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Gabriel-Zisman localization and Model structures

Exercice 1 (Model structures on the category of sets). Let Sets denote the category of sets. Show
that (Sets,W = bijections,Fib = All,Cof = All) determines a model structure.

In fact, there are precisely nine model structures in the category of sets. See link.

Exercice 2 (Whitehead Theorem for model categories). See the assignment.

Exercice 3 (Gabriel-Zisman localization). Let C be a small category and W a subset of the set of
morphisms in Fun(I, C) where I is the category with two objects 0 and 1 and a unique non-trivial
morphism 0→ 1. A localization of C with respect to W is a functor

l : C → C[W−1]

satisfying the following universal property: For any category D, composition with l:

Fun(C[W−1],D)→ Fun(C, D)

is a fully faithful functor and its essential image consists of those functors C → D sending W to
isomorphisms. In other words, l, if it exists if the universal functor sending W to isomorphisms.

1. Check that C[W−1], if it exists, is unique up to canonical equivalences of categories.

2. Show that when C is the category with a single object ∗ and a monoid M of endomorphisms, and
W = M then C[W−1] is equivalent to the category with one object ∗ and M+ as endomorphisms,
with M+ the group completion of M .

Solution. Note that a functor l : C → D is a localization if and only if it verifies the following
two properties:

• for any functor F : C → E that sends W to isomorphisms, there exists G : D → E such that
F ∼= G ◦ l,

• the map − ◦ l : Nat(G1, G2)→ Nat(G1 ◦ l, G2 ◦ l) is a bijection for all functors G1, G2 : D → E).

1. Suppose l : C → E and l′ : C → E ′ are two localizations along W. By the universal property
of these localizations, both l and l′ are isomorphic to functors that invert W. In particular, l′

belongs to the essential image of the functor − ◦ l : Fun(E , E ′) → FunW(C, E ′), so that there
exists a functor G : E → E ′ such that l′ ∼= G ◦ l.

C E ′ C E

E E ′

l′

l

l

l′G H

Similarly, l ∼= H ◦ l′ for some functor H : E ′ → E . Using the bijection Nat(IdE , H ◦ G) ∼=
Nat(l,H ◦ G ◦ l) ∼= Nat(l, l), one finds a natural transformation α : IdE ⇒ H ◦ G (given by
the image of Idl). Similarly, there is a natural transformation β : H ◦G⇒ IdE . Finally, using the
bijection Nat(IdE , IdE) ∼= Nat(l, l), one gets β◦α = IdIdE and similarly for the other composition.
Hence H ◦ G ∼= IdE . Reasoning with E ′ in a similar manner shows that G and H realize an
equivalence of categories E ' E ′.
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2. Recall that the group completion of a monoid is a group M+ together with a monoid map
ι : M → M+ such that for any monoid map φ : M → G, there is a unique group morphism
φ̃ : M+ → G factorizing φ, that is φ = φ̃ ◦ ι. It is usual abstract nonsense to prove it is unique
up to isomorphism (and there is a unique such isomorphism that commutes with the structure
maps from M to the completion). To prove the existence of M+, it is enough to construct it,
which can be done by defining it as a quotient of the free group on the generating set M by the
obvious equivalence relation identifiying m ?m′ with m ·m′, where ? is the product in the free
group and · is the product in M .

We know come to the proof. The key fact to note is the following: the full subcategory of
Cat spanned by the categories with a unique object is isomorphic to the category of monoids.
Therefore, given a monoid A, we will also write A for the category with one object ∗ and
End(∗) = A as morphisms. Let M be a monoid. We now show that ι : M → M+, viewed as a
functor, satisfies the universal property of the localization of M along all morphisms. Let D be
a category. Then any functor F : M+ → D factors through the full subcategory DF (∗) spanned
by the image of ∗. Thus

Fun(M+,D) ∼=
⊔

x∈ob(D)

Fun(M+,Dx)

as categories. Observe that any morphism of monoid f : M+ → EndD(x) factors throught the
subgroup of units AutD(x). Hence precomposing with ι invert all morphisms in M+. Now the
universal property of the group completion gives that the functor

− ◦ ι : Fun(M+,AutD(x)) −→ FunW(M,AutD(x))

is bijective on objects, hence essential surjective. The category Fun(M+,AutD(x)) has objects
given by the group morphisms M+ → AutD(x) ; the morphisms between f and g are the
elements α ∈ AutD(x) such that g = αfα−1. Using this description, one easily see that − ◦ ι is
fully faithful, hence an equivalence of categories.

Exercice 4. Let F : C → D be a functor having a right adjoint G : D → C1. Let W denote the
collection of morphisms f in C such that F (f) is an isomorphism in D. Show that the following are
equivalent:

1. G is fully faithful;

2. The natural transformation F ◦G→ IdD is an isomorphism;

3. The natural functor C[W−1]→ D is an equivalence of categories.

Solution. To prove that 1 implies 2, one simply observe that

D(x, y) ∼= C(G(x), G(y)) ∼= D(F ◦G(x), y).

Similarly, by reversing the argument one can show that 2 gives 1.
Let us prove that 2 implies 3. By the universal property of the localization, the functor F factors as

C D

C[W−1]

F

` φ

1D is said to be a reflexive subcategory of C.
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We want to show that the φ is an equivalence of categories, with quasi-inverse `G. Note that the
composite φ`G = FG is isomorphic to IdD by assumption. It remains to show that `Gφ is isomorphic
to IdC[W−1]. Since precomposition with ` gives an equivalence of categories

Fun(C[W−1], C[W−1]) ∼−→ FunW(C, C[W−1]),

it is enough to prove that `GF ∼= `. Now we can use the triangle identity

F FGF

F

F ·η

ε·F

and the fact that ε is an isomorphism to deduce that F · η : φ`⇒ φ`GF is also an isomorphism. But
since W is precisely F−1(isoD), we deduce that each component ηc : c → GF (c) is in W, for c ∈ C.
This implies that `(ηc) : l(c) ∼= `GF (c), as desired.

Now we show that 3 gives 1. Since Fun(C[W−1],D) ' Fun(C,D) is fully faithful, so is F ∗ : Fun(D,D)→
Fun(C,D). Therefore, to show that F ◦ G ⇒ Id is an isomorphism, we are reduced to showing that
FGF ⇒ F is an isomorphism. This can be obtained from the adjunction.

Exercice 5. Let L : C → C be a functor and denote by LC ⊆ C its essential image. Show that the
following are equivalent:

1. There exists a functor F : C → D with a fully faithful right adjoint G : D → C and a natural
isomorphism between G ◦ F and L;

2. When regarded as a functor C → LC, L is a left adjoint to the inclusion LC ⊆ C;

3. There exists a natural transformation α : IdC → L such that for each object X ∈ C, the natural
morphisms L(αX) and αL(X) are isomorphisms.

Solution: It is clear that (2) implies (1): just take D to be the essential image of L. It is also
clear that (1) implies (2): as G is fully faithful, we can replace D by the essential image of G which by
hypothesis is equal to the essential image of L. Let us show that (2) implies (3). Let α : IdC → L be
the co-unit of the adjunction ensured by (2). Let us first remark that αL(X) and L(αX) are equal as
maps. Indeed, because of the definition of natural transformation, we have the commutativity of the
diagram

X

αX

��

αX // L(X)

L(αX)

��
L(X)

αL(X)// L(L(X))

But we know that HomLC(L(X), L(L(X)) ' HomC(X,L(L(X)) because L is a left adjoint to the
inclusion. Through this isomorphism, both αL(X) and L(αX) correspond to the diagonal of the square,
so, are equal. In this case it is enough to show that αL(X) is an isomorphism.

Exercice 6. Let C = ModZ be the category of abelian groups.

1. (Localization at a single prime) Let p be a prime. Show that the base change functor −⊗ZZ[1p ] :
ModZ → ModZ[ 1

p
] is a localization functor along the class W of all maps of abelian groups

f : X → Y such that both Kerf and cokerf are p-torsion groups. (Hint: Use the flatness of Z[1p ]
over Z.)

2. Show that the map Q→ Q⊗ZQ sending q 7→ q⊗1 is an isomorphism. Use this and the Exercice
3 to show that the category of Q vector spaces is a localization of the category of abelian groups.
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Solution. 1. Our strategy is the following: use the adjunction

F := (−⊗Z Z[1/p]) : ModZ ModZ[1/p] : HomZ[1/p](Z[1/p],−) = U

and prove that the counit ε : FU ⇒ IdModZ[1/p] is an isomorphism. Then use exercise 4. (part 1 =⇒ 3)

to identify ModZ[1/p] with the localization of ModZ along F−1(isoModZ).
Observe that the counit evaluated at an abelian group A is the evaluation

εA : HomZ[1/p](Z[1/p], A)⊗Z Z[1/p] −→ A.

This map is clearly surjective. We now show its injectivity. Let
∑

i ψi ⊗ ai be in the kernel of εA, i.e.∑
i ψ(ai) = 0. Without any loss of generality, we may assume that the ψ are linearly independent.

Let’s write ai = bi/p
ni and define N = maxini. Since multiplication by p is an isomorphism on A, we

have
∑

i p
N−nibiψ(1) in A. Since the ψi were linearly independent, all the bi are zero.

We know that F is a localization; it only remains to identify W with F−1(iso). Let f : A → B be a
morphism of abelian groups. Since Z[1/p] is torsion-free and Z is a principal ideal domain, Z[1/p] is a
flat Z-module. Therefore the sequence

0 −→ ker(f)⊗ Z[1/p] −→ A⊗ Z[1/p] −→ B ⊗ Z[1/p] −→ coker(f)⊗ Z[1/p] −→ 0

is exact. From this, we observe that F (f) is an isomorphism if and only if ker(f)⊗Z[1/p] and coker(f)⊗
Z[1/p] are zero. This is exactly the condition that f ∈ W. Therefore ModZ[1/p] ' ModZ[W−1].

2. Let ϕ : Q→ Q⊗Z Q denote the map q 7→ q ⊗ 1. Every element of Q⊗Q can be written in the
form ∑

i

ai
bi
⊗ ci
di

=

(∑
i

aici
bidi

)
⊗ 1,

which proves the surjectivity of ϕ. Since every Z-linear map between Q-vector spaces is Q-linear, for
dimension reasons we get that ϕ is a bijection.
Now consider the endofunctor L = (− ⊗Z Q) : ModZ → ModZ and the natural transformation
α : IdModZ ⇒ L given pointwise by A→ A⊗Q, a 7→ a⊗ 1. Again, the strategy is to use the previous
two exercises to ensure that the functor L : ModZ −→ LModZ is a localization. To this end, we need
to verify that αL(A) = αA⊗Q and L(αA) are isomorphisms for all abelian groups A. But this is an easy
consequence of the fact that ϕ is an isomorphism. By construction, LModZ is the full subcategory
of ModZ spanned by abelian groups isomorphic to Q(I) for some set I. We already noticed that this
category is equivalent to that of Q-vector spaces.

Exercice 7. Check that C[W−1] exists, given by the following pushout in Cat (the category of small
categories): ∐

f∈W I //

��

C

l
��∐

f∈W J // C[W−1]

where J is the category with two objects 0 and 1 and unique morphism 0→ 1 which is an isomorphism.2

Exercice 8 (Explicit descripition). In this exercice we review an explicit model for the Gabriel-
Zisman localization. Given the pair (C,W) we construct a new category D as follows: the objects are
the objects of C, morphims from X to Y are given by strings of the form

X → X1 ← X2 → X3 ← ...→ Xn → Y

2Why do pushouts in Cat exist?
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where all arrows going to the left are inW, submitted to the following equivalence relation: two strings
are equivalent if there exists a commutative diagram

X1

��

X2
oo

��

// X3

��

· · ·oo

��

// Xn

��

  
X

>>

  

Y

X ′1 X ′2
oo // X ′3 · · ·oo // X ′n

>>

where the vertical arrows are in W. Composition is given by concatenation of strings. Show that this
equivalence relation is well-defined and that D, together with the canonical functor C → D sending
X 7→ X and (f : X → Y ) 7→ X → Y = Y is a localization of C along W.

Exercice 9. In this exercice we check that the construction of the the previous exercice can be
simplified whenever W satisfies some additional properties. Suppose that:

1. W is stable under compositions;

2. For any diagram
X ′

X
f //

s

OO

Y

with s ∈ W, there exists a way to complete this diagram in a commutative diagram

X ′
g // Y ′

X
f //

s

OO

Y

t

OO

with t ∈ W.

3. Given f, g : X → Y , if there exists s ∈ W such that f ◦ s = g ◦ s then there exists t : Y → Z
such that t ∈ W and t ◦ f = t ◦ g.

In this caseW is said to be a calculus of (right) fractions. Under these hypothesis we consider for each
X ∈ C the category WX/. whose objects are morphisms s : X → X ′ with s ∈ W and morphisms are
commutative triangles over X. Assume that W forms a calculus of fractions. Show that:

1. For each X ∈ C, WX/. is a filtered category.

2. The category CW whose objects are given by the objects of C, hom-sets HomCW (X,Y ) are given
by colimu:Y→Y ′∈WY/.

HomC(X,Y
′) and compositions are induced from compositions in C, is well-

defined.

In other words, morphisms in CW between X and Y are given by equivalence classes of strings
of lenght one

X → Y ′ ← Y

where the left arrow belongs to W. This simplifies the general explicit description given in (6).

3. Show that the canonical functor Q : C → CW induced by the identity on objects and by the
canonical map

HomC(X,Y ) −→ colim
u:Y→Y ′∈WY/.

HomC(X,Y
′)

on morphisms, is well-defined.
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4. Show that if s : X → X ′ is a map in W and Y is an object in C then the composition map −◦ s

HomCW (X ′, Y )→ HomCW (X,Y )

is a bijection. Conclude that Q sends W to isomorphisms.

5. Show that Q is a localization of C along W.

6. Show that if C is an additive category and W is a calculus of fractions then the localization
functor Q preserves finite colimits and C[W−1] is also additive.

Solution. It is worth recalling that a filtered category means a nonempty category such that3

• for any two objects, there is a thrid one linking them : that this they both have arrows to a
common one,

• if f, g : X → Y are parallel maps, there is a map Y → Z which equalizes them after composition.

The first question is an easy consequence of the axioms. We now define composition in the category
CW . Let X −→ Y ′

∼←− Y and Y −→ Z ′
∼←− Z represent two morphisms in that category (denoting

morphisms in W with the symbol
∼←−). Using axiom 2, choose an object W ′ and morphisms to make

the following diagram commute

Y Z ′

Y ′ W ′

∼ ∼

We want to define the composite as represented by X −→ Y ′ −→ W ′
∼←− Z ′

∼←− Z. We show that
this definition does not depend on the choice of the object W ′ and of the maps Y ′ −→ W ′

∼←− Z ′.
Suppose Y ′ −→W ′′

∼←− Z ′ is another choice. Then again using axiom 2, we can construct a diagram

Z ′ W ′′

W ′ W.

∼

∼

∼

Note that at that point, there is no reason for Y ′ → W ′ → W and Y ′ → W ′′ → W to coincide. But
since these composite become equal after precomposition with Y

∼−→ Y ′, there exists a morphism
W

∼−→ W̃ in W that makes the diagram

Y ′ W ′′

W ′ W̃

commute. Then X −→ W̃
∼←− W

∼←− W ′
∼←− Z ′

∼←− Z is equal to both X −→ W ′
∼←− Z and

X −→W ′′
∼←− Z in HomCW (X,Z). One shows similarly that the composition does not depend either

on the choice of a representative such as X −→ Y ′
∼←− Y of the morphisms to compose.

Similar arguments permit to solve question 4.: one verifies that the injectivity of the map follows from
condition 3 and surjectivity from condition 2 in the definition of right calculus of fractions.
Since questions 3 and 5 are easily verified, let us now focus on question 6. We first show that the
localization functor Q commutes with finite colimits. Let d : I → C be a diagram in C and assume the

3Equivalently, a filtered category is one in which every finite diagram admits a cocone. More generally, if κ is a regular
cardinal, a category is said to be κ-filtered if every diagram with less than κ arrows has a cocone.
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colimit colimId exists in C. Then we want to show that Q(colimId) is a colimit of Q ◦ d in CW . To see
this notice that

HomCW (Q(colim
I

d), Z) := HomCW (colim
I

d, Z) := colim
Z→Z′∈W

HomC(colim
I

d, Z ′)

' colim
Z→Z′∈W

lim
i∈I

HomC(d(i), Z ′) ' lim
i∈I

colim
Z→Z′∈W

HomC(d(i), Z ′)

because filtered colimits commute with finite limits. By definition, the last becomes

lim
i∈I

HomCW (d(i), Z),

which concludes the argument. Let us now show that if C is additive then CW is additive. Recall that
an additive category is a category such that the hom-sets are abelian groups and the composition is
bilinear. Moreover, the category has a zero object. Clearly, if C is additive then the localization is
also additive because the hom-sets in the localization are filtered colimits of abelian groups which are
again abelian groups. We know now that if 0 is a zero object in C then Q(0) is an initial object in
the localization. We only have to show that Q(0) is also a final object. To see this we show that every
diagram c→ d← 0 is equivalent to the diagram c→ 0 = 0 using condition 3 in the definition of right
calculus of fractions together with the fact that 0 is terminal in C.
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