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Derived Functors, Homotopy Colimits and Model structures

Exercice 1 (Composition of Derived Functors). 1. Let F1 : C1 → C2 and F2 : C2 → C3 be functors
and let Wi be a class of morphisms in Ci. Assuming all the relevant total left derived functors
exist, use their universal properties to construct a natural transformation LL2◦LF1 → L(F2◦F1).

2. Suppose now that C1, C2 and C3 are model categories and that F1 and F2 are left Quillen functors.
Show that all derived functors exist and the natural transformation of the previous exercise is a
natural isomorphism.

Solution 1. 1. Denote πi : Ci → Ho(Ci) the canonical functors. Let us recall that the total left derived
functor LF1 : Ho(C1) → Ho(C2) come equipped with a natural transformation LF1 ◦ π1 � F1 which
is universal among such (it is a right Kan extension). In particular we have a commutative diagram

C1
F1 //

π1 ##

C2
F2 //

π2

%%

C3

π3 %%
Ho(C1)

LF1 // Ho(C2)
LF2 // Ho(C3)

.

and natural transformations, given forn any X ∈ C1 and Y ∈ C2 by LF1(π1(X)) → π2(F1(X)) and
LF2(π2(Y ) → π3(F2(Y )). Taking Y = F1(X), the commutativity of the diagram gives a natural
transformation

LF2 ◦ LF1(π1(X))→ π3(F2 ◦ F1(X))

hence by universal property we get a unique natural transformation LL2 ◦ LF1 → L(F2 ◦ F1).

2. Let us now address the second question: first we remark that the composition of left Quillen
functors is again a left Quillen functor. Indeed, by definition if F1 preserves both cofibrations and
acyclic cofibrations and F2 also, clearly so does the composition F2 ◦ F1. Therefore, by the theorem
given in class, the model structures garantee the existence of LF1, LF2 and L(F2◦F1), given on objects,
respectively by LF1(X) = F1(Q1(X)), LF2(Y ) = F2(Q2(Y )) and L(F2◦F1)(X) = F2(F1(Q1(X)) where
Q1 is a cofibrant replacement functor in C1 and Q2 is a cofibrant replacement in C2. In this case the
natural transformation LL2 ◦ LF1 → L(F2 ◦ F1) is given on each object X ∈ C by a morphism

F2(Q2(F1(Q1(X)))→ F2(F1(Q1(X))

We only have to notice that by construction (in fact, we have to unfold the proof given in class that
the formula LF = F ◦Q has the universal property of total left derived functor) this morphism is the
image under F2 of the cofibrant-replacement

Q2(F1(Q1(X))→ F1(Q1(X)

which by definition is a weak-equivalence with both source and target cofibrant: the source is cofibrant
by definition. The target is cofibrant because F1 is a left Quillen functor so sends cofibrant objects to
cofibrant objects. Therefore by Brown’s lemma1 its image under F2 is a weak-equivalence and therefore
an isomorphism in the homotopy category.

1it is always worth recalling that this lemma does imply that all left Quillen functors send all weak equivalences
between cofibrant to weak equivalences and right Quillen functors send weak equivalences between fibrant to weak
equivalences
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Exercice 2 (Homotopy colimits). In this exercise we first deal with generalities on homotopy pushouts
and then specialized to chain complexes with the projective model structure. Let C be a model category
and let I be the category given by the diagram-shape

b //

��

c

a

1. Let f : X → Y be a natural transformation of diagrams X,Y ∈ Fun(I, C). Show that f has the
left lifting property with respect to all projective acyclic fibrations if and only if the the natural
maps

X(a)
∐
X(b)

Y (b)→ Y (a), X(b)→ Y (b), X(c)
∐
X(b)

Y (b)→ Y (c)

are cofibrations in C (Here we mean the usual pushouts in C). Conclude that a diagram Y : I → C
is cofibrant if and only if Y (b) is cofibrant in C and each map Y (a)→ Y (b) and Y (a)→ Y (c) is a
cofibration. Moreover, show that X → Y has the left lifting property with respect to projective
fibrations if and only the same three maps are acyclic cofibrations.

2. Show that the category of diagrams Fun(I, C) admits the projective model structure (without
using the result seen in class that such structure exists since I is very small).

3. Show that the colimit functor colim : Fun(I, C)→ C is a left Quillen functor.

4. A model category C is said to be left proper if weak-equivalences are stable under pushouts along
cofibrations. Show that C be left proper and

A
f //

��

B

��
C // C

∐
AB

is a pushout diagram with A→ B a cofibration, then the diagram is also a homotopy pushout.

5. Case of Topological spaces. Assume now that C = Top.

(a) Using that Top is proper (see exercise 6), deduce that that there is a canonical isomorphism

L colim(X ← A→ Y ) ∼= X

h∐
A

Y = X
∐

A×{0}

Cyl(A→ Y )

in Ho(Top) between the homotopy pushout computed by the projective model structure
and the formula given by the mapping cylinder.

(b) Give a formula for computing the homotopy colimit of a towerX0
f0→ X1

f1→ X2
f2→ X2 → . . . .

as well as the homotopy limit of a tower . . . Y2 → Y1 → Y0.

6. Case of chain complexes. Assume now that C is the model category of chain complexes over
a ring R.

(a) Show that C is left proper.
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(b) Let g : A → B be a map of chain complexes. Recall that the mapping cone of g, denoted
C(g), is the chain complex given in level n by Bn⊕An−1 and whose differential Bn+1⊕An →
Bn⊕An−1 is given (b, a) 7→ (∂B(b) + g(a),−∂A(a)). Let I1 denote the chain complex given
by R ⊕ R in degree 0 and R in degree 1 with differential given by ∂R : R → R ⊕ R given
by r 7→ (−r, r). We define the mapping cylinder of g, Cyl(g) to be the pushout in chain
complexes of

A
g //

i0
��

B

��
I1 ⊗A // Cyl(g)

where the vertical arrow A → I1 ⊗ A is the induced by the inclusion i0 : R → I1 corre-
sponding to the inclusion of the second factor R ↪→ R ⊕ R in degree 0 and the differential
on I1⊗A is given by r⊗a 7→ ∂R(x)⊗a+ (−1)deg(r)r⊗∂A(a). Show that the mapping cone
of g is the pushout of

I1 ⊗A

��

// Cyl(g)

��
C(IdA) // C(g)

(c) Let ∆1 be the category with two objects and one non trivial morphism in between them.
Show that the construction of the mapping cone defines a functor C : Fun(∆1, Ch(R))→
Ch(R) sending natural transformations objectwise given by quasi-isomorphisms to quasi-
isomorphisms.

(d) Let Y := ( 0 Aoo g // B ) be a diagram in C. Show that there exists a diagram of the

form Y ′ := ( 0 A′oo g′ // B′ ) with g′ a cofibration and A′ and B′ cofibrant, together
with a natural transformation u : Y ′ → Y which is objectwise a weak-equivalence. Notice
that by the previous question the induced map C(g′)→ C(g) is a weak-equivalence.

(e) Let Y := ( 0 Aoo g // B ) be a diagram in C with A and B cofibrant and g a cofibration.
Show that A→ A⊗∆1 is a weak-equivalence and show that we can construct a zigzag of
diagrams Y ← Y ′ → Y ′′

0 Aoo g // B

C(A)

��

OO

Aoo g //

OO

��

B

��

OO

C(A) I1 ⊗Aoo g // Cyl(g)

where each vertical arrow is a weak-equivalence and the map I1⊗A→ Cyl(g) is a cofibra-
tion.

(f) Let Y := ( 0 Aoo g // B ). Conclude that the mapping cone C(g) is a model for the
homotopy colimit of the diagram Y .

Solution 2. First we advise the reader to write down a commutative square of functors in Fun(I, C),
which are given by glueing two commutative cubes on their common face, and in which each face is
commutative, as well as to write down what a lifting mean (which is a family of three maps divding
parallel faces into two commutative triangles). A key feature of the diagram we are considering is
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that the object b has only outgoing non-identity arrows and the other two objects have only incoming
non-identity arrows. The object b and its image by a functor will play a specific role. 1. Suppose a
morphim X → Y in Fun(I, C) has the left lifting property with respect to projective acyclic fibrations.
We first show that the the map X(b) → Y (b) has the left lifting property. Thus, we need to see that
for any U → V a acyclic fibration in C the dotted lifting arrow exists in the diagram

X(b) //

��

U

��
Y (b) //

==

V

.

For this, we notice that the data of such a diagram is equivalent to the data of a morphism of diagrams

X //

��

(∗, U, ∗)

��
Y //

;;

(∗, V, ∗)

where (∗, U, ∗) is a notation for the diagram ∗ ← U → ∗ (and ∗ is the terminal object). The lifting
exists by the assumption that X � Y . This shows that X(b)→ Y (b) is a cofibration. Let us now use
this to show that the map X(a)

∐
X(b) Y (b)→ Y (a) has the left lifting property

X(a)
∐
X(b) Y (b) //

��

U

��
Y (a) //

88

V

with respect to any acyclic fibration U → V in C. We do this using the remark that the data of such
a commutative square is equivalent to the data of a commutative square of diagrams

X //

��

(U,U, ∗)

��
Y //

;;

(V,U, ∗)

The case of the remaining map is completely analogous.
We now have to check the converse, that if X → Y is of the form given in the exercise then it has

the left lifting property with respect to projective acyclic fibrations. The idea is again to use first the
fact that X(b)→ Y (b) is a cofibration in C to construct the lifting in the middle. This is possible since
each arrow U(a)→ V (a), U(b)→ V (b) and U(c)→ V (c) are acyclic fibrations if U → V is an acyclic
fibration in Fun(I, C).

This being done, we see that the lifing Y (b)→ U(b) gives a commutative diagram

X(b) //

��{{

X(a)

��
Y (b) //// U(b) // U(a)

from which we get a canonical map X(a)
∐
X(b) Y (b) → U(a) which, by the commutativity of the

diagram of squares fits into the commuative square X(a)
∐
X(b) Y (b) //

��

U(a)

o
����

Y (a) //

77

V (a)

for which the dotted
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arrow exists since the left hand vertical map is assumed to be a cofibration. The remaining lifts is the
same. This proves the first equivalence.

The case of acyclic cofibrations is similar, using fibration on the right hand side instead of acyclic
ones.

2.One has to check that all the axioms are satisfied. First one checks that Fun(I, C) admits all
limits and colimits: this is true as long as they exist in C because colimits and limits in Fun(I, C) are
computed objectwise in C. Then one has to check the two-out-of-three property of weak-equivalences.
But again this follows by definition of the weak-equivalences as objectwise weak-equivalences in C
which verifies this property. Then we have to check that fibrations, cofibrations and weak-equivalences
are stable under retracts. For fibrations and weak-equivalences this follows again from the definitions,
so we only have to say something about cofibrations: but since cofibrations are maps defined by a left
lifting property, and the latter are stable under retracts, this is also OK (see the proof of the closedness
of a model category in Class).

The lifting properties were already checked in the previous question so all we have to check is
the factorization property: we explain the case X → Y factored as acyclic cofibration + fibration.
Here is the idea: again, first we factor the middle term X(b)→ Y (b) as a acyclic cofibration followed
by a fibration X(b) → A → Y (b) in C. Then we complete this into a diagram by taking pushouts
X(c) → X(c)

∐
X(b)A → Y (b) and X(a) → X(a)

∐
X(b)A → Y (a). Now we factor the last two maps

X(c)
∐
X(b)A → Hc → Y (b) and X(a)

∐
X(b)A → Ha → Y (a) again in C. The resulting factorization

X → H → Y has the required properties.
3.This follows because by definition its right adjoint is the constant diagram functor which is right

Quillen as by definition it preserves fibrations and acyclic fibrations.

Remark on computations of homotopy pushouts. As we have seen in class, the last point implies
in particular that homotopy pushouts exists for any model category C and are computed as the left
total derived functor of the pushout functor Fun(I, C)→ Ho(C) where the diagram category is given
the projective model structure. This means that it is computed by taking the pushout of a cofibrant
replacement of X(a)← X(b)→ X(c) in Fun(I, C), that is

L colim
(
X(a)← X(b)→ X(c)

)
= colim

(
LX(a)← LX(b)→ LX(c)

)
= LX(a)

∐
LX(b)

LX(c)

where LX
∼
� X is the cofibrant replacement.

Note that by question 2., we have that a diagram Z is cofibrant if Z(b) is cofibrant and (since
0
∐
O

Z(b) = Z(b)) the maps Z(b)→ Z(c) and Z(b)→ Z(a) are cofibrations. Thus:

a cofibrant replacement of a diagram X is a diagram LX(a) LX(b)oooo // // LX(c) ,

with LX(b) cofibrant, and a commutative diagram:

LX(a)

o
����

LX(b)oooo // //

o
����

LX(c)

o
����

X(a) X(b) //oo X(c).

The next question and the proposition below shows that in model categories where weak equivalences
are preserved by pushouts, there is an easier formula to compute it.

4. Indeed, let
C ′

o
����

A′ // //oooo

o
����

B′

o
����

C A //
f //oo B

be a cofibrant resolution of the diagram C ← A→ B (as explained in the remark above). We have to
show that the natural map

C ′
∐
A′

B′ → C
∐
A

B
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is a weak-equivalence. But this map can be obtained as a composition of two maps : C ′
∐
A′ B

′ →
C ′
∐
A′ B followed by C ′

∐
A′ B → C

∐
AB. The first map can be obtained as a pushout

B′ //

��

C ′
∐
A′ B

′

��
B // C ′

∐
A′ B

The top horizontal arrow is a cofibration (because cofibrations are stable under pushout and A′ � C ′

is a cofibration) and as B′ → B is a weak-equivalence , left properness implies that the left vertical
arrow is a weak-equivalence. The second map can be obtained as a composition of pushout diagrams.

A′
cof //

∼
��

C ′

∼
��

∼

**A
��

f

��

// C ′
∐
A′ A

cof

��

∼(2of3) // C

��
B // B

∐
A(C ′

∐
A′ A) ' B

∐
A′ C

′∼(proper)// B
∐
AC

where the middle vertical arrow is a cofibration as a pushout of the cofibration f and the lower right
horizontal arrow is a weak-equivalence thanks to the properness assumption.

5.

a. Noticing that the factorisation A ↪→ A × [0, 1]
∐

A×{1}
Y
∼→ Y given by the mapping cylinder is a

relative cell complex followed by a weak equivalence, we wee that the result will follow from the
following general fact:

Proposition (Homotopy pushout in left proper model categories). If C is a left proper
model category, and A � B′

∼→ B is a replacement of a morphism i : A → B by a cofibration,
then there is a natural isomorphism L colim(X ← A→ B) ∼= X

∐
A

B′.

Strictly speaking the proposition asserts that there is an isomorphism in Ho(C) between the
homotopy pushout and the pushout induced by the cofibrant replacement of A → B and that
in fact, this isomorphism is inducec by a natural zigzag of weak equivalence

LX
∐
LA

LB
∼←?

∼→ X
∐
A

B′

where the LX ← LA → LB is a cofibrant replacement of X ← A → B (and thus the source
of the weak equivalence is precisely the homotopy pushout) and the question mark ? depends
functorially on the diagram.

We now prove the proposition. By question (3.), the target X
∐
A

B′ is the homotopy pushout

L colim(X ← A� B′). The map B′ → B induces a map of diagrams

X Aoo // // B′

o
��

X Aoo // B

for which all vertical maps are weak equivalences. Hence this is a weak equivalence of diagrams,
and thus, the induced map on homotopy colimits is an isomorphism in Ho(C).
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We thus have a natural isomorphism L colim(X ← A→ B)
'← L colim(X ← A� B′)

'→ X
∐
A

B′

in Ho(C) as claimed and the question mark ? above is just the pushout LX
∐
LA

LB′ where LX ←

LA → LB′ is the cofibrant replacement of X ← A→ B′.

b. The category N depicting the colimit of tower is simply 0→ 1→ 2→ 3→ · · · (that is the category
associated to the ordinal N, or said otherwise to the ordered set N) the category with exactly
one arrow in between two consecutive non-negative integers. It is not a very small category so
that the theorem seen in class does not guarantee the existence of homotopy colimit.

However, we can apply the same ideas as in the study of the homotopy pushout. Proceeding
exactly as in question 1. we see that, for any model category C, a morphism X → Y in Fun(N, C)
is a projective cofibration (resp. acyclic cofibration) if and only if X(0)→ Y (0) is a cofibration
(resp. acyclic cofibration) and for every i > 0, the natural map Xi

∐
Yi−1

Xi−1 → Yi is a cofibration

(resp. acyclic cofibration). Then one can prove as in 2. that the projective structure on Fun(N, C)
makes the category of towers a model category so that the homotopy colimit of the tower exists.
Further a cofibrant replacement of a diagramX : N → C is thus given by a cofibrant object LX(0)

and cofibrations LX(� LX(i+ 1) (for any i ∈ N) together with acyclic fibrations LX(i)
∼
� Xi

making the obvious squares commutative. In the specific case where X(0) is cofibrant and all the
maps X(i)→ X(i+1) are cofibrations, we thus have that X is cofibrant and therefore as seen in
class, the canonical map from the homotopy pushout of the tower X to its pushout colimX(i)
is a weak equivalence. It follows that if we have a commutative diagram

Y (0) // //

o
��

Y (1) // //

o
��

Y (2) // //

o
��

· · ·

X(0) // Y (1) // Y (2) // · · ·

with Y (0) cofibrant, then the diagram is a weak equivalence of diagram and by above we thus
have a zigzag of weak equivalences

colim
N

Y (i)
∼← colim

N
LY (i)

∼→ colim
N

LX(i).

This proves that to compute the homotopy colimit of a tower it is enough to replace it by a
weakly equivalent tower consisting of cofibrations whose first object is cofibrant.

A completely dual analysis shows that the injective model structure is also a model category for
Fun(N, C) and thus that homotopy limit of tower exists and can be computed by replacing a
tower by a weakly equivalent tower such that all maps are fibrations and the last object Y0 is
fibrant.

Now, recall from class that in Top, every object is fibrant and that for every object X0 there is
a CW-complex X̃0 weakly equivalent to it: X̃0

∼→ X0 (and by composition we have an induced
map X̃0 → X1).

Hence in Top , the homotopy colimit of a tower is given by the “telescope”

LcolimXi
∼= X̃0 × [0, 1]

∐
X̃0×{1}

X1 × [1, 2]
∐

X1×{2}

X2 × [2, 3]
∐

X2×{3}

X3 × [3, 4]
∐
· · ·

that is a tower of glued cylinders. Now consider the colimit of almost the same telescope but for
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which we start at X0. Then we have a pushout diagram

X̃0 × [0, 1[

o

��

// // X̃0 × [0, 1]
∐̃
X0

( ∐
Xi−1

Xi × [i, i+ 1]
)

��
X0 × [0, 1[ // // X0 × [0, 1]

∐̃
X0

( ∐
Xi−1

Xi × [i, i+ 1]
)

in which the right vertical arrow is a weak equivalence by left properness. Hence the homotopy
colimit of a tower X0 → X1 → · · · is given by the telescope

LcolimXi
∼= X0 × [0, 1]

∐
X0×{1}

X1 × [1, 2]
∐

X1×{2}

X2 × [2, 3]
∐

X2×{3}

X3 × [3, 4]
∐
· · · .

By a similar argument and induction one can prove that if all the maps in the sequence X0 →
X1 → · · · are cofibration then the colimit of the sequence colim(Xi) is weakly equivalent to its
homotopy colimit LcolimXi.

Similarly a homotopy limit of . . . Y2 → Y1 → Y0 by replacing each map by a fibration and taking
the limit hence as a limit of path spaces.

6.

a. Let

M
g //

f
��

M ′

f ′

��
N

g′ // N ′

be a pushout diagram in Ch(A) where g is assumed to be a cofibration and f is weak-equivalence.
We must show that f ′ is a weak-equivalence. But notice that as g is a cofibration and therefore
injective, we have a short exact sequence of chain complexes and therefore long exact sequence
of homology groups, and finally we have maps of exact sequences

Hn+1(M ′/M) //

��

Hn(M) //

��

Hn(M ′) //

��

Hn(M ′/M) //

��

Hn−1(M)

��
Hn+1(N ′/N) // Hn(N) // Hn(N ′) // Hn(N ′/N) // Hn−1(N)

where the first and fourth vertical maps are isomorphisms because the diagram is a pushout and
the second and last vertical maps are isomorphisms because f is a weak-equivalence. So f ′ is also
a weak-equivalence.

b. Note that in degree n, one has (I1⊗A)n = An⊕An⊕An−1. The formula given for the differential
gives d(x, y, w) =

(
∂A(x)− z, ∂A(y) + z,−∂A(z)

)
. Hence the pushout Cyl(g) := B

∐
A I

1 ⊗ A is
given in degree n by Bn ⊕An ⊕An−1 and the map I1 ⊗A→ B

∐
A I

1 ⊗A is given in degree n
by (x, y, w) 7→ (g(y), x, w). Thus the differential on the pushout Cyl(g) is given by

(b, x, w) 7→
(
∂B(b) + g(w), ∂A(x)− w,−∂A(z)

)
.

The formula for the differential of I1 ⊗ A above shows that their linear maps (I1 ⊗ A)n =
An⊕An⊕An−1 → An⊕An−1 given by (x, y, z) 7→ (y, z) defines a chain map t : I1⊗A→ C(IdA).

Now we compute the pushout Cyl(g)
∐
I1⊗A

C(IdA). In degree n, we have

(
Cyl(g)

∐
I1⊗A

C(IdA)
)
n

= (Bn ⊕An ⊕An−1)⊕ (An ⊕An−1)/(g(y), x, w, 0, 0) ∼ (0, 0, 0, y, w)
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and hence it is isomorphic to Bn ⊕ An−1 (the terms corresponding to x being killed off in the
quotient). The differential then reads (b, w) 7→ (∂B(b) + g(w),−∂A(w)) which proves that the
pushout is indeed the cone C(g).

c. A functor from ∆1 to any category is simply the data of two objects and one morphism between
them, that is the data of an arrow A

g→ B. A map between functors is simply a natural transfor-

mation thus a commutative diagram A
g //

α
��

B

β
��

A′
g′ // B′

. Now if we are in chain complexes, the linear

maps β ⊕ α : Bn ⊕An−1 → B′n ⊕A′n−1 are a map C(g)→ C(g′) of chain complexes (because α
and β commutes with differential and the diagram is commutative). And it is easy to check that
this assignement does make g 7→ C(g) into a functor Fun(∆1, Ch(R))→ Ch(R). It reamains to
prove it send objectwise weak equivalences to weak equivalence. To see this, we note that given
f : A→ B one has an exact sequence of complexes 0→ B → C(f)→ A[1]→ 0. Hence a map of
morphisms produces a map of exact sequences and if the maps are quasi-isomorphisms, by the
five-lemma, the middle terms will also be.

d. Take ua : A′
∼
� A a cofibrant replacement of A. Then choose a factorization of A′ → A → B as

a cofibration g′ : A′ � B′ followed by a acyclic fibration ub : B′
∼
� B and set uc : 0 → 0 as

the identity. This gives us the required natural transformation with g′ a cofibration as we have
a commutative diagram

0 A′

oua
��

oo // g
′
// B′

o ub
��

0 A //goo B

e. First note that the composition A
i0
I

1

⊗A → C(IdA) is given y 7→ (0, y, 0) 7→ Since g is assumed
to be a cofibration and cofibrations are stable under pushouts, by definition of the mapping
cylinder, the map I1 ⊗ A → Cyl(g) is a cofibration as well. Now we are only left to prove the

vertical arrows in the diagram 0 Aoo // g // B

C(IdA)

OO

A
t◦i0oo

i0
��

// g // B

��
C(IdA) I1 ⊗Atoo // // Cyl(g)

are weak equivalences. For

the lower right one, it follows by left properness once we prove that i0 is. Note that the linear
maps s : I1 ⊗ A → A given in degree n by s(x, y, w) = x + y are a chain complex morphism.
Further s ◦ i0 = IdA. To prove that i0 is a quasi-isomorphism it is thus enough to prove that
i0 ◦ s induces the identity in homology and thus it is enough to prove it is homotopic to the
identity of I1 ⊗ A. Let h : I1 ⊗ A → I1 ⊗ A[−1] be given by h(x, y, w) = (0, 0, x). Then
dh+hd(x, y, w) = (−x, x,−w) = −(x, y, w)+ i0 ◦s(x, y, w) which proves that h is indeed a chain
homotopy in between Id and i0 ◦ s. Finally, since C(IdA) is acyclic2 the upper left vertical map
is a quasi-isomorphism.

f. Given Y we can apply (d) to find Y ′
∼→ Y where Y ′ is of the form Y ′ = ( 0 A′oo // g

′
// B′

with A′ and B′ cofibrant. The natural transformation Y ′
∼→ Y being a weak equivalence, it

induces a quasi-isomorphism of the homotopy colimits of Y ′ to the one of Y . Further, by (c) the

2as follow from the long exact sequence since id is a quasi-isomorphism
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mapping cone of Y ’ and Y are weak-equivalent. Thus it is enough to prove that the mapping cone
of g′ : A′ → B′ is quasi-isomorphic to the homotopy pushout of the diagram Y ′. In other words,
we are left to prove (f) in the case where g;A→ B is a cofibration and A, B are cofibrant, which
are exactly the assumptions of (e). Now because of left properness we know that the the pushout
of such a Y is a homotopy pushout. For the same reason, this is also the case for each horizontal
diagram in the string of weak equivalences Y

∼← Y ′
∼→ Y given by (e). The vertical maps being

all weak equivalences we thus have that the homotopy pushout of the top horizontal diagram is
equivalent to the one of the lower horizontal diagram. The later is thus the same (again by left

properness) as the pushout C(IdA) I1 ⊗Atoo // // Cyl(g) , that is by definition the mapping

cone C(g) of the original map g while the first was by above quasi-isomorphic to the homotopy
pushout.

Exercice 3 (Bad behavior of Gabriel-Zisman Localization). Let A be a ring and let D(A) :=
Ho(Ch(A)) denote the derived category of A; it is the Gabriel-Zisman localization of the category
Ch(A) of chain complexes in A localized along quasi-isomorphisms of complexes. We have seen in class
that D(A) is the homotopy category of a model structure in Ch(A) with weak-equivalences given by
quasi-isomorphisms and fibrations given by levelwise surjections.

1. Show that if E and H are two A-modules seen as complexes concentrated in degree zero, then

HomD(A)(E,H[n]) ' ExtnA(E,H)

2. Show that if A is a field then D(A) is an abelian category3, equivalent to the category AZ of
Z-graded A-vector spaces.

3. Show that D(A[X]) does not admit colimits in general (Hint: Take a non-trivial element f : A→
A[1] and show that if it has a kernel then we get to a condradiction with the fact f is non-trivial);

4. Let A be a field and let I be the category with one object and N as endomorphisms. Show
that Fun(I,D(A)) is not equivalent to D(Fun(I, Ch(A)). The conclusion is that the theory of
diagrams does not interact well with derived categories.

Solution 3. 1. By the fundamental theorem for computing morphisms int he homotopy category,
and as every object is fibrant in the projective model structure, HomD(A)(E,H[n]) is in bijection with
the set of homotopy classes of maps Q(E) → H[n] with Q(E) a cofibrant resolution of E. As ,we
have seen in class, a projective resolution of A (which is bounded below) is in particular a cofibrant
resolution, hence we can take Q(E) = P any projective resolution of E. Then this hom-set is by
definition HomCh(A)(P,H[n])/ ' and thus, since H[n] is concentrated in positive degree n, it is the

quotient of the set Zn(E,H) of linear maps f : E → H such that En+1 → En
f→ H is zero. In

other words, this is a degree n-cocyle in the cochain complex HomA(P,H). Now, since P is cofibrant
and H[n] is fibrant, two maps f, g : E → H[n] are homotopy equivalent if and only if they are right
homotopy equivalent.

As in Exercise 2, we have a special path object for H; namely HI := HomA(I1, H) which the
chain complex given by H ⊕H in degree 0 and H in degree −1 with differential given by H ⊕H → H
given by (x, y) 7→ x − y. Then we have a chain map HI → H × H given by the dual of i0 and i1,
which is just the identity map in degree 0 and (necessary) 0 elsewhere. It is surjective levelwise hence
a fibration. Finally we also have a canonical map H → HI given, in degree 0 by r 7→ (r, r) and 0
elsewhere. This map is indeed a chain map since d(r, r) = 0. Thus HI with the above maps is a path
object for H and so is HI [n] for H[n].

3see links to Homological algebra exercises on the web page if you are not familiar with this
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We now prove that if f
r∼ g then there is a right homotopy from f to g with HI [n] as a cylinder.

Indeed, let RH � H[n] × H[n] be a path object and α : P → RH be a right homotopy. We can

factor the structure map H
∼→ RH as H

∼
� R̃H

∼
� RH by the factorisation axiom and the 2 out 3

property. Then the map R̃H
∼
� RH � H×H makes R̃H a path object for H. Since P is cofibrant and

R̃H
∼
� RH is an acyclic fibration, the lifting property ensures that there is a lifting α̃ of α: 0

����

// R̃H

o
����

P α
//

α̃
>>

RH

and thus we have an homotopy between f , g out of the path object R̃H . Now the commutative square

H
��

o
��

∼ // HI [n]

����
R̃H //

99

H[n]×H[n]

provides a map R̃H → HI so that the composition P
α̃→ R̃H → HI [n] is a

right homotopy from f to g.

Now we just have to identify what it means to be a right homotopy P → HI . For degree reason, it
has only two possible non-zero components given by a linear map Pn → H ⊕H which has to be (f, g)
(since it is an homotopy) and a map h : Pn−1 → H. Since the map has to be a chain map, we get that
f − g = h ◦ dPn where dPn : Pn → Pn−1 is the differential. In other words, two maps f, g : Pn → H
are right homotopic if they differ by a coboundary in the chain complex HomA(P,H). Thus we have
indeed a canonical isomorphism HomD(A)(E,H[n]) ∼= Hn(HomA(P,H)) = ExtnA(E,H)

2. One checks that the functor sending a complex (Mk, ∂k) ∈ Ch(A) to the Z-graded module
l(M) :=

⊕
i∈ZHi(M) sends quasi-isomorphisms to isomorphisms and therefore induces a functor

l : D(A)→ AZ. One can produce a candidate for the inverse: given a Z-graded module K we consider
the associated chain complex with zero differentials (K, 0). This gives a natural functor AZ → Ch(A)
and we set t : AZ → D(A) as the composition with the localization functor. Let us show that l and
t form an equivalence of categories. Clearly, the composition l ◦ t is isomorphic to the identity. We
are left to construct a natural isomorphism between IdD(A) and t ◦ l, meaning, we should exhibit

functorial isomorphisms in D(A) between (Mk, ∂k) and (Hk(M), 0). For that purpose we construct
two morphisms in Ch(A), fM : (Mk, ∂k) → (Hk(M), 0) and gM : (Hk(M), 0) → (Mk, ∂k) which we
prove to be isomorphisms in D(A) and behave functorialy with respect to M . To define them let us
notice that we always have (by definition) short exact sequences

0→ Ker∂n →Mn →∂n Im∂n → 0

and

0→ Im∂n+1 → Ker∂n → Hn(M)→ 0

and as we are working over a field, both exact sequences split (In fact, this proof also shows more
generally that the derived category of any semi-simple abelian category is abelian). In this case we have
isomorphisms Mn ' Im∂n+1⊕Hn(M)⊕ Im∂n and under this identification the map differential map
Mn+1 →Mn is identified with the map (a, b, c) 7→ (c, 0, 0). Now we define the map fnM : Mn → Hn(M)
as the projection and the map gnM : Hn(M) → Mn as the inclusion. One checks that these maps are
quasi-isomorphisms and therefore become isomorphisms in D(A). Moreover, the choice of the splittings
can be made in such a way that these maps provide a natural isomorphism in the homotopy category:
has to check that after passing to the homotopy relation on morphisms the choice of the splitting does
not matter.

3. As we have seen in 1., we have HomD(A[X])(A,A[1]) = Ext1A[X](A,A) ' A (we leave this

computation as an exercise: take the obvious projective resolution A[X]
×X→ A[X]). Let 1 ∈ A and

take f : A→ A[1] be a D(A[X]) non zero map (corresponding to 1 ∈ A in the above identification of
Ext. Assume there is a kernel Kerf . Then by definition of a kernel, we have a long exact sequence of
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abelian groups

0→ [A[X], kerf [i]] = H i(Kerf)→ [A[X], A[i]] = H i(A)→ [A[X], A[i+ 1]] = H i+1(A) = 0

This implies Kerf is quasi-isomorphic to A hence f = 0. This is absurd.
4. Assume A is a field. Let I be the category with one object and N as its monoid of endomorphism.

Then the category Fun(I, C(A)) is isomorphic to C(A[X]) hence D(Fun(I, C(A))) ' D(A[X]) which
by the previous question has no (co)limits in general. However, since A is a field (in particular is
semi-simple) the category Fun(I,D(A)) is abelian since D(A) is itslef abelian.

Exercice 4 (Small Object Argument). The goal of this exercise is to make precise the small object
argument and how to use it in the case of/to construct cofibrantly generated model categories.

Let C be a category having all small colimits and I a small set of maps in C. Suppose that the
domains of the maps in C are compact objects 4. We let Cell(I) denote the class of maps in C obtained
as transfinite compositions of pushouts of elements of I, ie, a map f : A → B is in Cell(I) if there
exists a diagram X : N → C such that f is the composition of X and for all n < n + 1 the map
Xn → Xn+1 is obtained via a pushout

U //

��

V

��
Xn

// Xn+1

where the map U → V is in I. Also, we denote by LLP (I) (resp. RLP (I)) the collection of maps with
the left (resp. right) lifting property with respect to I.

1. Show that Cell(I) is contained in LLP (RLP (I));

2. Show that Cell(I) is closed under transfinite compositions.

3. Show that if K is a set and {uk : Ak → Bk}k∈K is a K-family of maps in I then any map f in
C obtained as a pushout ∐

k∈K Ak∐
k∈K uk

��

// X

f

��∐
k∈K Bk

// Y

is in Cell(I);

4. Let f : X → Y be a morphism in C. Show that we can always factor f as a composition
δ ◦ γ : X → Z → Y where γ : X → Z is in Cell(I) and δ : Z → Y is in RLP (I)

5. Explain why this factorization process can be exhibited as a functor Arr(C)→ Arr(C)×CArr(C)
sending f 7→ (γ(f), δ(f)).

6. Use this factorization process to show that every map f : X → Y in LLP (RLP (I)) is a retract
of a map g : X → C in Cell(I), which fixes X.

Solution (partielle) 4. 1.This is done by induction using the universal property of pushouts and the
definition of left lifting property and is analogous to the fact that maps with a left lifting properties
are preserved along pushouts.

4Recall that an object X in a category C is said to be compact if the functor Hom(X,−) commutes with filtered
colimits.
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2. This part is essentially set theoretic. The point is that if F : κ→ C is a sequence (indexed by an
ordinal κ) of relative I-cell complexes. That is for each k ∈ κ, the map F (k)→ f(k + 1) is a relative
cell complex, that is a diagram F (k) = F (k)0 → F (k)1 → · · · where each F (k)i → F (k)i+1 is obtained
via a pushout along a map in I and the sequence is indexed by τκ in general (and N in this exercise).
Taking the lexicographic on the set of pairs (α, β) of ordinals such that α < κ and β < τβ we obatin a
well ordered set hence it is isomorphic to a unique ordinal. Using this ordinal we can redinex all the
sequence into a transfinite compositions of pushouts (provided we get rid of useless isomorphisms). If
we only consider things indexed by N, then we still get a trasnfinite compositions indexed by integers.

3. This is again a game of reindexing the pushout so that it becomes a transfinite composition:
since K is a set, it isomorphic to an ordinal (corresponding to its cardinal), written κ. Then we define
a κ-sequence by setting X0 = X and then, for any i ∈ κ, we set Xi → Xi+1 to be the pushout
Bki

∐
Aki

Xi along gki (where ki ∈ K is the element corresponding to i ∈ κ).

4. Starting with f , the goal is in a way to find the best factorization of f having the lifting property
with respect to all maps g : A→ B in I, ie

A

��

// X

��
Z

��
B //

>>

Y

Let g ∈ I and let K(g) denote the set of all commutative diagrams

A

g

��

// X

f
��

B // Y

We define a new object X1 as the pushout∐
g∈I
∐
u∈K(g) Source(g)∐
g∈I g

��

// X

f

��∐
g∈I
∐
u∈K(g) Target(g) // X1

By definition, it comes canonically equipped with a map X1 → Y which provides a factorization of f .
Moreover, by (3) the map X → X1 is in Cell(I). We now iterate this construction setting X2 as the
result of applying this to the map X1 → Y . By induction what we obtain is a commutative diagram
X• : N → C together with a natural transformation to the constant diagram X• → Y and such that
each map Xn → Xn+1 is in Cell(I). By (2), the map X0 → Z := colimn∈NXn is in Cell(I). We claim
that the canonical map Z → Y is in RLP (I). Consider g : A→ B a map in I. We want to show the
lifting property

A

g

��

h // Z := colimn∈NXn

��
B //

77

Y

But as by assumption all objects in the source of maps inI are compact, given h : A→ Z there exists
an N ∈ N such that h factors through u : A → XN (Notice that more generally we don’t need the
source objects to be compact, we only need them to verify this property). The the previous diagram
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can be written as

A

g

��

u // XN

�� ��
Z

��
B // Y

which we can also write as

A

g

��

u // XN
//

##

XN+1

��
Z

��
B // Y

where XN → XN+1 is the canonical map. But now by construction of XN+1 out of XN we know that
we can find a lifting B → XN+1 that makes the diagram commute - take the canonical map in the
pushout diagram defining XN+1.

5. Since we have been using the small object argument and only natural construction, the whole
process is natural.

6: given f : X → Y in LLP (RLP (I)), applying the factorization machine we get X → Z → Y
such that Z → Y has the right lifting property with respect to I. Then we can form the commutative
square

X

��

// Z

��
Y // Y

and because of the assumption we get a lifting Y → Z that makes the diagram commute. But then
we have

X

��

// X

��

//

��

X

��
Y // Z // Y

where the top maps are identities.

Exercice 5 (Model structure on topological spaces). The goal of this exercice is to show that
the category of topological spaces, together with homotopy weak-equivalences, Serre fibrations (maps
with the right lifiting property with respect to the inclusion i0 : Dn 7→ Dn× I, n ≥ 0) and cofibrations
given by maps with a left lifting property with respect to acyclic Serre fibrations, forms a (cofibrantly
generated) model category:

1. Show that the class of weak-equivalences satisfies the 2 out of 3 property;

2. Show that weak-equivalences, fibrations and cofibrations are stable under retracts;

3. Let C be a category and S be a class of maps. Show that LLP (RLP (LLP (S))) = LLP (S) and
that RLP (LLP (RLP (S))) = RLP (S).
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4. Let I ′ denote the collection of all boundary inclusions {∂ : Sn−1 ↪→ Dn}n≥0 and J denote the
collection of all maps {i0 : Dn ↪→ Dn×[0, 1], x 7→ (x, 0)}n≥0. Notice that Serre fibrations are then
defined as RLP (J). Show that J ⊆ Cell(I ′) and deduce that LLP (RLP (J))) ⊆ LLP (RLP (I ′))).

5. Show that LLP (RLP (J)) ⊆ W. Deduce that Cell(J) ⊆ W ∩ LLP (RLP (I ′)).

6. Show that every map in RLP (I ′) is a trivial Serre fibration.

7. Show that for every set A, the functor Hom(A,−) : Sets → Sets commutes with α-filtered
colimits for some cardinal α. Use this to show that the small object argument can be applied
both to the class I ′ and the class J because the elements of I ′ and J are inclusions of topological
spaces. In this case, the transfinite induction won’t be indexed by ω but by a larger ordinal.

8. Show that if f : X → Y is a trivial Serre fibration then it is in RLP (I ′). In particular, we get
Cof = LLP (RLP (I ′)).

9. Conclude.

Solution (partielle) 5. A complete solution with the full level of details can be found in Hovey’s
book. In this sketch we will essentially ignore set-theoretical and size issues and only sketch the main
arguments in the proof.

1. The point is that the 2-out of 3 property is trivial for isomorphisms. Thus we can we deduce
the property for π0 since it is a matter of bijections and then choosing any base point we use again
the 2 out of 3 property for isomorphisms of groups to deduce the property for all πk

2. For weak-equivalences this is essentially the same proofs as for quasi-isomorphisms in the pro-
jective model structure seen in class. Again, passing to homotopy set/groups reduces the question to
a question of retracts of isomorphisms of sets/groups which are isomorphisms of sets as we have seen
in the projective model structure proof. For fibrations this follows because fibrations are by defined as
a class of maps with a RLP with respect to the inclusions Dn → Dn × [0, 1] and as we have seen in
class, maps defined by lifting properties either right or left are stable under retracts. For cofibrations
this follows because they are defined by a left lifting property in the very same way.

3. Obviously for any class of map K, LLP (RLP (K)) ⊃ K since all maps in K have by definition
the left lifting properties with respect to the maps in RLP (K). Similarly RLP (LLP (K)) ⊃ K. Now
if K ⊂ J , then any maps which has lifting properties with respect to all maps in J has the lifting
properties with respect to those of K. Hence LLP (K) ⊃ LLP (J) and RLP (K) ⊃ RLP (J). Thus
taking K = LLP (S) we get LLP (RLP (LLP (S))) ⊃ LLP (S). On the other hand, taking K = S and
J = RLP (LLP (S)), we get LLP (S) ⊃ LLP (RLP (LLP (S))) hence the equality. The same works for
the other equality.

4. Let us first show that J ⊆ Cell(I ′). This follows because the maps in J are relative CW-
complexes which are particular cases of I ′-cell objects by definition. Let us show the second claim:
As seen in the exercise on the small object argument, Cell(I ′) ⊆ LLP (RLP (I ′))) so that we de-
duce J ⊆ LLP (RLP (I ′))). This implies that LLP (RLP (J))) ⊆ LLP (RLP (LLP (RLP (I ′))))) =
LLP (RLP (I ′)).

5. The maps in J are homotopy deformation retracts, meaning, the inclusions i0 : Dn → Dn× [0, 1]
admits a retract r and the the composition r ◦ i0 is homotopic to the identity. In particular, each map
i0 is a weak-equivalence. The main claim is that homotopy deformation retracts are stable under
pushouts. Indeed, Suppose

A

i
��

f // C

j
��

B // D
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is a pushout with i an homotopy deformation retract. Then the product

A× I

i
��

f // C × I

��
B × I // D × I

is also a pushout. It remains to use the homotopy H : B×I → B and the composition C×I → C → D
where the first is the projection and the second is j, to deduce a map from D×I → D by the universal
property of the colimit. Here we just need to remark that by definition of homotopy deformation
retract, the homotopy H fixes A. Finally, using this one obtains that all maps in Cell(J) are homotopy
equivalences and using the fact that LLP (RLP (J)) are (see (6) of previous exercise) retracts of maps
in Cell(J), and weak-equivalences are stable under retracts, one concludes the proof. The second
statement follows from (1) of the previous exercise and from the combination of the result in this item
and the previous item.

6. Since LLP (RLP (J))) ⊆ LLP (RLP (I ′))) we deduce that

RLP (J) = RLP (LLP (RLP (J)))) ⊇ RLP (LLP (RLP (I ′)))) = RLP (I ′)

so that every map in RLP (I ′) is a Serre fibration. It remains to show it is also a weak-equivalence.
Let f : X → Y in RLP (I ′). One must show that for any x ∈ X the induced maps πk(f) : πk(X,x)→
πk(Y, f(x)) is a bijection. To show it is surjective, notice that as the map ∂ : Sn−1 → Dn is in I ′, then
the pushout ∗ → Sn is in LLP (RLP (I ′)) so that if f : X → Y is in RLP (I ′) any square

∗

��

x // X

f
��

Sn // Y

as a lifting so that the maps on homotopy groups are surjective. To show that the maps are injective:
suppose we have two maps (Sn, ∗)→ (X,x) representing the same homotopy class in πn(Y, f(x)). Then
we have an homotopy H : Sn × I → Y between the two maps and we can build up a commutative
diagram

Sn ∨ Sn

��

x // X

f
��

Sn ∧ I // Y

and the left vertical map is in LLP (RLP (I ′)) because it can be shown to be an I ′-cell map obtained
by attaching a n+1-disk to Sn ∨ Sn.(Sn ∧ I = Sn × I/ ∗ ×I)

7. In fact, essentially, we only need to use the ordinal associated to the cardinal of the set underlying
the source topological space. Then we can apply this to our maps defining I ′ and J since they are the
topoogical spaces Dn and Sn−1 which have the same cardinal.

8. We want to use the main theorem we have seen in class to guarantee that Top with weak
equivalences and generating set of cofibrations I ′ and generating acyclic cofibrations J is a cofibrantly
generated model category, whose undelrying model structure is Quillen model structure. This last
point follows by (4) Fib = RLP (J) and by (8) Fib ∩W = RLP (I ′). In particular, we already have
that Cof := LLP (Fib ∩W ) = LLP (RLP (I ′)) = I ′ − Inj.

Now we have to check the assumptions of the Theorem: the (co)completness of Top is given by
(co)limit topologies on underlying (co)limits and the cardinality issues of the source of the generating
(acyclic) cofibrations have been checked in (7).

It remains to show Cell(J) ⊂W ∩LLP (RLP (I ′)) which is exactly (5). Similarly, we have to prove
that I ′ − Inj = RLP (I ′) ⊂ W ∩ J − Inj = W ∩ RLP (J). But since RLP (J) are Serre fibrations by
definition, the result is precisely (6).
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Now, it only remains to show Cof ∩W ⊂ LLP (RLP (J)). Let f : X → Y be in Cof ∩W and
use the small object argument applied to J to produce a factorization u ◦ v : X → X ′ → Y with v in
Cell(J) ⊆ LLP (RLP (J)) and u ∈ RLP (J). As we already know LLP (RLP (J)) ⊆W we have that v is
inW . By the 2 out of 3 property, as f is assumed to be inW , u is inW . So u ∈W∩RLP (J) = RLP (I ′).
As f is supposed to be a cofibration and we already know that Cof = LLP (RLP (I ′)) we deduce the
existence of a map Y → X ′ which splits the factorization. This makes f a retract of v and as v is in
LLP (RLP (J)) and this class is stable under retracts, we deduce that f is also in LLP (RLP (J)).

Exercice 6 (Top is proper). We endow Top with Quillen model category structure.

1. Prove that the category is right proper, that is that the pullback of a weak-equivalence under a
fibration is a weak equivalence.

2. Prove that Top is left proper that is that the pushout of a weak equivalence by a cofibration is
a weak equivalence.

Solution 6. 1. Consider a pullback diagram

C ×Y X
f //

��

X

����
C

∼ // Y

where the lower map is a weak equivalence. Since it is a pullback of a fibration the left vertical map
is also a fibration and the diagram induces a map of fibration. Since the diagram is a pullback, the
induced map on the fibers are homeomorphisms. Since the lower map is a weak equivalence, passing
to the long exact homotopy sequences of Serre fibrations, we get a commutative diagram

. . . // πi(F, f0)

∼=
��

// πi(C ×Y X, ∗)

��

// πi(C, c0)

∼=
��

// πi−1(F, f0) //

∼=
��

. . .

. . . // πi(F, f0) // πi(X,x0) // πi(Y, y0) // πi−1(F, f0) // . . .

.

Then the 5-lemma ensures that f : C ×Y X → X is a weak equivalence.

2. Let A //
i //

o f
��

B

��
X // Y

be a pushout square with i : A → B a cofibration and f : A → X a weak

equivalence. We wish to prove that f
∐
AB : B → Y is a weak equivalence. Note that X → Y is a

cofibration as well since it is a pushout of cofibration. Since the cofibrations of the Quillen structure
are retract of relative cell complexes (as the model category is cofibrantly generated), we have a retract
A
��
j
��

// T
��
p

��

// A
��

��
B

k // U
q // B

where the middle vertical map is a relative cell complex. Denoting X
∐
T U the

pushout of the maps T
p→ A

f→ X and T → U , the universal property of pushout yield the dotted
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arrow and a commutative diagram

A //
i //

j
��

B

k
��

��

T // //

p

��

U

q

��

��

A //
i //

f
��

B

��
X // //

33 88Y X
∐
T U

oo Yoo

.

The uniqueness of the lift proves that the composition of the dotted arrow is the identity of Y , hence

the induced commutative diagram B
k //

��

U

��

q // B

��
Y // X

∐
T U

// Y

is a retract so that it suffices to prove

that U → X
∐
T U is a weak equivalence to conclude for B → Y . That is we are reduced to the case

where A� B is a relative cell complex.

Let us first prove now that if B is obtained as a pushout B ∼= A
∐
Sn−1 Dn along an inclusion

Sn−1 = ∂Dn ↪→ Dn, then the result holds. That is, since a pushout of pushout is a psuhout, we

have to prove that the induced map f̃ : B ∼= A
∐
Sn−1 Dn

f
∐
Sn−1 Dn−→ X

∐
Sn−1 Dn ∼= Y is a weak-

equivalence when f is. First, taking an open deformation retract of Sn−1 in Dn and the complement
V = Dn−1\Sn−1, we have a decomposition B = UA∪V where UA ⊃ A is a (strong) deformation retract
of X in B ∼= A

∐
Sn−1 Dn. There is a similar decomposition Y = UX ∪ V . Since V is a deformation

retract of a point, it is an easy consequence of Van Kampen theorem to prove that the induced map
f̃∗ : π1(B, x)→ π1(Y, f̃(x)) is an isomorphism for any base point. It also induces a bijection on π0. Now
we can use a theorem in the lecture notes of the class asserting that to prove that f̃ is a weak homotopy
equivalence it is now enough to prove in addition that f̃ induces an isomorphism in homology with
local coefficient; the latter follows by the 5-lemma applied to the map between the Mayer-Vietoris
long exact sequence applied to the same open decomposition of the two spaces. For the reader not
so used to homology with local coefficient we give an alternate proof. First, working on each path

component, we assume the spaces are arcwise connected. Let TB
∼
� B be a cofibrant replacement so

that TB is a cell complex (we can even, as we have seen in class require that it is a CW-complex) and

factor TB → B → Y into TB
f̄
� TY

∼
� Y . By above, the map f̄ is an isomorphism on π0 and π1 and

it is enough to prove that (̄f) is a weak equivalence to ensure f̃ by the 2 out of 3 property. Take the
universal covers of TY (the only reason we introduce them was to ensure we have universal covers)

so that we have a pullback diagram T̃B
f̌ //

����

T̃Y

����
TB

f̄ // TY

in which the vertical arrows are covering maps (by

stability of covering maps under pullbacks), hence with discrete fibers. Since we already now that f̄
is an isomorphism on π1, we have that T̃B is simply connected and now by the long homotopy exact
sequence of a fibration, it is enough to prove that f̌ : T̃B → T̃Y is a weak homotopy equivalence. In
other words, we are back to prove the result for a map between simply connected spaces. The pullbacks

along T̃B � TB
∼
� B of UA and V gives an open covering ŨA, Ṽ of TB and similarly for T̃Y ; further

f̌ preserves the decomposition. Hence we can apply Mayer-Vietoris exact sequence to these covers.
But since V is contractible (and that the restriction of an acyclic fibration is an acyclic fibration by
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pullback invariance of those) TB |V and TY |V are weakly homotopy equivalent to a point. It follows

that Ṽ ∼= V × π1(Y ) is a trivialisable covering space and the restriction of f̌ to those open is thus
a weak homotopy equivalence. Since UA and UX are deformation retracts of A, X respectively, and
f : A → X is a weak equivalence, we obtain in a same way that ŨA → ŨX is a weak homotopy
equivalence. Hence by Mayer Vietoris we get that f̌ is an isomorphism in all homology groups with
coefficient in Z and by Whitehead theorem it is thus a weak homotopy equivalence as required.

By induction on the last step, we see that in the case where A� B is obtained by a finite number
of attachment of cells, the induced map B → Y is a weak homotopy equivalence. Now assume A� B

is any relative cell complex so that f := B ∼= colimκBk
colimκ fk−→ colimκ Yk ∼= Y where Bk

fk
Y k is

the map induced by the cell attachments. We need to prove that f∗ : πn(B, b0) → πn(Y, f(b0)) is
an isomorphism. But let Sn → B be a continuous map. By compacity of Sn and colimit topology,
its image intersects only finitely many cells in B. The same holds too for Y and for any homotopy
Sn × [0, 1] to either B or Y . So that to prove injectivity and surjectivity of f∗, we are left to prove it
for a finite attachment of cells for which we have already seen that f∗ is an isomorphism.

Exercice 7. Let Top∗ be the category of pointed topological spaces and U : Top∗ → Top be the
functor forgetting the base point.

1. Prove that U is a right adjoint and compute its left adjoint.

2. We endow Top with Quillen model structure. Find a model structure on Top∗ such that U is
right Quillen.

3. Generalize the previous construction to any model category C ?

Solution 7. 1. Let U : Top∗ → Top be the forget functor which sends a pointed space/map to
the underlying space/map of topological space. Let also P : Top → Top∗ be the functor that sends
a space X to P (X) := X

∐
{∗} where we take the additional point ∗ as the base point. Similarly

P (X
f→ Y ) is the map that send ∗ onto ∗ and whose restriction to X is f . It is clear that it is

continuous and defines a functor. Since X and {∗}∗ are open subsets in P (X), a continuous pointed
map from X

∐
{∗} → (Y, y0) is by definition a map sending ∗ to y0 together with a continuous map

from X to Y . Hence there is an natural bijection

HomTop∗(P (X), Y+) ∼= HomTop(X,U(Y, y0))

which proves that P : Top
,,
Top∗kk : U is an adjonction.

2. In order for U to be Quillen, we need to have a model structure in Top∗ for which U preserves
fibrations and acyclic fibrations. Let us define these classes in teh simplest possible way for this to
work. We define a weak equivalence (resp. fibration, resp. cofibration) in Top∗ to be a map f such
that U(f) is a weak equivalence (resp. fibration, resp. cofibration) in Top. In general such a simple
definition do not work5, but here it will (essentially because limits and colimits in both categories are
very close).

It is immediate to check the axiom MC2, and MC3 since the forget of a retract is a retract. For the
lifting properties, note that if we have a commutative square A //

��

��

X

o
����

B //

>>

Y

in Top∗, then the underlying

diagram is a square in Top with an acyclic fibration on the right and a cofibration on the left. Thus
the lift, that is the dotted arrow, exists. The only question is wether or not it preserves the base
point. But since the left vertical does and the top horizontal one as well, then necessarily it does.
It is thus a lft in Top∗. Of course, the other lifting property is the same. In teh same way assume

5but often imposing two classes do
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f : (X,x0 → (Y, y0) is a pointed map and let X � Cf
∼
� Y be a factorisation in Top. by setting the

base point of Cf to be the image of x0, then the factorosation is pointed and still natural.
Thus the only thing left is the (co)completness of the category. A limit of pointed topological

space is naturally pointed (since the base point gives a canonical map from {∗} to every space in
the diagram which does commute with all maps in the diagram since they are all pointed). The only
difference is with the colimit. But colimit on Top∗ are obtained as follows: if D is a diagram, consider
the diagram D+ obtained by adding an object + to D and exactly one map from + to every object
(that is we create an initial object in D). To a diagram X : D → Top∗ of pointed spaces we add
X(+) = {∗} and X(+→ d) = ∗ 7→ X(d)0 the abse point of X(d). It is a diagram of space and we set
colimTop∗(X) := colimD+ X. This is well defined since the image of {∗} = X(+) defines a basepoint
in colimD+ X and any natural transformation of diagram is pointed.

3. The idea is to define the category C+ to be the category whose objects are maps ∗ → X in C
from the terminal object to any object and maps (∗ f→ X)→ (∗ h→ Y in C+ are just maps g : X → Y
in C such that h = g ◦ f (draw the commutative triangle). Then the previous question is extended in
analogous way.
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