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Derived Functors and Homotopy Colimits

Exercice 1 (Composition of Derived Functors). 1. Let F1 : C1 → C2 and F2 : C2 → C3 be functors
and let Wi be a class of morphisms in Ci. Assuming all the relevant total left derived functors
exist, use their universal properties to construct a natural transformation LF2◦LF1 → L(F2◦F1).

2. Suppose now that C1, C2 and C3 are model categories and that F1 and F2 are left Quillen functors.
Show that all derived functors exist and the natural transformation of the previous exercise is a
natural isomorphism.

Solution 1. 1. Denote πi : Ci → Ho(Ci) the canonical functors. Let us recall that the total left
derived functor LF1 : Ho(C1)→ Ho(C2) come equipped with a natural transformation LF1 ◦ π1 ⇒ F1

which is universal among such (it is a right Kan extension). In particular we have a diagram (which
does not commute a priori)

C1
F1 //

π1 ##

C2
F2 //

π2

%%

C3
π3

%%
Ho(C1)

LF1 // Ho(C2)
LF2 // Ho(C3)

and natural transformations, given for any X ∈ C1 and Y ∈ C2 by LF1(π1(X)) → π2(F1(X)) and
LF2(π2(Y )) → π3(F2(Y )). Taking Y = F1(X), the commutativity of the diagram gives a natural
transformation

LF2 ◦ LF1(π1(X))→ π3(F2 ◦ F1(X)).

By the universal property of derived functor L(F2 ◦ F1), we get a unique natural transformation
LL2 ◦ LF1 ⇒ L(F2 ◦ F1), as depicted in the diagram

C1 C3

Ho(C1) Ho(C3).

F2◦F1

π1

π3

L(F2◦F1)

LF2◦LF1

2. Let us now address the second question: first we remark that the composition of left Quillen
functors is again a left Quillen functor. Indeed, by definition if F1 preserves both cofibrations and
acyclic cofibrations and F2 also, clearly so does the composition F2 ◦ F1. Therefore, by the theorem
given in class, the model structures garantee the existence of LF1, LF2 and L(F2 ◦ F1). On objects,
these derived functors are respectively given by LF1(X) = F1(Q1(X)), LF2(Y ) = F2(Q2(Y )) and
L(F2 ◦ F1)(X) = F2(F1(Q1(X)), where Q1 is a cofibrant replacement functor in C1 and Q2 is a
cofibrant replacement in C2. In this case the natural transformation LL2 ◦ LF1 ⇒ L(F2 ◦ F1) is given
on each object X ∈ C by a morphism

F2(Q2(F1(Q1(X)))) −→ F2(F1(Q1(X))).

We only have to notice that by construction (in fact, we have to unfold the proof given in class that
the formula LF = F ◦Q has the universal property of total left derived functor) this morphism is the
image under F2 of the cofibrant-replacement

Q2(F1(Q1(X))) −→ F1(Q1(X)).
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By definition, this is a weak equivalence whose source is cofibrant. The target is also cofibrant because
F1 is a left Quillen functor so sends cofibrant objects to cofibrant objects. Therefore by Brown’s lemma1

its image under F2 is a weak equivalence and therefore an isomorphism in the homotopy category.

Exercice 2 (Homotopy colimits). In this exercise, we first deal with generalities on homotopy pushouts
and then specialize to chain complexes with the projective model structure. Let C be a model category
and let I be the category given by the diagram-shape

b c

a

1. Let f : X → Y be a natural transformation of diagrams X,Y ∈ Fun(I, C). Show that f has the
left lifting property with respect to all projective acyclic fibrations if and only if the the natural
maps

Xa

⊔
Xb

Yb → Ya, Xb → Yb, Xc

⊔
Xb

Yb → Yc

are cofibrations in C. (Here we mean the usual pushouts in C.)
Deduce that a diagram Y : I → C is cofibrant if and only if Yb is cofibrant in C and the maps
Ya → Yb and Ya → Yc are cofibrations. Moreover, show that X → Y has the left lifting property
with respect to projective fibrations if and only the above three maps are acyclic cofibrations.

2. Show that the category of diagrams Fun(I, C) admits the projective model structure (without
using the result seen in class that such a structure exists since I is very small).

3. Show that the colimit functor colim: Fun(I, C)→ C is a left Quillen functor.

4. Assume that C is left proper (i.e. weak equivalences are stable under pushouts along cofibrations).
Show that any pushout diagram

B C

A A
⊔
B

C

f

where f : B −→ C a cofibration, is also a homotopy pushout diagram.

5. Case of Topological spaces. Assume now that C = Top.

(a) Using that Top is proper (as seen in exercise 3. from the sheet on Quillen model structure),
show that there is a canonical isomorphism

L colim(X ← A→ Y ) ∼= X
h⊔
A

Y = X
⊔

A×{0}

Cyl(A→ Y )

in Ho(Top) between the homotopy pushout computed by the projective model structure
and the formula given by the mapping cylinder.

(b) Give a formula for computing the homotopy colimit of a tower (X0 → X1 → X2 → . . . ) as
well as the homotopy limit of a tower (· · · → Y2 → Y1 → Y0).

1it is always worth recalling that this lemma does imply that all left Quillen functors send all weak equivalences
between cofibrant to weak equivalences and right Quillen functors send weak equivalences between fibrant to weak
equivalences

2



6. Case of chain complexes. Assume now that C is the model category of chain complexes over
a ring R.

(a) Show that C is left proper.

(b) Let g : A → B be a map of chain complexes. Recall that the mapping cone of g, denoted
C(g), is the chain complex given in level n by Bn⊕An−1 and whose differential Bn+1⊕An →
Bn ⊕An−1 is given (b, a) 7→ (∂B(b) + g(a),−∂A(a)). Let I denote the chain complex given
by R⊕R in degree 0 and R in degree 1 with differential given by ∂R : R→ R⊕R given by
r 7→ (−r, r). We define the mapping cylinder of g, denoted Cyl(g), as the pushout in chain
complexes of

A B

I ⊗A Cyl(g)

g

i0

where the vertical arrow A → I ⊗ A is induced by the inclusion i0 : R → I corresponding
to the inclusion of the second factor R ↪→ R ⊕ R in degree 0. The differential on I ⊗ A is
given by r ⊗ a 7→ ∂R(r)⊗ a+ (−1)deg(r)r ⊗ ∂A(a). Show that the mapping cone of g is the
pushout of

I ⊗A Cyl(g)

C(IdA) C(g).

(c) Let ∆1 be the category with two objects and one non trivial morphism in between them.
Show that the construction of the mapping cone defines a functor C : Fun(∆1,Ch(R)) →
Ch(R) sending natural transformations objectwise given by quasi-isomorphisms to quasi-
isomorphisms.

(d) Let Y := (0 ←− A
g−→ B) be a diagram in C. Show that there exists a diagram of the

form Y ′ := (0←− A′
g′−→ B′) with g′ a cofibration and A′ and B′ cofibrant, together with

a natural transformation u : Y ′ → Y which is objectwise a weak equivalence. Notice that
by the previous question the induced map C(g′)→ C(g) is a weak equivalence.

(e) Let Y := (0 ←− A
g−→ B) be a diagram in C with A and B cofibrant and g a cofibration.

Show that A → I ⊗ A is a weak equivalence and show that we can construct a zigzag of
diagrams Y ← Y ′ → Y ′′ of the form

0 A B

C(A) A B

C(A) I ⊗A Cyl(g)

g

g

g

where each vertical arrow is a weak equivalence and the map I⊗A→ Cyl(g) is a cofibration.

(f) Let Y := (0 ←− A
g−→ B) be any diagram. Conclude that the mapping cone C(g) is a

model for the homotopy colimit of the diagram Y .

Solution 2. First we advise the reader to write down a commutative square of functors in Fun(I, C),
which are given by gluing two commutative cubes on their common face, and in which each face is
commutative, as well as to write down what a lifting mean (which is a family of three maps dividing
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parallel faces into two commutative triangles). A key feature of the diagram we are considering is
that the object b has only outgoing non-identity arrows and the other two objects have only incoming
non-identity arrows. The object b and its image by a functor will play a specific role.

Xb Xc Ub Uc

Xa Ua

Yb Yc Vb Vc

Ya Va

(0.1)

1. Suppose a morphim X → Y in Fun(I, C) has the left lifting property with respect to projective
acyclic fibrations. We first show that the the map Xb → Yb has the left lifting property. Thus, we
need to see that for any acyclic fibration U → V in C, the dotted lifting arrow exists in the diagram

Xb U

Yb V.

o

For this, we notice that the data of such a diagram is equivalent to the data of a morphism of
diagrams

X (∗, U, ∗)

Y (∗, V, ∗)

where (∗, U, ∗) is a notation for the diagram ∗ ← U → ∗ (and ∗ is the terminal object). The lifting
exists by the assumption that X � Y . This shows that Xb → Yb is a cofibration. We now show that
the map Xa

⊔
Xb
Yb → Ya has the left lifting property

Xa
⊔
Xb

Yb U

Ya V

o

with respect to any acyclic fibration U → V in C. We do this using the remark that the data of such
a commutative square is equivalent to the data of a commutative square of diagrams

X (U,U, ∗)

Y (V,U, ∗),

which does have a lift. The case of the remaining map is completely analogous.
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We now verify the converse, meaning that if X → Y is of the form given in the exercise, then it
has the left lifting property with respect to projective acyclic fibrations. The idea is again to use first
the fact that Xb → Yb is a cofibration in C to construct the lifting in the middle. This is possible
since each arrow Ua → Va, Ub → Vb and Uc → Vc are acyclic fibrations, whenever U → V is an acyclic
fibration in Fun(I, C).

This being done, we see that the lifing Yb → Ub gives a commutative diagram

Xb Ub

Yb Xa Ua

from which we get a map Xa
⊔
Xb
Yb → Ua. By the commutativity of the diagram of squares, the

latter map fits into the commuative square

Xa
⊔
Xb
Yb Ua

Ya Va

o

which moreover admits a lift, since Xa
⊔
Xb
Yb → Ya is a cofibration by assumption. The overall

construction can be seen as follows

Xb Ub

Yb Xa Ua

Xa
⊔
Xb
Yb

Ya Va.

∼

The existence of the remaining lift Yc → Uc is proved in the same way. This shows the first equivalence.

From this, the characterization of cofibrant diagrams follows, using that ∅
⊔
∅C
∼= C for any object

C in C. Finally, the case of acyclic cofibrations is similar, using fibration on the right hand side instead
of acyclic ones.

2. One has to check that all the axioms are satisfied. First one checks that Fun(I, C) admits
all limits and colimits: this is true (provided that they exist) in C because colimits and limits in
Fun(I, C) are computed objectwise in C. Then one has to check the two-out-of-three property of
weak equivalences. But again this follows by definition of the weak equivalences as objectwise weak
equivalences in C which verifies this property. Then we have to check that fibrations, cofibrations and
weak equivalences are stable under retracts. For fibrations and weak equivalences this follows again
from the definitions, so we only have to say something about cofibrations: but since cofibrations are
maps defined by a left lifting property, and the latter are stable under retracts, this is also verified
(see the proof of the closedness of a model category in class).

The lifting properties have already been dealt with in the previous question so all we have to check
is the factorization property. We explain the case where X → Y is factorized as an acyclic cofibration
followed by a fibration. Here is the idea: again, first we factor the middle term Xb → Yb as a acyclic

cofibration followed by a fibration Xb
∼
� Zb � Yb in C. Then we complete this into a diagram by
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taking pushouts Xc → Xc
⊔
Xb
Zb → Yb and Xa → Xa

⊔
Xb
Zb → Ya. Now we factor the last two maps

Xc
⊔
Xb
Zb → Zc → Yb and Xa

⊔
Xb
Zb → Za → Ya again in C. The resulting factorization X → Z → Y

has the required properties.

3. This follows because by definition its right adjoint is the constant diagram functor which is
right Quillen as by definition it preserves fibrations and acyclic fibrations.

4. Remark on computations of homotopy pushouts. As we have seen in class, the last point
implies in particular that homotopy pushouts exists for any model category C and are computed as
the left total derived functor of the colimit functor Fun(I, C) → Ho(C), where the diagram category
I is given the projective model structure. This means that it is computed by taking the pushout of a
cofibrant replacement of Xa ← Xb → Xc in Fun(I, C), that is

L colim
(
Xa ← Xb → Xc

)
= colim

(
LXa ← LXb

→ LXc

)
= LXa

⊔
LXb

LXc

where LX
∼
� X is the cofibrant replacement. Using the characterization of cofibrant diagrams obtained

in question 1., we deduce the following result.

A cofibrant replacement of a diagram X is a diagram

LXa LXb
LXc

with LXb
cofibrant, together with a commutative diagram:

LXa LXb
LXc

Xa Xb Xc.

o o o

This question and the proposition below shows that in model categories where weak equivalences
are preserved by pushouts, there is an easier formula to compute cofibrant replacement of pushout
diagrams.

Indeed, let

A′ B′ C ′

A B C.

o o o
f

be a cofibrant resolution of the diagram A← B → C (as explained in the remark above). We have
to show that the natural map

A′ tB′ C ′ −→ A tB C

is a weak equivalence. But this map can be obtained as a composition of two maps :

A′ tB′ C ′ −→ A′ tB′ C −→ A tB C,

where first map is the pushout

C ′ A′
⊔
B′ C

′

C A′
⊔
B′ C

The top horizontal arrow is a cofibration (because cofibrations are stable under pushout and
B′� A′ is a cofibration) and as C ′ → C is a weak equivalence, left properness implies that the right
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vertical arrow is a weak equivalence. The second map can be obtained as a composition of pushout
diagrams:

B′ A′

B B
⊔
AA
′ A

C C
⊔
B′ A

′ A
⊔
B C,

o
p

o

∼

f

p

∼
2-out-of-3

p
∼

where we use the left properness of C to show that A′ −→ B tAA′ and C tB′ A′ −→ AtB C are weak
equivalences.

5.

(a) Noticing that the factorisation A � A × [0, 1]
⊔

A×{1}
Y
∼→ Y given by the mapping cylinder is a

relative cell complex followed by a weak equivalence, we see that the result will follow from the
following general fact:

Proposition (Homotopy pushout in left proper model categories). If C is a left proper
model category, and A� Y ′

∼→ Y is a replacement of a morphism i : A → Y by a cofibration,
then there is a natural isomorphism

L colim(X ← A→ Y ) ∼= X
⊔
A

Y ′.

Strictly speaking, the proposition asserts that there is an isomorphism in Ho(C) between the
homotopy pushout and the pushout induced by the cofibrant replacement of A → Y and that
this isomorphism is induced by a natural zigzag of weak equivalences

LX
⊔
LA

LY
∼←− ?

∼−→ X
⊔
A

Y ′

where the LX ← LA → LY is a cofibrant replacement of X ← A → Y (and thus the source
of the weak equivalence is precisely the homotopy pushout) and the question mark ? depends
functorially on the diagram.

We now prove the proposition. By question (4.), the target X
⊔
A

Y ′ is the homotopy pushout

L colim(X ← A� Y ′). The map Y ′ → Y induces a map of diagrams

X A Y ′

X A Y

o

for which all vertical maps are weak equivalences. Hence this is a weak equivalence of diagrams,
so that the induced map on homotopy colimits is an isomorphism in Ho(C).
We thus have a natural isomorphism

L colim(X ← A→ Y )
'←− L colim(X ← A� Y ′)

'−→ X
⊔
A

Y ′

in Ho(C) as claimed and the question mark ? can be taken to be the pushout LX
⊔
LA

LY ′ where

LX ← LA → LY ′ is the cofibrant replacement of X ← A→ Y ′.
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(b) The category (0 → 1 → 2 → 3 → · · · ) depicting the colimit of towers is the category ω, with
exactly one arrow n → m whenever n < m are two non-negative integers (said differently, it is
the category associated to the ordinal ω, or equivalently to the ordered set (N, <)). It is not
a very small category, so that the theorem seen in class does not guarantee the existence of
homotopy colimits.

However, we can apply the same ideas as in the study of the homotopy pushout. Proceeding
exactly as in question 1., we see that for any model category C, a morphism X → Y in Fun(ω, C)
is a projective cofibration (resp. acyclic cofibration) if and only if X0 → Y0 is a cofibration (resp.
acyclic cofibration) and for every i > 0, the natural map Xi

⊔
Yi−1

Xi−1 → Yi is a cofibration (resp.

acyclic cofibration). Then one can prove as in 2. that the projective structure on Fun(ω, C) makes
the category of towers a model category. In particular, the homotopy colimit of towers always
exist. Furthermore, a cofibrant replacement of a diagram X : ω → C is given by a cofibrant object

LX0 and cofibrations LXi � LXi+1 (for any i ∈ ω) together with acyclic fibrations LXi

∼
� Xi

making the obvious squares commutative. In the specific case where X0 is cofibrant and all the
maps Xi → Xi+1 are cofibrations, we thus have that X is cofibrant and therefore as seen in
class, the canonical map from the homotopy pushout of the tower X to its pushout colimX is
a weak equivalence. It follows that if we have a commutative diagram

Y0 Y1 Y2 . . .

X0 X1 X2 . . .

o o o

with Y0 cofibrant, then it is a weak equivalence of diagrams and by above we thus have a zigzag
of weak equivalences

colim
i∈ω

Yi
∼←− colim

i∈ω
LYi

∼−→ colim
i∈ω

LXi .

This proves that to compute the homotopy colimit of a tower, it is enough to replace it by a
weakly equivalent tower consisting of cofibrations and whose first object is cofibrant.

A completely dual analysis shows that the injective model structure is also a model category
for Fun(ω, C) and hence that homotopy limit of towers exist. Such homotopy limits can then be
computed by replacing a tower by a weakly equivalent tower such that all maps are fibrations
and the last object Y0 is fibrant.

Now, recall from class that in Top, every object X0 is fibrant and there exists a CW-complex
X̃0 weakly equivalent to it: X̃0

∼→ X0 (and by composition we have an induced map X̃0 → X1).

It follows that the homotopy colimit of a tower in Top is given by the “telescope”

L colimXi
∼= X̃0 × [0, 1]

⊔
X̃0×{1}

X1 × [1, 2]
⊔

X1×{2}

X2 × [2, 3]
⊔

X2×{3}

X3 × [3, 4]
⊔
. . .

which is a tower of glued cylinders. Now consider the colimit of almost the same telescope but
for which we start at X0. Then we have a pushout diagram

X̃0 × [0, 1[ X̃0 × [0, 1]
⊔̃
X0

( ⊔
Xi−1

Xi × [i, i+ 1]

)

X0 × [0, 1[ X0 × [0, 1]
⊔
X0

( ⊔
Xi−1

Xi × [i, i+ 1]

)o
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in which the right vertical arrow is a weak equivalence by left properness. Hence the homotopy
colimit of a tower X0 → X1 → · · · is given by the telescope

L colimXi
∼= X0 × [0, 1]

⊔
X0×{1}

X1 × [1, 2]
⊔

X1×{2}

X2 × [2, 3]
⊔
. . . .

By a similar argument and induction, one can prove that if all the maps in the sequence X0 →
X1 → · · · are cofibrations, then the colimit of the sequence colimX is weakly equivalent to its
homotopy colimit L colimX.

Similarly, a homotopy limit of (· · · → Y2 → Y1 → Y0) is obtained by replacing each map by a
fibration and taking the limit (one then gets a limit of path spaces).

6.

(a) Consider the following pushout diagram in Ch(R)

M M ′

N N ′

g

f o f ′

g′

where g is assumed to be a cofibration and f is weak equivalence. We must show that f ′ is a
weak equivalence. But notice that as g is a cofibration and therefore injective, we have a short
exact sequence of chain complexes

0 M M ′ M ′/M 0
g

and therefore a long exact sequence of homology groups, and finally we have maps of exact
sequences

Hn+1(M
′/M) Hn(M) Hn(M ′) Hn(M ′/M) Hn−1(M)

Hn+1(N
′/N) Hn(N) Hn(N ′) Hn(N ′/N) Hn−1(N)

∼= ∼= ∼= ∼=

where the first and fourth vertical maps are isomorphisms because the diagram is a pushout and
the second and last vertical maps are isomorphisms because f is a weak equivalence. So f ′ is
also a weak equivalence.

(b) Note that in degree n, one has (I⊗A)n = An⊕An⊕An−1. The formula given for the differential
gives d(x, y, w) =

(
∂A(x)−w, ∂A(y) +w,−∂A(w)

)
. Hence the pushout Cyl(g) := B

⊔
A I ⊗A is

given in degree n by Bn ⊕An ⊕An−1 and the map I ⊗A→ B
⊔
A I ⊗A is given in degree n by

(x, y, w) 7→ (g(y), x, w). Thus the differential on the pushout Cyl(g) is given by

(b, x, w) 7→
(
∂B(b) + g(w), ∂A(x)− w,−∂A(w)

)
.

The formula for the differential of I⊗A above shows that the linear maps (I⊗A)n = An⊕An⊕
An−1 → An ⊕An−1 given by (x, y, z) 7→ (y, z) defines a chain map t : I ⊗A→ C(IdA).

Now we compute the pushout Cyl(g)
⊔
I⊗A

C(IdA). In degree n, we have

(
Cyl(g)

⊔
I⊗A

C(IdA)
)
n

= (Bn ⊕An ⊕An−1)⊕ (An ⊕An−1)/
(
(g(y), x, w, 0, 0) ∼ (0, 0, 0, y, w)

)
and hence it is isomorphic to Bn ⊕ An−1 (the terms corresponding to x being killed off in the
quotient). The differential then reads (b, w) 7→ (∂B(b) + g(w),−∂A(w)) which proves that the
pushout is indeed the cone C(g).
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(c) A functor from ∆1 to any category is simply the data of two objects and one morphism between

them, that is the data of an arrow A
g→ B. A map between functors is simply a natural

transformation thus a commutative diagram

A B

A′ B′.

g

α β

g′

Now since we consider chain complexes, the linear maps βn ⊕ αn−1 : Bn ⊕ An−1 → B′n ⊕ A′n−1
yield a map C(g) → C(g′) of chain complexes (because α and β commutes with differential
and the diagram is commutative). And it is easy to check that the assignement g 7→ C(g)
gives a functor Fun(∆1,Ch(R)) → Ch(R). It remains to prove that it sends objectwise weak
equivalences to weak equivalences. To see this, we note that given f : A → B a morphism of
chain complexes, one has an exact sequence of complexes 0→ B → C(f)→ A[1]→ 0. Hence a
map of morphisms produces a map of exact sequences and if the maps are quasi-isomorphisms,
by the five-lemma, the middle terms will also be.

(d) Take ua : A′
∼
� A a cofibrant replacement of A. Then choose a factorization of A′ → A → B as

a cofibration g′ : A′� B′ followed by an acyclic fibration ub : B′
∼
� B and set uc : 0→ 0 as the

identity. The commutative diagram

0 A′ B′

0 A B

o ua

g′

o ub
g

gives us the required natural transformation of diagrams.

(e) First note that the composition A
i0−→ I ⊗ A → C(IdA) is given y 7→ (0, y, 0) 7→ (y, 0). Since g

is assumed to be a cofibration and cofibrations are stable under pushouts, by definition of the
mapping cylinder, the map I ⊗ A → Cyl(g) is a cofibration as well. Now we are only left to
prove the vertical arrows in the diagram

0 A B Y

C(IdA) A B Y ′

C(IdA) I ⊗A Cyl(g) Y ′′

g

t◦i0

i0

g

t

(0.2)

are weak equivalences. For the lower right one, it follows by left properness once we prove that
i0 is. Note that the linear map s : I ⊗A→ A given in degree n by s(x, y, w) = x+ y is a chain
complex morphism. Further s ◦ i0 = IdA. To prove that i0 is a quasi-isomorphism, it is then
enough to show that i0 ◦ s is homotopic to the identity of I ⊗A. Let h : I ⊗A→ I ⊗A[−1] be
given by h(x, y, w) = (0, 0, x). Then

(d ◦ h+ h ◦ d)(x, y, w) = (−x, x,−w) = −(x, y, w) + i0 ◦ s(x, y, w)

which proves that h is indeed a chain homotopy in between Id and i0 ◦ s. Finally, since C(IdA)
is acyclic2, the upper left vertical map is a quasi-isomorphism.

2as follow from the long exact sequence since Id is a quasi-isomorphism
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(f) Given a diagram Y = (0←− A
g−→ B), we can apply question (d) to find Ỹ

∼→ Y , where Ỹ is of

the form Ỹ = (0 ←− Ã
g̃−→ B̃) with Ã and B̃ cofibrant. The natural transformation Ỹ

∼→ Y
being a weak equivalence, it induces a quasi-isomorphism on the respective homotopy colimits.
Further, by (c) the mapping cone of g̃ and g are weakly equivalent. Thus it is enough to prove
that the mapping cone of g̃ : Ã→ B̃ is quasi-isomorphic to the homotopy pushout of the diagram
Ỹ . In other words, we have reduced question (f) to the case where g : A → B is a cofibration
and A, B are cofibrant, which are exactly the assumptions of question (e).
Consider the zigzag of weak equivalences of diagrams Ỹ

∼← Y ′
∼→ Y ′′ given by question (e) (i.e.

the diagram 0.2). By left properness of C and question 4., we know that the pushout of each
horizontal level Y (∗) is also a homotopy pushout. The vertical maps being all weak equivalences,
we have that the homotopy pushout of the top horizontal diagram (Ỹ ) is equivalent to the one
of the lower one (Y ′′). By question (b), the pushout of the latter diagram

C(IdA) I ⊗A Cyl(g),t

is the mapping cone C(g) of the original map g. This concludes the proof that the mapping cone
computes the homotopy pushout of Y .

Exercice 3 (Bad behavior of Gabriel-Zisman Localization). Let A be a ring and let D(A) :=
Ho(Ch(A)) denote the derived category of A; it is the Gabriel-Zisman localization of the category
Ch(A) of chain complexes in A along quasi-isomorphisms of complexes. We have seen in class that
D(A) is the homotopy category of a model structure in Ch(A) with weak equivalences given by quasi-
isomorphisms and fibrations given by levelwise surjections.

1. Show that if E and H are two A-modules seen as complexes concentrated in degree zero, then

HomD(A)(E,H[n]) ' ExtnA(E,H).

2. Show that if A is a field, then D(A) is an abelian category3, equivalent to the category AZ of
Z-graded A-vector spaces.

3. Show that D(A[X]) does not admit limits in general. (Hint : take a non-trivial element f : A→
A[1] and show that the existence of a kernel for f gives a contradiction.)

4. Let A be a field and let I be the category with one object and N as endomorphisms. Show that
Fun(I,D(A)) is not equivalent to D(Fun(I,Ch(A)).
The conclusion is that the theory of diagrams does not interact well with derived categories.

Solution 3. 1. By the fundamental theorem for computing morphisms in the homotopy category,
and as every object is fibrant in the projective model structure, HomD(A)(E,H[n]) is in bijection with
the set of homotopy classes of maps Q(E) → H[n], with Q(E) a cofibrant resolution of E. As we
have seen in class, a projective resolution of A (which is bounded below) is in particular a cofibrant
resolution, hence we can take Q(E) := P any projective resolution of E. Then this hom-set is by
definition HomCh(A)(P,H[n])/ ' and since H[n] is concentrated in positive degree n, it is the quotient

of the set Zn(P,H) of linear maps f : Pn → H such that Pn+1 → Pn
f→ H is zero. In other words,

the hom-set consists of degree n-cocyles in the cochain complex HomA(P,H), modulo the homotopy
equivalence relation. Note that, since P is cofibrant and H[n] is fibrant, two maps f, g : P → H[n]
are homotopy equivalent if and only if they are right homotopy equivalent.

As in Exercise 2, we have a special path object for H; namely HI := HomA(I,H) which is given
by H ⊕ H in degree 0 and H in degree −1, with differential given by dHI : H ⊕ H → H given by

3see links to homological algebra exercises on the web page, if you are not familiar with this.
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(x, y) 7→ x− y. Then we have a chain map HI → H ×H given by the dual of i0 and i1, which is just
the identity map in degree 0 and (necessary) 0 elsewhere. It is surjective levelwise hence a fibration.
We also have a canonical map H → HI given in degree 0 by r 7→ (r, r) (and by 0 elsewhere). Thus
HI with the above maps is a path object for H and so is HI [n] for H[n].

We now prove that if f
r∼ g : P → H[n], then there is a right homotopy from f to g with HI [n] as

a cylinder. Indeed, let RH � H[n]×H[n] be any path object and α : P → RH be a right homotopy.

We can factor the structure map H[n]
∼→ RH as H[n]

∼
� R̃H

∼
� RH by the factorisation axiom and

the 2 out 3 property. Then the map R̃H
∼
� RH � H[n] × H[n] makes R̃H a path object for H[n].

Since P is cofibrant and R̃H
∼
� RH is an acyclic fibration, the lifting property ensures that there is a

lifting α̃ of α:

0 R̃H

P RH

o

α

α̃

and thus we have an homotopy between f , g out of the path object R̃H . Now the commutative square

H[n] HI [n]

R̃H H[n]×H[n]

o

∼

provides a map R̃H → HI [n] so that the composition P
α̃→ R̃H → HI [n] is a right homotopy from f

to g.

Now we just have to identify what it means to be a right homotopy P → HI . For degree reasons,
it has only two possible non-zero components given by a linear map Pn → H ⊕ H which has to be
(f, g) (since it is an homotopy) and a map h : Pn−1 → H. Since the map has to be a chain map, we
get that f − g = dHI ◦ (f, g) = h ◦ dPn , where dPn : Pn → Pn−1 is the differential. In other words,
two maps f, g : Pn → H are right homotopic if they differ by a coboundary in the chain complex
HomA(P,H). Thus we have a canonical isomorphism

HomD(A)(E,H[n]) ∼= Hn(HomA(P,H)) = ExtnA(E,H).

2. One checks that the functor sending a complex (Mk, ∂k) ∈ Ch(A) to the Z-graded module
l(M) :=

⊕
i∈ZHi(M) sends quasi-isomorphisms to isomorphisms and therefore induces a functor

l : D(A)→ AZ. One can produce a candidate for the inverse: given a Z-graded module K, we consider
the associated chain complex with zero differential (K, 0). This gives a natural functor AZ → Ch(A)
and we set t : AZ → D(A) the composition with the localization functor. Let us show that l and
t form an equivalence of categories. Clearly, the composition l ◦ t is isomorphic to the identity. We
are left to construct a natural isomorphism between IdD(A) and t ◦ l, meaning, we should exhibit

functorial isomorphisms in D(A) between (Mk, ∂k) and (Hk(M), 0). For that purpose we construct
two morphisms in Ch(A), fM : (Mk, ∂k) → (Hk(M), 0) and gM : (Hk(M), 0) → (Mk, ∂k) which we
prove to be isomorphisms in D(A) and behave functorialy with respect to M . To define them, let us
notice that we always have (by definition) short exact sequences

0→ ker ∂n −→Mn
∂n−→ im ∂n → 0

and

0→ im ∂n+1 −→ ker ∂n −→ Hn(M)→ 0
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for every n ∈ Z. As we are working over a field, both exact sequences split.4 We thus have iso-
morphisms Mn ' im ∂n+1 ⊕ Hn(M) ⊕ im ∂n and under this identification, the map differential map
Mn+1 → Mn is given with the map (a, b, c) 7→ (c, 0, 0). Now we define the map fnM : Mn → Hn(M)
as the projection and the map gnM : Hn(M) → Mn as the inclusion. One checks that these maps
are quasi-isomorphisms and therefore become isomorphisms in D(A). Moreover, the choice of the
splittings can be made in such a way that these maps provide a natural isomorphism in the homotopy
category: the claim is that after passing to the homotopy relation on morphisms, the choice of the
splitting does not matter.

3. As we have seen in question 1., we have

HomD(A[X])(A,A[1]) = Ext1A[X](A,A) ' A

where the second isomorphism is a simple computation (for example, one can take the obvious projec-

tive resolution A[X]
·X−→ A[X] of A). Let f : A→ A[1] be the morphism in D(A[X]) that corresponds

to 1 ∈ A via the above identification. In particular, f is non-zero. Assume f admits a kernel i : K → A,
in the sense of an equalizer of f and the zero morphism. Then we have a long exact sequence of abelian
groups

0 −→ [A[X],K[n]] = Hn(K)
i∗−→ [A[X], A[n]] = Hn(A) −→ [A[X], A[n+ 1]] = Hn+1(A) = 0.

This implies that i : K → A is an isomorphism in the derived category D(A[X]). Hence f = f ◦i◦i−1 =
0, which contradicts the fact that f is nonzero.

4. Assume A is a field. Let I be the category with one object and N as its monoid of endomorphism.
Then the category Fun(I,Ch(A)) is isomorphic to Ch(A[X]), hence D(Fun(I,Ch(A))) ' D(A[X])
which by the previous question has no (co)limits in general. However, since A is a field (in particular
is semi-simple), the category Fun(I,D(A)) is abelian (as D(A) is). This shows that this category
cannot be equivalent to D(Fun(I,Ch(A))).

Exercice 4. Let Top∗ be the category of pointed topological spaces and U : Top∗ → Top be the
functor forgetting the base point.

1. Prove that U is a right adjoint and compute its left adjoint.

2. We endow Top with Quillen model structure. Find a model structure on Top∗ such that U is
right Quillen.

3. Generalize the previous construction to any model category C.

Solution 4. 1. Let U : Top∗ → Top be the forget functor which sends a pointed space/map to
the underlying space/map of topological space. Let also P : Top → Top∗ be the functor that sends
a space X to P (X) := X

⊔
{∗} where we take the additional point ∗ as the base point. Similarly

P (X
f→ Y ) is the map that sends ∗ onto ∗ and whose restriction to X is f . It is clear that it is

continuous and defines a functor. Since X and {∗} are open subsets in P (X), a continuous pointed
map from X

⊔
{∗} → (Y, y0) is by definition a map sending ∗ to y0 together with a continuous map

from X to Y . Hence there is an natural bijection

HomTop∗(P (X), (Y, y0)) ∼= HomTop(X,U(Y, y0))

which proves that P : Top
,,
Top∗kk : U is an adjonction.

2. In order for U to be a right Quillen functor, we need to have a model structure in Top∗ for
which U preserves fibrations and acyclic fibrations. Let us define these classes in the simplest possible

4Since this is the only place we use our assumption that A is a field, the proof shows more generally that the derived
category of any semi-simple abelian category is abelian.
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way for this to work. We define a weak equivalence (resp. fibration, resp. cofibration) in Top∗ to be
a map f such that U(f) is a weak equivalence (resp. fibration, resp. cofibration) in Top. In general
such a simple definition do not work5, but here it will (essentially because limits and colimits in both
categories are very close).

It is immediate to check the axiom MC2, and MC3. For the lifting properties, note that if we have
a commutative square

A X

B Y

o

in Top∗, then the diagram of underlying unpointed spaces is a square in Top with an acyclic fibration
on the right and a cofibration on the left. Thus the lift, that is the dotted arrow, exists in Top.
The only question is whether it preserves the base point. But since the left vertical does and the
top horizontal one as well, then it necessarily does. It is thus a lift in Top∗. The other lifting
property is completely similar. In the same way assume f : (X,x0 → (Y, y0) is a pointed map and let

X � Cf
∼
� Y be a factorisation in Top. By declaring the base point of Cf to be the image of x0,

then the factorisation is pointed and still natural.
Thus the only thing left is the (co)completness of the category. A limit of pointed topological

space is naturally pointed, because the base point gives a canonical map from {∗} to every space in
the diagram (which does commute with all maps in the diagram since they are all pointed). The only
difference is with the colimit. The construction of colimits in Top∗ is as follows: given a category
D, consider the new category D+ obtained by adding an object + to D and exactly one map from +
to every object (that is we create an initial object in D). To a diagram X : D → Top∗ of pointed
spaces, we add X(+) = {∗} and X(+ → d) = (∗ 7→ X(d)0), the base point of X(d). This yields
a diagram of spaces X+ : D+ → Top, which is well defined since the image of {∗} = X(+) is a
basepoint in colimD+ X

+ and any natural transformation of diagrams is pointed. One then verifies
that colimD(X) ∼= colimD+ X

+ in Top∗.
3. Any model category is complete, hence has a terminal object ∗. The idea is then to define a

category C∗/ whose objects are maps ∗ → X in C from the terminal object to any object and whose

morphisms (∗ f→ X) → (∗ h→ Y ) in C∗/ are just maps g : X → Y in C such that h = g ◦ f (draw the
commutative triangle). Then the arguments of the previous question apply and show that C∗/ admits
a model structure for which the forgetful functor C∗/ −→ C is a right Quillen functor.

5but often imposing two classes do
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