmes inductifs de A_i -modules. Etablir l'isomorphisme canonique

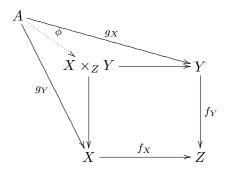
$$\underset{i \in I}{\varinjlim} (M_i \otimes_{A_i} N_i) \xrightarrow{\sim} \underset{i \in I}{\varinjlim} M_i \otimes_A \underset{i \in I}{\varinjlim} N_i$$

Exercice 3 (Produit fibré). Soit C une catégorie qui admet des produits fibrés. Rappelons qu'un produit fibré est la limite projective d'un foncteur $\alpha: I \to C$ où I est la catégorie définie par le diagramme :

$$\bullet_1 \longrightarrow \bullet_0 \longleftarrow \bullet_2$$

c'est à dire que I a 3 objets et seulement deux morphismes non triviaux.

(1) Rappeler pourquoi un produit fibré est la donnée de morphismes $f_X: X \to Z$, $f_Y: Y \to Z$ et d'un objet universel $X \times_Z Y$ muni de flèches $p_X: X \times_Z Y \to X$, $p_Y: X \times_Z Y \to Y$ telles que $f_X \circ p_X = f_Y \circ p_Y$; c'est à dire que pour tout diagramme commutatif:



l'application $\phi: A \to X \times_Z Y$ existe et est unique.

- (2) Montrer que si $f_X: X \to Z$ est un monomorphisme, alors $X \times_Z Y \to Y$ est un monomorphisme.
- (3) i) Montrer que pour tout $f: X \to Y$, il existe un morphisme canonique $\delta: X \to X \times_Y X$ et deux projections canoniques $p_1, p_2: X \times_Y X \to X$.
 - ii) Montrer que δ est un monomorphisme et p_1, p_2 des épimorphismes.
 - iii) Montrer que f est un monomorphisme $\iff \delta$ est un isomorphisme $\iff p_1 = p_2$.

Exercice 4 (Catégories additives). Soit \mathcal{C}, \mathcal{D} , deux catégories additives. Un foncteur $F: \mathcal{C} \to \mathcal{D}$ est dit additif si, pour tout X, Y objets de \mathcal{C} , l'application $\operatorname{Hom}_{\mathcal{C}}(X, Y) \stackrel{F}{\to} \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$ est un morphisme de groupes. On notera 0 l'objet nul de \mathcal{C} et par 0 les morphismes nuls canoniques : $X \to 0$, $0 \to X$, $X \to 0 \to X$.

(1) i) Montrer que pour tout $f,g \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$, la somme $f+g \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$ est égale à la composée

$$X \stackrel{\delta}{\longrightarrow} X \times X \stackrel{(f,g)}{\longrightarrow} Y \times Y \stackrel{\sim}{\longrightarrow} Y \oplus Y = Y \coprod Y \stackrel{\sigma}{\longrightarrow} Y$$

où δ et σ sont les applications naturelles induites par $\mathrm{Id}_X:X\to X$ et $\mathrm{Id}:Y\to Y$.

- ii) Montrer que F est additif si et seulement si il commute à la somme directe (c'est à dire $F(X \oplus Y) = F(X) \oplus F(Y)$).
- (2) Montrer que tout objet X de C est un objet en groupe, c'est à dire qu'il existe des applications $\mu: X \times X \to X$, $a: X \to X$, telles que les diagrammes suivants sont commutatifs :

$$X \times X \times X \xrightarrow{\mu \times \operatorname{Id}} X \times X \qquad X \xrightarrow{\operatorname{(Id,a)}} X \times X \qquad X \xrightarrow{\operatorname{(a,Id)}} X \times X \qquad (0.1)$$

$$\downarrow^{\operatorname{Id} \times \mu} \qquad \downarrow^{\mu} \qquad \downarrow^{\mu} \qquad \downarrow^{\mu} \qquad \downarrow^{\mu} \qquad \downarrow^{\mu} \qquad \downarrow^{\mu} \qquad X \times X \xrightarrow{\operatorname{(Id,0)}} X \times X \qquad 0 \xrightarrow{\operatorname{X}} X, \qquad (0.2)$$

$$\downarrow^{\operatorname{Id} \times \mu} \qquad X \times X \qquad X \xrightarrow{\operatorname{(Id,0)}} X \times X \qquad X \xrightarrow{\operatorname{(Id,0)}} X \times X \qquad (0.2)$$

Montrer de plus que μ est commutatif. (on pourra montrer qu'il existe un morphisme canonique $X \oplus X \to X$ et regarder la composée $X \times X \stackrel{\sim}{\leftarrow} X \oplus X \to X$).