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Gabriel-Zisman localization and Model structures

Exercice 1 (Model structures on the category of sets). Let Sets denote the category of sets. Show
that (Sets,W = bijections,Fib = All,Cof = All) determines a model structure.

In fact, there are precisely nine model structures in the category of sets. See link.

Exercice 2 (Whitehead Theorem for model categories). The goal is to prove that in a model category
C, if X, Y are both fibrant and cofibrant objects, then a map f : X → Y is a weak equivalence if and
only if it is an homotopy equivalence.

1. Letf
l∼ g be left homotopic. Show that f is a weak equivalence if and only if g is a weak

equivalence.

2. Let i : X
∼
↪→ C be an acyclic cofibration where X is both fibrant and cofibrant and C is fibrant.

Prove that there is a retraction r of i and then show that r is an homotopy inverse of i.

3. Deduce from the previous question that a weak equivalence between fibrant and cofibrant objects
is an homotopy equivalence.

4. Let f : X → Y be an homotopy equivalence between fibrant and cofibrant objects, and let

f : X
i
↪→
∼
C

p
� Y be a factorization where the first map is an acyclic cofibration.

(a) Prove that C is both fibrant and cofibrant and that if g is an homotopy inverse of f , with
left homotopy H : C ′ → Y between idY and f ◦ g, there is a lift H ′ : C ′ → C such that
p ◦H ′ = H and H ′ ◦ i0 = i ◦ g.

(b) Deduce that H ′ ◦ i1 ◦p is homotopical to idC (one can note that i has an homotopy inverse)
and then that it is a weak equivalence.

(c) Prove that p is a retract of a weak equivalence and then conclude.

Solution:

1. Soit H : C → Y une homotopie à gauche. On a H ◦ i0 = f équivalence faible. De plus i0 l’est

aussi car id = X
i0→ C

∼→ X l’est et que la dernière aussi par définition d’un cylindre. Ainsi H
est une équivalence faibe et par suite H ◦ i1 = g aussi.

2. On a le diagramme X
id //

i
��

X

��
C // {∗}

qui induit un relèvement r;C → X puisque X est fibrant.

Puisque C est fibrant et i cofibration acyclique, l’aplication−◦i : Hom(C,C)/
r∼→ Hom(X,C)

r∼
est une bijection. Mais

i ◦ r ◦ i = i ◦ id = i.

Ainsi i∗([i◦r]) = i∗ ([id]) et donc i◦r est homotope à droite à id. Comme les objets sont fibrants
et cofibrants (C est cofibrant par i et car X l’est), c’est une homotopie tout court.

3. On factorise X ↪→ C
∼
� Y . La première flèche est une équivalence faible par CM2. Et C est

cofibrant et fibrant car X et Y le sont. Ainsi on obtient un inverse homotopique (droite et
gauche) de la première flèche par 1. En dualisant l’argument de 1 on obtient que la deuxième
flèche aussi à un inverse homotopique.
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4. (a) Comme tout à l’heure, C est cofibrant et cofibrant (par composition). On écrit le diagramme
commutatif

Y
i◦g //

i0
��

C

p

��
C ′

H′

>>

H
// Y

qui nous donne H ′ par relèvement.

(b) Soit s : C → X un inverse homotopique de i. On a alors f ◦ r = p ◦ i ◦ r ∼ p On a alors,
puique par défintion H ′ définit une homotopie H ′ ◦ i1 ∼ H ′ ◦ i0 = i ◦ g, que

H ′ ◦ i1 ◦ p ∼ i ◦ g ◦ p ∼ i ◦ g ◦ f ◦ r ∼ i ◦ r ∼ idC .

(c) On déduit de la question précédente et de la question 1 que H ′ ◦ i1 ◦ p est une équivalence
faible. Il suffit donc de montrer que p est un rétracte de la précédente pour obtenir que
c’est une équivalence faible. Ce qui impliquera le résultat pour f par composition. Or on a
le diagramme commutatif :

C

p

��

id // C
id //

H′◦i1◦p
��

C

p

��
Y

H′◦i1
// C p

// Y

qui permet de conclure (car p ◦H ′ ◦ i1 = H ◦ i1 = idY ).

Exercice 3 (Gabriel-Zisman localization). Let C be a small category and W a subset of the set of
morphisms in Fun(I, C) where I is the category with two objects 0 and 1 and a unique non-trivial
morphism 0→ 1. A localization of C with respect to W is a functor

l : C → C[W−1]

satisfying the following universal property: For any category D, composition with l:

Fun(C[W−1],D)→ Fun(C, D)

is a fully faithful functor and its essential image consists of those functors C → D sending W to
isomorphisms. In other words, l, if it exists if the universal functor sending W to isomorphisms.

1. Check that C[W−1], if it exists, is unique up to canonical equivalences of categories.

2. Show that when C is the category with a single object ∗ and a monoid M of endomorphisms, and
W = M then C[W−1] is equivalent to the category with one object ∗ and M+ as endomorphisms,
with M+ the group completion of M .

Indication: we recall that the group completion M+ of a monoid is a group M+ together with
a monoid map can : M → M+ such that for any monoid map φ : M → G, there is a unique group
morphism φ̃ : M+ → G factorizing φ, that is φ = φ̃ ◦ can. It is usual abstract nonsense to prove it is
unique up (to unique if one requires that the isomorphisms commutes with the structure maps from
M to the completion) isomorphism. To prove the existence of M+, it is enough to construct it which
can be obtained by defining as a quotient of the free group on the generating set M by the obvious
equivalence relation identifiying m ? m′ with m ·m′ if ? is the product in the free group and · is the
product in M .
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Exercice 4. Let F : C → D be a functor having a right adjoint G : D → C1. Let W denote the
collection of morphisms f in C such that F (f) is an isomorphism in D. Show that the following are
equivalent:

1. G is fully faithful;

2. The natural transformation F ◦G→ IdD is an isomorphism;

3. The natural functor C[W−1]→ D is an equivalence of categories.

Solution: Que 1 implique 2 est standard pour toute adjonction:

D(x, y) ∼= C(G(x), G(y)) ∼= D(F ◦G(x), y).

On voit de même que 2 implique 1 en allant dans l’autre sens.

Montrons 2 implique 3: On a que la composée D F→ C → C[W−1]→ D est G◦F donc iso à l’identité. Il

suffit de montrer que C[W−1]→ D G→ C → C[W−1] est iso à Id. Par universalité de C → C[W−1], il suffit

de montrer que C → C[W−1] → D G→ C → C[W−1] est isomorphe à C → C[W−1]. De la composition
F → FGF → F = idF donnée par l’unité et la counité, on déduit que la transformation F → FGF est

un isomorphisme puisque la deuxième partie l’est. Cela nous dit que C → C[W−1]→ D G→ C → C[W−1]
est bien ce que l’on veut.
Montrons que 3 donne 1. On a que Hom(C[W−1],D) ∼= Hom(C,D) est pleinement fidèle, ainsi on
a par composition que F ∗ : Hom(D,D) ∼= Hom(C,D) est pleinement fidèle. On veut montrer que
F ◦G→ Id est un iso, ce qui se ramène à FGF → F est un isomorphisme ce qui est une conséquence
de l’adjonction.

Exercice 5. Let L : C → C be a functor and denote by LC ⊆ C its essential image. Show that the
following are equivalent:

1. There exists a functor F : C → D with a fully faithful right adjoint G : D → C and a natural
isomorphism between G ◦ F and L;

2. When regarded as a functor C → LC, L is a left adjoint to the inclusion LC ⊆ C;

3. There exists a natural transformation α : IdC → L such that for each object X ∈ C, the natural
morphisms L(αX) and αL(X) are isomorphisms.

Solution: It is clear that (2) implies (1): just take D to be the essential image of L. It is also
clear that (1) implies (2): as G is fully faithful, we can replace D by the essential image of G which by
hypothesis is equal to the essential image of L. Let us show that (2) implies (3). Let α : IdC → L be
the co-unit of the adjunction ensured by (2). Let us first remark that αL(X) and L(αX) are equal as
maps. Indeed, because of the definition of natural transformation, we have the commutativity of the
diagram

X

αX

��

αX // L(X)

L(αX)

��
L(X)

αL(X)// L(L(X))

But we know that HomLC(L(X), L(L(X)) ' HomC(X,L(L(X)) because L is a left adjoint to the
inclusion. Through this isomorphism, both αL(X) and L(αX) correspond to the diagonal of the square,
so, are equal. In this case it is enough to show that αL(X) is an isomorphism.

Exercice 6. Let C = ModZ be the category of abelian groups.

1D is said to be a reflexive subcategory of C.
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1. (Localization at a single prime) Let p be a prime. Show that the base change functor −⊗ZZ[1p ] :
ModZ → ModZ[ 1

p
] is a localization functor along the class W of all maps of abelian groups

f : X → Y such that both Kerf and cokerf are p-torsion groups. (Hint: Use the flatness of Z[1p ]
over Z.)

2. Show that the map Q→ Q⊗ZQ sending q 7→ q⊗1 is an isomorphism. Use this and the Exercice
3 to show that the category of Q vector spaces is a localization of the category of abelian groups.

Solution: 1. first note that if F : ModZ → D is a functor sending maps of W onto isoorphisms

then F (M) ∼= F ({0}) for all p-torsion abelian groups M and further, since the map N
p·→ N is in

W, then F (p·) is an isomorphism. Then we define a factorsation F̃ : ModZ[ 1
p
] → D by the formula

F̃ (M
f→ N) = F (f) where f is the underlying map of abelian groups. The only thing ot check is that

the knowledge of F (f) completely determines F̃ (f). This is the case since f(x/p) = (p−1)f(x) and
that F (p·) is an isomorphism hence F (p−1) = F (p)−1 exists.
2. Apply the last question of Exercise 3.

Exercice 7. Check that C[W−1] exists, given by the following pushout in Cat (the category of small
categories): ∐

f∈W I //

��

C

l
��∐

f∈W J // C[W−1]

where J is the category with two objects 0 and 1 and unique morphism 0→ 1 which is an isomorphism.2

Exercice 8 (Explicit descripition). In this exercice we review an explicit model for the Gabriel-
Zisman localization. Given the pair (C,W) we construct a new category D as follows: the objects are
the objects of C, morphims from X to Y are given by strings of the form

X → X1 ← X2 → X3 ← ...→ Xn → Y

where all arrows going to the left are inW, submitted to the following equivalence relation: two strings
are equivalent if there exists a commutative diagram

X1

��

X2
oo // X3

��

· · ·oo

��

// Xn

��

  
X

>>

  

Y

X ′1 X ′2
oo // X ′3 · · ·oo // X ′n

>>

where the vertical arrows are in W. Composition is given by concatenation of strings. Show that this
equivalence relation is well-defined and that D, together with the canonical functor C → D sending
X 7→ X and (f : X → Y ) 7→ X → Y = Y is a localization of C along W.

Exercice 9. In this exercice we check that the construction of the the previous exercice can be
simplified whenever W satisfies some additional properties. Suppose that:

1. W is stable under compositions;

2Why do pushouts in Cat exist?
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2. For any diagram

X ′

X
f //

s

OO

Y

with s ∈ W, there exists a way to complete this diagram in a commutative diagram

X ′
g // Y ′

X
f //

s

OO

Y

t

OO

with t ∈ W.

3. Given f, g : X → Y , if there exists s ∈ W such that f ◦ s = g ◦ s then there exists t : Y → Z
such that t ∈ W and t ◦ f = t ◦ g.

In this caseW is said to be a calculus of (right) fractions. Under these hypothesis we consider for each
X ∈ C the category WX/. whose objects are morphisms s : X → X ′ with s ∈ W and morphisms are
commutative triangles over X. Assume that W forms a calculus of fractions. Show that:

1. For each X ∈ C, WX/. is a filtered category.

2. The category CW whose objects are given by the objects of C, hom-sets HomCW (X,Y ) are
given by colimu:Y→Y ′∈WY/.

HomC(X,Y
′) and compositions are induced from compositions in C,

is well-defined.

In other words, morphisms in CW between X and Y are given by equivalence classes of strings
of lenght one

X → Y ′ ← Y

where the left arrow belongs to W. This simplifies the general explicit description given in (6).

3. Show that the canonical functor Q : C → CW induced by the identity on objects and by the
canonical map

HomC(X,Y )→ colimu:Y→Y ′∈WY/.
HomC(X,Y

′)

on morphisms, is well-defined;

4. Show that if s : X → X ′ is a map in W and Y is an object in C then the composition map −◦ s

HomCW (X ′, Y )→ HomCW (X,Y )

is a bijection. Conclude that Q sends W to isomorphisms.

5. Show that Q is a localization of C along W.

6. Show that if C is an additive category and W is a calculus of fractions then the localization
functor Q preserves finite colimits and C[W−1] is also additive.

Solution: It is worth recalling that a filtered category means a nonempty category such that for
any two objects, there is a thrid one linking them : that this they both have arrows to a common
one. And further if f, g;X → Y are two maps, there is a map Y → Z which equalizes them after
composition.
The only non-immediate questions are 4. and 6.. To solve 4. we see that the injectivity of the map
follows from condition 3 and surjectivity from condition 2 in the definition of right calculus of fractions.
The solution to Question 6 takes some extra work:Let us first show that the localization functor Q
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commutes with finite colimits. Let d : I → C be a diagram in C and assume the colimit colimId exists
in C. Then we want to show that Q(colimId) is a colimit of Q ◦ d in CW . To see this notice that

HomCW (Q(colimId), Z) := HomCW (colimId, Z) := colimZ→Z′∈WHomC(colimId, Z
′)

' colimZ→Z′∈W limi∈IHomC(d(i), Z ′) ' limi∈IcolimZ→Z′∈WHomC(d(i), Z ′)

because filtered colimits commute with finite limits. By definition, the last becomes

limi∈IHomCW (d(i), Z)

Concluding the argument. Let us now show that if C is additive then CW is additive. Recall that
an additive category is a category such that the hom-sets are abelian groups and the composition is
bilinear. Moreover, the category has a zero object. Clearly, if C is additive then the localization is
also additive because the hom-sets in the localization are filtered colimits of abelian groups which are
again abelian groups. We know now that if 0 is a zero object in C then Q(0) is an initial object in
the localization. We only have to show that Q(0) is also a final object. To see this we show that every
diagram c→ d← 0 is equivalent to the diagram c→ 0 = 0 using condition 3 in the definition of right
calculus of fractions together with the fact that 0 is terminal in C.

Exercice 10. The following generalizes the exercice (4): Let C be an abelian category and let D ⊆ C
be a thick subcategory, ie, a full subcategory such that for each exact sequence

0→ X1 → X2 → X3 → 0

in C, X2 is in D if and only if X1 and X3 are in D. Let W denote the colllection of morphisms f in C
such that Kerf and cokerf are in D. Show that W admits a calculus of fractions and that C[W−1] is
equivalent to the pushout C/D in Cat given by

D

��

// C

��
0 // C/D

Exercice 11 (The canonical model structure in Cat). Let Cat denote the 1-category of small cate-
gories and morphisms given by functors between them. Let W be the collection of functors which are
equivalences of categories.

1. Show that the Gabriel-Zisman localization Cat[W−1] is equivalent to the category whose objects
are small categories and morphisms are isomorphism classes of functors.

2. A functor F : C → D between small categories is said to be an isofibration if for every object
c ∈ C and every isomorphism f : F (c)→ d in D, there exists an object c′ ∈ C and an isomorphism
u : c → c′ such that d = F (c′) and f = F (u). Show that an isofibration that is an equivalence
of categories is surjective on objects. Conversely, show that if a functor F is fully faithful and
surjective on objects then it is an isofibration.

3. A functor F : C → D is said to be a cofibration if it is injective on objects. Let Fib denote the
collection of all isofibrations and Cof the class of cofibrations. Show that (Cat,W,Fib,Cof) is a
model structure and identify its fibrant-cofibrant objects.

Solution: 1. Denote π1(Cat) the category with objects small categories and morphisms given by
isomorphism classes of functors. There is an obvious functor π : Cat→ π1(Cat) which is the identity
on objects and maps a functor to its isomorphism class. We wish to prove that the category π1(Cat)
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and the functor π satisfy the universal property of Cat[W−1]. If ψ : Cat → E is a functor such that
ψ(W ) is an siomorphism when W is an equivalence of categories, then we wish to define a functor
ψ̃ : π1(Cat)→ E splitting ψ by the obvious formula ψ̃(D) = ψ(D) for any samll category D and, given
any isomorphism class [F ] : C → D of functor , by ψ̃([F ]) = ψ(F ). The only difficulty now is to prove
that the latter formula does not depend on the choice of the representative. In other words to prove
that if F and G are naturally isomorphic, then ψ(F ) = ψ(G)

The idea we use is that natural isomorphisms are like (a simple version of) homotopy equivalences in
Cat (the notation π1 was also reminiscent of that and that idea can actually be made very precise using
question (3); this is a good exercise). So one can use a proof similar to the proof that the morphisms in
the homotopy category are computed as the quotient of morphisms by homotopy equivalences. That is
the idea is to construct a natural “path object” for D and a “(right) homotopy” in between F and G.
Concretly let Iso(D) be the category of isomorphisms in D. That is an object of Iso(D) is a morphism

x0
f→ x1 in D (where x0, x1 are any two objects), which is further an isomorphism. An arrow α in

Iso(D) between f : x0 → x1 and f ′ : y0 → y1 is a commutative diagram x0
f

∼=
//

α0

��

x1

α1

��
y0 ∼=

f ′ // y1

in D. The

composition α◦β is given by the diagram obatined by taking α0 ◦β0, α1 ◦β1 as vertical arrows (that is

by stacking the two diagrams). In other words Iso(D) = Fun({0
∼=→ 1},D) is the category of functors

from the small category3 with two objects and only two non-identity morphisms which are inverse of
each other.

The restriction to 0, 1 induces two functors proji : Iso(D) → D which are explicitly given by

proji(x0
f→ x1) = xi and proji(α) = αi. On the other hand we have a canonical functor I : D → Iso(D)

which maps x to the identity morphism x
id→ x and sends f to the diagram in which αi = f .

Now we claim that the last map is an natural equivalence. For this we first note that proji◦I = IdD.
Now the following commutative diagram:

x0
id //

id

��

x0

f

��
x0 ∼=

f // x1

defines an natural equivalence from I ◦ proj0 to IdIso(D). This proves that I is an natural equivalence
and thus ψ(I) is an isomorphism and further is the inverse of ψ(proj0). And since proj1 ◦ I = Id as
well, we have ψ(proj1) = ψ(proj0).

Finally the data of the natural isomorphism τ between F and G yields a functor H : D → Iso(D)
define for any g : c→ c′ by the commutative diagram

H(g) = F (c)
τc
∼=
//

F (g)
��

G(c)

G(g)
��

F (c′) ∼=

τc′ // G(c′)

.

We thus have proj0 ◦H = F and proj1 ◦H = G. Applying ψ and since ψ(proj1) = ψ(proj0) we get
that ψ(F ) = ψ(G) which concludes the proof of 1.

2. Suppose F is surjective on objects. Then for every object c ∈ C and every isomorphism f :
F (c)→ d in D, there exists an object c′ ∈ C with F (c′) = d. If F is fully faithfull, then HomC(c, y) ∼=
HomD(F (c), F (y) hence f : c → c′ is an isomorphism if and only if F (f) is an isomorphism (since
those are characterized by existence of an inverse). Thus if F is both, it is in particular an isofibration.

3denoted J in exercise 7
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Conversely, if F is an equivalence, then for any object d ∈ D, there is c ∈ C and an isomorphism
f : F (c)→ d. If F is an isofibration we get that d is in the image of F .

3. (Co)limits in Cat are inherited from those of sets. The 2 out of 3 property is easy since it boils
down to check it on natural isomorphisms. The same applies to retract of equivalences of categories.
The injectivity and surjectivity are preserved by retracts and thus cofibrations are preserved by retracts
and it follows from (2) that fibrations are stable by retracts as well. The only non-trivial part in (3)
is thus to show that we have the factorization and lifting properties. Let F : C → D be a functor.
We have to exhibit a factorization of F as u : C → A followed by v : A → D where u is an acyclic
cofibration and v is a fibration. Here is the strategy: we define a new category A as follows. It is the
full subcategory of the comma category F/D, consisting of all those triples (c ∈ C, d ∈ D, F (c) → d)
where the map F (c) → d is an isomorphism. Clearly the forgetful functor (c, d, φ : F (c) ' d) 7→ d
defines an isofibration A → D and the inclusion C → A sending c 7→ (c, F (c), IdF (c)) is injective on
objects and is an equivalence as clearly it is essentially surjective and fully faithful by definition of
morphisms in this comma category (all morphisms are uniquely determined by morphisms in C). Let
us now construct the factorization cofibration + acylic fibration. In this case we can take A as follows:
its objects are the objects of C disjoint union with the objects of D. Morphisms are defined as follows:

HomA(x, y) :=


HomD(F (x), F (y)) if x, y ∈ C
HomD(x, F (y)) if y ∈ C, x ∈ D
HomD(F (x), y) if y ∈ D, x ∈ C
HomD(x, y) if y ∈ D, x ∈ D

And composition is the composition in D. This way the functor A → D is surjective on objects and
fully faithful, so that it is an isofibration, hence a fibration in the model structure. Moreover, the
inclusion C → A is injective on objects, so is a cofibration. We are left to show the lifting properties

which are routine checks. For instance if we have a commutative square A
��

J
��

F // X
oP
����

B
G
//

G̃

??

Y

we construct a

lift G̃ as follows. Since by (2) the functor P is surjective on objects, for any object B ∈ B we choose
an object XB ∈ X such that P (XB) = B in such a way that if B = J(A), then XJ(A) = F (A). There

is no choice issues since J is injective on objects. This defines G̃(B) = XB on objects. If f : B → B′

is a morphism, then since P is fully faithful we get a (unique) map αf : XB → XB′ such that
P (αf ) = G(f). By commutativity of the diagram (and uniqueness) we obtain that if f = J(A→ A′)),
then αf = F (A→ A′). This proves half of the lifting axiom.

For the lifting of A
��
oJ
��

F // X

P
����

B
G
//

G̃

??

Y

on objects B ∈ B, we note that since J is an equivalence, there exist

A ∈ A and an isomorphism f : J(A) → B and hence an isomorphism G(f) : P (F (A)) = G(J(A) →
G(B). The isofibration property gives then an object XB such that P (XB) = G(B) as above (such
that if B = J(A), then XJ(A) = F (A)). In particular we have that P is surjective on the objects of
G(B) and as above we can use the isofibration property to deduce the existence of a lift of G(B → B′).
If the objects come from A then we can use the fully faithfulness of J to ensure the compatibility of
the lift G̃ on morphisms with the upper triangle.

Finally we note that every category is cofibrant (the initial object of Cat being the empty category)
and fibrant as well (the terminal object being the point with only identity isomorphism).
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