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The small object argument and Quillen model structure on Top

Exercice 1 (Small Object Argument). The goal of this exercise is to make precise the small object
argument and how to use it in the case of/to construct cofibrantly generated model categories.

Let C be a category that admits all small colimits and I a small set of maps in C. Suppose that the
domains of the maps in C are compact objects 1. We denote by LLP(I) (resp. RLP(I)) the collection
of maps with the left (resp. right) lifting property with respect to I. We let Cell(I) denote the class of
maps in C obtained as transfinite compositions of pushouts of elements of I. More explicitly, a map
in Cell(I) is of the form X0 → colim

α<λ
Xα, where λ is an ordinal and X : λ → C is a functor with the

following two properties:

• for all α < α+ 1 < λ, the map Xα → Xα+1 is obtained as a pushout

U //

��

V

��
Xα

// Xα+1

of a map U → V in I,

• for all limit ordinal β < λ, one has Xβ
∼= colim

α<β
Xα.

1. Consider a family {uk : Ak → Bk}k∈K of maps in I, indexed by a set K. Show that any map f
in C obtained as a pushout ∐

k∈K Ak∐
k∈K uk

��

// X

f

��∐
k∈K Bk

// Y

is in Cell(I).

2. Let f : X → Y be a morphism in C. Show that we can fonctorially factor f as a composition
δ ◦ γ : X → Z → Y , with γ : X → Z in Cell(I) and δ : Z → Y in RLP(I).

3. Use this factorization process to prove that every map f : X → Y in LLP(RLP(I)) is a retract
of a map g : X → C in Cell(I), which fixes X.

Solution 1. 1. The goal is to express a pushout of coproducts of maps in I as a transfinite composition
of pushouts of maps in I. Using the axiom of choice, the set K can be given a well-ordering, that is
there exists a bijection between K and its cardinal κ = Card(K). Fix such a bijection κ→ K,α 7→ kα.
We now define a functor Y : κ→ C inductively, so that the resulting Y0 → colimα<κ Yα is f . First, we
set Y0 := X. For a sucessor ordinal α+ 1 < κ, we define Yα → Yα+1 as in the following pushout

Akα
∐
k Ak X Yα

Bkα Yα+1.

ukα

1Recall that an object X in a category C is said to be compact if the functor Hom(X,−) commutes with filtered
colimits.
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Finally, if λ < κ is a limit ordinal, we define Yλ := colimβ<λ Yβ (the map Yα → Yλ is then defined as
the canonical map to the colimit). The whole construction yields a map f ′ : X = Y0 → colimα<κ Yα.
Together with the natural morphism

∐
k Bk → colimα<κ Yα, f ′ satisfies the universal property of the

pushout, hence f ′ is canonically isomorphic to f .

2. This question is only a rewording of the small object argument described in the lecture. The
key point is to ensure that the map γ in the factorization of f is indeed in Cell(I). By definition, γ is
defined as a transfinite composition (indexed by ω)2 of pushouts of coproducts of maps in I. For γ to
be in Cell(I), we need it to be a transfinite composition of pushouts of maps in I. By question 1., each
pushout of coproducts of maps in I can be rewritten as a transfinite composition of pushouts of maps
in I. Therefore, we know that γ is a transfinite composition, where each step is itself a transfinite
composition of pushouts of maps in I. Now the result follows from the following observation.

Lemma 1. Let J be a class of morphisms in C (e.g. the class of pushouts of maps in I). Suppose
F : κ → C is a sequence of transfinite compositions of morphisms in J . Then F can be written as a
sequence of morphisms in J .

We sketch a proof of the lemma. By assumption on F , for each α < κ, the morphism Fα → Fα+1

is of the form Fα,0 → colimβ<κα Fα,β for some sequence Fα : κα → C. Now, consider the set of pairs
(α, β) of ordinals with α < κ and β < κα. When endowed with the lexicographic order, this set is
well-ordered, hence is isomorphic to a unique ordinal λ. This allows to rewrite F as a unique sequence
F ′ : λ → C of elements in J , by which we mean that the map F0 → colimα<κ Fα is isomorphic to
F ′0 → colimν<λ Fν .

3. Given f : X → Y in LLP(RLP(I)), applying the factorization machine we get X → Z → Y
such that Z → Y has the right lifting property with respect to I. Then we can form the commutative
square

X Z

Y Y

f

γ

δ

and because of the assumption we get a lifting h : Y → Z that makes the diagram commute. But then
we have

X X X

Y Z Y,

f γ f

h δ

which exhibits f as a retract of γ : X → Z, fixing X.

Exercice 2 (Model structure on topological spaces). The goal of this exercice is to show that
the category of topological spaces, together with weak homotopy equivalences, Serre fibrations (maps
with the right lifiting property with respect to the inclusion Dn → Dn × I, n ≥ 0) and cofibrations
given by maps with a left lifting property with respect to acyclic Serre fibrations, forms a cofibrantly
generated model category.

1. Show that the class of weak equivalences satisfies the 2-out-of-3 property.

2. Show that weak equivalences, fibrations and cofibrations are stable under retracts.

3. Let C be a category and S be a class of maps. Show that LLP(RLP(LLP(S))) = LLP(S) and
that RLP(LLP(RLP(S))) = RLP(S).

2Here, ω denotes the first infinite ordinal, which can be viewed as the set N of natural numbers with its usual order.
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Let I ′ denote the collection of all boundary inclusions {∂n : Sn−1 ↪→ Dn}n≥0 and J denote the
collection of all maps {jn : Dn ↪→ Dn × [0, 1], x 7→ (x, 0)}n≥0. Note that by definition, the class
of Serre fibrations is RLP(J).

4. Show that J ⊆ Cell(I ′) and deduce that LLP(RLP(J))) ⊆ LLP(RLP(I ′))).

5. Show that LLP(RLP(J)) ⊆ W. Deduce that Cell(J) ⊆ W ∩ LLP(RLP(I ′)).

6. Show that every map in RLP(I ′) is a trivial Serre fibration.

7. Show that for every set A, the functor Hom(A,−) : Set → Set commutes with α-sequential
colimits for some cardinal α. Use this to prove that every topological space is small with respect
to inclusions.
Deduce that the small object argument can be applied both to the class I ′ and the class J .
NB: In this case, the transfinite induction won’t be indexed by ω but by a larger ordinal.

8. Show that if f : X → Y is a trivial Serre fibration, then f is in RLP(I ′). In particular, we get
Cof = LLP(RLP(I ′)).

9. Conclude.

Solution (partielle) 2. For more details on this proof, we refer to the book Model categories by
Hovey, paragraphs 2.1 and 2.4.

1. The point is that the 2-out-of-3 property is trivial for isomorphisms. Thus we can we deduce
the property for π0 since it is a matter of bijections and then choosing any base point we use again
the 2-out-of-3 property for isomorphisms of groups to deduce the property for all πk.

2. For weak equivalences this is essentially the same proofs as for quasi-isomorphisms in the
projective model structure seen in class. Again, passing to homotopy set/groups reduces the question
to a question of retracts of isomorphisms of sets/groups which are isomorphisms of sets as we have seen
in the projective model structure proof. For fibrations this follows because fibrations are by defined as
a class of maps with a RLP with respect to the inclusions Dn → Dn × [0, 1] and as we have seen in
class, maps defined by lifting properties either right or left are stable under retracts. For cofibrations
this follows because they are defined by a left lifting property in the very same way.

3. Obviously for any class of map K, LLP(RLP(K)) ⊇ K since all maps in K have by definition
the left lifting properties with respect to the maps in RLP(K). Thus taking K = LLP(S) we get
LLP(RLP(LLP(S))) ⊇ LLP(S). Now observe that LLP and RLP are decreasing with respect to
inclusion. That is, if K ⊆ J , then any map which has lifting properties with respect to all maps in J has
the lifting properties with respect to those of K, so that LLP(K) ⊇ LLP(J) and RLP(K) ⊇ RLP(J).
Taking K = S and J = RLP(LLP(S)), we get LLP(S) ⊇ LLP(RLP(LLP(S)) hence the equality.
The same argument works for the other equality (one can also apply the case we just showed to the
opposite category Cop).

4. Let us first show that J ⊆ Cell(I ′). This follows because the maps in J are relative CW-
complexes, which by definition are particular cases of I ′-cell objects. Let us show the second claim.
First, notice that Cell(I ′) ⊆ LLP(RLP(I ′)). This follows from the facts that I ′ ⊆ LLP(RLP(I ′)) and
LLP(RLP(I ′)) is stable under transfinite compositions and retracts. Therefore we obtain the inclusion
J ⊆ LLP(RLP(I ′)). This implies that LLP(RLP(J)) ⊆ LLP(RLP(LLP(RLP(I ′)))) = LLP(RLP(I ′)).

5. By exercise 1.3., any map in LLP(RLP(J)) is a retract of a morphism in Cell(J). Since weak
equivalences are stable under retracts, we are reduced to showing that Cell(J) ⊆ W. Let f be a J-
relative cell complex, so that f is a transfinite composition of pushouts of maps in J . We will show that
J is a weak equivalence in two steps: first, each map in the sequence defining f is a weak equivalence,
secondly the map to the colimit of the sequence is also a weak equivalence.
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Step 1. Note that the maps in J are strong deformation retracts; in particular, they are weak equiva-
lences. The main claim is that homotopy deformation retracts are stable under pushouts. To see
this, suppose

A

i
��

// C

j
��

B // D

is a pushout with i a strong deformation retract. Since I is a locally compact Hausdorff space,
the functor − × I is left adjoint to the mapping space functor (−)I . Therefore − × I preserves
colimits, so in particular pushouts. Hence

A× I

i
��

// C × I

��
B × I // D × I

is also a pushout diagram. Let r : B → A be a retract of i and H : B × I → B a homotopy
between IdB and ir. Using the compositions B × I → B → D and j ◦ projC : C × I → C → D
and the universal property of the pushout, we obtain a map from D× I → D. By construction,
this homotopy witnesses that j : C → D is a strong deformation retract.

Step 2. Our goal is to show that f is a weak equivalence, knowing that each step of the transfinite
composition is. Write this sequence as X∗ : κ → Top so that f is the map X0 → colimα<κXα.
The aim is to compare colimα<κ πn(Xα, x) and πn(colimα<κXα, x). 3 The key is that the maps
Xα → Xα+1 are sufficiently nice inclusions. This is formalized by the following definition, taken
from Hovey’s book. A topological spaces ι : A → B is called a closed T1 inclusion if it is a
homeomorphism onto its image ι(A), which is a closed subset of B and such that any point in
B\ι(A) is closed. Clearly the maps jn : Dn → Dn×I have this property. Moreover, using general
point-set topology arguments, one sees that this class of inclusions is stale under pushouts and
transfinite compositions. Therefore each Xα → Xα+1 is a closed T1 inclusion.

Lemma 2. If X∗ : λ→ Top is a sequence of closed T1 inclusions and λ is a limit ordinal, then
any map u : C → colimX∗ from a compact space C factors throught Xα for some α < λ. If in
addition each map Xα → Xα+1 is a weak equivalence, then so is X0 → colimX∗.

We sketch a proof of the lemma. For the first claim, suppose towards a contradiction that u(A)
is not contained in any Xα with α < λ. Then construct a sequence S = {xn}0<n<ω of points
in u(C) and a sequence {αn}0<n<ω of ordinals such that xn ∈ Xαn \Xαn−1 (with α0 = 0). Let
µ = supn αn. Now the intersection of any finite subset of S with any Xαn is finite and avoids
X0, hence is closed (since all maps are closed T1 inclusions). Therefore S ↪→ colimn<ωXαn has
the discrete topology. Since colimn<ωXαn ↪→ colimX∗ is a closed inclusion, S is also discrete in
the compact u(C). This contradicts the fact that S is infinite.
For the second, reason by induction on λ. The case λ = 0 is obvious. If λ = β + 1 is a successor
ordinal, then colimα<λXα

∼= Xβ, so the result holds in that case. Now suppose λ limit. We
want the natural map colimα<λ πn(Xα, x) → πn(colimX∗, x) to be an isomorphism. We prove
the surjectivity. By the first part of the lemma, any element [φ] ∈ πn(colimX∗, x) is represented
by some map Sn → Xα with α < λ. Hence [φ] is in the image of πn(Xα, x). Since X0

∼−→ Xα is
a weak equivalence by induction hypothesis, we get that πn(X0) → πn(colimX∗) is surjective.

3Note that homotopy groups do not commute with sequential colimits in general, even for seemingly nice spaces and
maps. An interesting counterexample is given by the sequence

S1 2−→ S1 3−→ S1 4−→ S1 −→ · · ·

whose colimit is the indiscrete space R/Q, which is contractible. However the colimit of the fundamental groups is Q.
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Injectivity is proved in a similar manner, using that any homotopy Sn × I → colimX∗ factors
through some Xα.

We have shown that Cell(J) ⊆ W. Using the fact that Cell(J) ⊆ LLP(RLP(J)) and question 4.,
we obtain that Cell(J) ⊆ LLP(RLP(I ′)) ∩W.

6. Since LLP(RLP(J))) ⊆ LLP(RLP(I ′))) we deduce that

RLP(J) = RLP(LLP(RLP(J)))) ⊇ RLP(LLP(RLP(I ′)))) = RLP(I ′)

so that every map in RLP(I ′) is a Serre fibration. It remains to show it is also a weak equivalence.
Let f : X → Y in RLP(I ′). One must show that for any x ∈ X the induced maps πk(f) : πk(X,x)→
πk(Y, f(x)) are bijections. To show it is surjective, notice that the map ∗ → Sn can be obtained as the
pushout of the map ∂n : Sn−1 → Dn along the map ∗ → Sn−1. Therefore ∗ → Sn ∈ LLP(RLP(I ′)).
Since f is in RLP(I ′), any square

∗

��

x // X

f
��

Sn // Y

has a lifting, so that the maps on homotopy groups are surjective. We show that the maps are injective.
Suppose we have two maps φ, φ′ : (Sn, ∗)→ (X,x) representing the same homotopy class in πn(Y, f(x)).
Then we have an homotopy H : Sn×I → Y between the two maps and we can build up a commutative
diagram

Sn ∨ Sn X

Sn ∧ I Y.

φ∨φ′

f

Here Sn ∧ I = Sn × I/(∗ × I) can be obtained as the pushout

Sn Sn ∨ Sn

Dn+1 Sn ∧ I.

In particular, the map Sn ∨ Sn → Sn ∧ I is in LLP(RLP(I ′)), which ensures the existence of a lift in
the previous square. Therefore φ and φ′ are homotopic in X, as desired.

7. First, we show that every set A is α-small, in the sense that Hom(A,−) commutes with any
colimit indexed by α, for some ordinal α depending on A. For this, we can actually take α to be any
ordinal that is Card(A)-filtered, meaning any limit ordinal with the property that whenever B ⊆ α is
a subset of cardinality at most Card(A), we have supB < α. For example, one can take α to be the
first cardinal that is strictly bigger that Card(A). Let X : α→ Set be a sequence and f : A→ colimX
a map. Since α is limit, for each a ∈ A there exists βa ∈ α such that f(a) ∈ Xβa . Let β := supa∈A βa.
Because α is Card(A)-filtered, we have β < α. Therefore f factors through A→ Xβ, showing that A
is small with respect to inclusions.

Now let A be a topological space, and choose α as above (with respect to the underlying set of A).
We will show that A is α-small with respect to the inclusions of topological spaces. Let X : α→ Top
be a sequence of inclusions and A → colimX be a morphism. By transfinite induction, every map
Xβ → colimX is also an inclusion for all β < α. By the first part of the question, we know that
A→ colimX factors through some A→ Xβ as a map of underlying sets. But since all maps involved
are inclusions, this factorization actually gives a continuous map A→ Xβ, as desired.

Finally, to show that the small object argument applies to I ′ and J , it is enough to know that mor-
phisms in Cell(I ′) and in Cell(J) are inclusions. This is easily seen to hold, as inclusions of topological
spaces are stable under pushouts and transfinite compositions.
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8. Let f : X → Y be an acyclic Serre fibration. We want to show it has the right lifting property
against the maps ∂n : Sn−1 → Dn. For n = 0 and n = 1, this is equivalent to the assertions that π0(f)
is surjective and injective (respectively), which hold true. Now consider a commutative square of the
form

Sn−1 X

Dn Y,

g

∂n f

k

(0.1)

where n > 2. In particular, we have f∗[g] = 0 in πn−1(Y ). As f is a weak equivalence, [g] = 0 ∈ πn−1(X)
so that there is a morphism k′ making the triangle

Sn−1 X

Dn,

g

∂n
k′

commute. The idea is to deform k′ to get a lift in the previous square. Note that at least the following
diagram is commutative:

Sn−1 Dn

Dn Y.

∂n

∂n f◦k′

k

Since the pushout of Dn ← Sn−1 → Dn is Sn, the universal property of the pushout gives us a map
(k, f ◦ k′) : Sn → Y , hence an element [(k, f ◦ k′)] ∈ πn(Y ). Since f∗ is an isomorphism on πn, there
exists [p] ∈ πn(X) such that f∗[p] = [(k, f ◦ k′)]. Equivalently, p is a lift up to homotopy

X

Sn Y.

f

(k,f◦k′)

p

One can prove that p can be chosen of the form (p′, k′) for some p′ : Sn → X. Now consider the
map (f ◦ p′, k) : Sn → Y . Using the definition of the sum on πn(Y ), we can compute the its value on
homotopy to find

[(f ◦ p′, k)) = [(f ◦ p′, f ◦ k′)] + [(f ◦ k′, k)] = [(k, f ◦ k′)] + [(f ◦ k′, k)] = 0.

Therefore there exists a homotopyH : Dn×I → Y between f◦p′ ⇒ k fixing the boundary ∂Dn = Sn−1.
We are now in the situation

Sn−1 X

Dn Y.

g

∂n f

k

p′

H

where we have a lift of k up to homotopy, which fixes the boundary. We now need to lift H : f ◦ p′ ' k
to a homotopy of the form H̃ : p′ ' p′′ that fixes the boundary and such that f · H̃ = H. Once we
have such a H̃, then p′′ will be a lift in the diagram 0.1.

Since H fixes the boundary of Dn, it extends to a map

Sn−1
⊔

Sn−1×I

Dn × I (f◦g,H)−−−−−→ Y.
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Therefore finding the desired H̃ is equivalent to having a lift h in the diagram

Dn X

Sn−1
⊔

Sn−1×I
Dn × I Y,

p′

f

(f◦g,H)
(0.2)

for then H̃ is given by the composite Dn × I → Sn−1
⊔

Sn−1×I
Dn h−→ X. Observe that the left map in

the square (0.2) is homeomorphic to jn : Dn → Dn× I. Since f is a Serre fibration, there is such a lift
h. This concludes the proof that W ∩ RLP(J) ⊆ RLP(I ′). Since the converse inclusion was proved in
question 6., we deduce that W ∩ RLP(J) = RLP(I ′). In particular, one has Cof = LLP(RLP(I ′)).

9. We want to use the main theorem we have seen in class to guarantee that Top with weak
equivalences and generating set of cofibrations I ′ and generating acyclic cofibrations J is a cofibrantly
generated model category. Then the resulting model structure will be the same as Quillen’s one. This
last point follows from the previous questions: 4. gives Fib = RLP(J) and 8. yields Fib∩W = RLP(I ′).
In particular, we have that Cof := LLP(Fib ∩W) = LLP(RLP(I ′)) = I ′ − Inj.

We have to check the assumptions of the theorem: the (co)completness of Top is given by (co)limit
topologies on the (co)limits of the underlying sets and the cardinality issues of the source of the
generating (acyclic) cofibrations have been checked in question 7.

It remains to see that Cell(J) ⊆ W ∩ LLP(RLP(I ′)), which is exactly question 5. Similarly, we
have to prove that I ′ − Inj = RLP(I ′) ⊆ W ∩ J − Inj = W ∩ RLP(J). But since RLP(J) are Serre
fibrations by definition, the result is precisely question 6.

From there, it only remains to show that Cof ∩W ⊆ J− Inj = LLP(RLP(J)). Let f : X → Y be in
Cof∩W and use the small object argument applied to J to produce a factorization u◦v : X → X ′ → Y
with v in Cell(J) ⊆ LLP(RLP(J)) and u ∈ RLP(J). As we already know LLP(RLP(J)) ⊆ W we have
that v is inW. By the 2-out-of-3 property, as f is assumed to be inW, u is also a weak equivalence. So
u ∈ W ∩RLP(J) = RLP(I ′). Since f is a cofibration and we already know that Cof = LLP(RLP(I ′)),
we deduce the existence of a map Y → X ′ which splits the factorization. This makes f a retract of
v and as v is in LLP(RLP(J)) and this class is stable under retracts, we deduce that f is also in
LLP(RLP(J)).

Exercice 3 (Top is proper). We endow Top with Quillen model category structure.

1. Prove that the category is right proper, that is the pullback of a weak equivalence under a
fibration remains a weak equivalence.

2. Prove that Top is left proper, that is the pushout of a weak equivalence by a cofibration remains
a weak equivalence.

Solution 3. 1. Consider a pullback diagram

C ×Y X X

C Y

f

∼

where the lower map is a weak equivalence. Since it is a pullback of a fibration the left vertical map
is also a fibration and the diagram induces a map of fibration. Since the diagram is a pullback, the
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induced map on the fibers are homeomorphisms. Since the lower map is a weak equivalence, passing
to the long exact homotopy sequences of Serre fibrations, we get a commutative diagram

. . . // πi(F, f0)

∼=
��

// πi(C ×Y X, ∗)

��

// πi(C, c0)

∼=
��

// πi−1(F, f0) //

∼=
��

. . .

. . . // πi(F, f0) // πi(X,x0) // πi(Y, y0) // πi−1(F, f0) // . . .

.

Then the 5-lemma ensures that f : C ×Y X → X is a weak equivalence.

2. Consider a pushout square

A B

X Y

i

∼f

with i : A→ B a cofibration and f : A→ X a weak equivalence. We wish to prove that ftAB : B → Y
is a weak equivalence. Note that X → Y is a cofibration as well since it is a pushout of cofibration.
Since the cofibrations of the Quillen structure are retract of relative cell complexes (as the model
category is cofibrantly generated), we have a retract

A T A

B U B

j p

k q

where the middle vertical map is a relative cell complex. Denoting X tT U the pushout of the maps

T
p→ A

f→ X and T → U , the universal property of pushout yield the dotted arrow and a commutative
diagram

A B

T U

A B

X Y X tT U Y

i

j k

p q

i

f

The uniqueness of the lift proves that the composition of the dotted arrow is the identity of Y , hence
the induced commutative diagram

B U B

Y X tT U Y

k q

is a retract so that it suffices to prove that U → X tT U is a weak equivalence to conclude for B → Y .
That is we are reduced to the case where A� B is a relative cell complex.

Let us first prove now that if B is obtained as a pushout B ∼= A tSn−1 Dn along an inclusion
Sn−1 = ∂Dn ↪→ Dn, then the result holds. That is, since a pushout of pushout is a psuhout, we

have to prove that the induced map f̃ : B ∼= A tSn−1 Dn
ftSn−1Dn−→ X tSn−1 Dn ∼= Y is a weak
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equivalence when f is. First, taking an open deformation retract of Sn−1 in Dn and the complement
V = Dn−1\Sn−1, we have a decomposition B = UA∪V where UA ⊇ A is a (strong) deformation retract
of X in B ∼= A tSn−1 Dn. There is a similar decomposition Y = UX ∪ V . Since V is a deformation
retract of a point, it is an easy consequence of Van Kampen theorem to prove that the induced map
f̃∗ : π1(B, x)→ π1(Y, f̃(x)) is an isomorphism for any base point. It also induces a bijection on π0. Now
we can use a theorem in the lecture notes of the class asserting that to prove that f̃ is a weak homotopy
equivalence it is now enough to prove in addition that f̃ induces an isomorphism in homology with
local coefficient; the latter follows by the 5-lemma applied to the map between the Mayer-Vietoris
long exact sequence applied to the same open decomposition of the two spaces. For the reader not
so used to homology with local coefficient we give an alternate proof. First, working on each path

component, we assume the spaces are arcwise connected. Let TB
∼
� B be a cofibrant replacement so

that TB is a cell complex (we can even, as we have seen in class require that it is a CW-complex) and

factor TB → B → Y into TB
f̄
� TY

∼
� Y . By above, the map f̄ is an isomorphism on π0 and π1 and

it is enough to prove that (̄f) is a weak equivalence to ensure f̃ by the 2-out-of-3 property. Take the
universal covers of TY (the only reason we introduce them was to ensure we have universal covers) so
that we have a pullback diagram

T̃B T̃Y

TB TY

f̌

f̄

in which the vertical arrows are covering maps (by stability of covering maps under pullbacks), hence
with discrete fibers. Since we already now that f̄ is an isomorphism on π1, we have that T̃B is simply
connected and now by the long homotopy exact sequence of a fibration, it is enough to prove that
f̌ : T̃B → T̃Y is a weak homotopy equivalence. In other words, we are back to prove the result for a

map between simply connected spaces. The pullbacks along T̃B � TB
∼
� B of UA and V gives an open

covering ŨA, Ṽ of TB and similarly for T̃Y ; further f̌ preserves the decomposition. Hence we can apply
Mayer-Vietoris exact sequence to these covers. But since V is contractible (and that the restriction of
an acyclic fibration is an acyclic fibration by pullback invariance of those) TB |V and TY |V are weakly

homotopy equivalent to a point. It follows that Ṽ ∼= V ×π1(Y ) is a trivialisable covering space and the
restriction of f̌ to those open is thus a weak homotopy equivalence. Since UA and UX are deformation
retracts of A, X respectively, and f : A → X is a weak equivalence, we obtain in a same way that
ŨA → ŨX is a weak homotopy equivalence. Hence by Mayer Vietoris we get that f̌ is an isomorphism
in all homology groups with coefficient in Z and by Whitehead theorem it is thus a weak homotopy
equivalence as required.

By induction on the last step, we see that in the case where A� B is obtained by a finite number
of attachment of cells, the induced map B → Y is a weak homotopy equivalence. Now assume A� B

is any relative cell complex so that f := B ∼= colimκBk
colimκ fk−→ colimκ Yk ∼= Y where Bk

fk
Y k is

the map induced by the cell attachments. We need to prove that f∗ : πn(B, b0) → πn(Y, f(b0)) is
an isomorphism. But let Sn → B be a continuous map. By compacity of Sn and colimit topology,
its image intersects only finitely many cells in B. The same holds too for Y and for any homotopy
Sn × [0, 1] to either B or Y . So that to prove injectivity and surjectivity of f∗, we are left to prove it
for a finite attachment of cells for which we have already seen that f∗ is an isomorphism.
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