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Simplicial Sets

Exercice 1 (Modules over cdgas). Let A be a cdga (commutative differential graded algebra) over
Q. Let Mod(A) denote the category of dg modules over A. An object in Mod(A) is thus a cochain
complex M together with a morphism of complexes A⊗QM →M satisfying the module axioms (i.e.
(a · b) ·m = a · (b ·m), 1 ·m = m).

1. Show that the forgetful functor U : Mod(A) → Ch(Q) is a right adjoint and describe its left
adjoint F .

2. Show that there is a model structure on Mod(A) where

• weak equivalences are the morphisms f such that U(f) is a quasi-isomorphism,

• fibrations are the morphisms f such that U(f) is surjective.

3. Show that the functor −⊗
A
− : Mod(A)×Mod(A) −→ Mod(A) admits a total left derived functor

−
L
⊗
A
− : Ho(Mod(A)×Mod(A)) ∼= Ho(Mod(A))×Ho(Mod(A)) −→ Ho(Mod(A)).

4. Let f : A → B be a morphism of cdgas. Show that the functor f∗ : Mod(B) → Mod(A), given

by A⊗Q M
f⊗id→ B ⊗Q M →M , is a right Quillen functor.

5. Assume f : A→ B is a quasi-isomorphism of cdgas. Show that f∗ is a Quillen equivalence.

Solution 1. One possible reference is the book Modules over operads and functors, by Benôıt Fresse
(sections 11.2.5 – 11.2.10).

Exercice 2 (Playing with simplicial sets). We recall that ∆ is the category whose objects are finite
ordered sets [n] = {0 < 1 < · · · < n} and morphisms are order-preserving maps. Denote by ∆[n] =
∆n
• ∈ sSet the Yoneda embedding: ∆[n] := Hom∆(−, [n]). We recall that if X is a simplicial set, the

data of a n-simplex of X, corresponds to the data of a simplicial set morphism ∆[n]→ X.

1. Write di and εj the face and degeneracies. Check that any map f : [m] → [n] in ∆ can be
factored in a unique way as f =

[m]
εj1 // [m− 1]

εj2 // . . .
εjt // [m− t]

∂i1 // [m− t+ 1]
∂i2 // . . .

∂ik // [m− t+ k] = [n]

where jt < jt−1 < · · · < j1 are the elements of [m] with f(j) = f(j+1) and i1 < i2 < · · · < ik are
the values in [n] that are not in the image of f . Conclude that ∆ is the free category generated
by the objects [n] and morphisms ∂i and εj submitted to the simplicial relations.

2. Check that a morphism f : [m] → [n] is an epimorphism if and only if it is a non-decreasing
surjection and that the simplicial relations imply that every epimorphism is split.

3. (Eilenberg-Zilber Lemma) Let X be a simplicial set. Show that for each m-simplex σ : ∆[m]→ X
there is an epimorphism s : ∆[m] → ∆[n] and a non-degenerate n-simplex x : ∆[n] → X such
that y ◦ s = σ. Show that the pair (y, s) is unique.
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4. (Skeletons) We denote by skn(X) the subsimplicial set of X ∈ sSet given by the non-degenerate
simplices of X of dimension less than n. Thus its p-simplices are the p-simplices σ of X such
that there exists an epimorphism s : ∆[p]→ ∆[q] with q ≤ n and a q-simplex x : ∆[q]→ X such
that x ◦ s = σ. In other words, for q ≤ n the q-cells of skn(X) coincide precisely with the q-cells
of X. For m > n, the m-cells of skn(X) are given by the m-cells of X which are degenerate.

The construction X 7→ skn(X) can be seen as a right adjoint: let ∆≤n denote the full subcategory
of ∆ spanned by those objects [k] with k ≤ n. Write in : ∆≤n ↪→ ∆ for the inclusion functor.

(a) Let T ∈ Fun(∆op
≤n,Set). Prove that the formula1 (in)!(T )∗ := colim

∗→k≤n
T (k) defines a functor

(in)! : Fun(∆op
≤n, Set)→ sSet and that the functor (in)! admits a right adjoint (in)∗.

(b) Show that for any X ∈ Fun(∆op
≤n, Set), the unit of the adjunction X → (in)∗(in)!X is an

isomorphism. Conclude that (in)∗ is fully faithful.

(c) Show that for any simplicial set X, the co-unit of the adjunction (in)!(in)∗(X) → X is
injective and show that its image in X coincides with the sub-simplicial set skn(X);

(d) Show that the canonical map colim
n≥0

skn(X)→ X is an isomorphism.

5. (Boundaries) We give an alternative presentation of ∂∆[n] as the result of gluings all the n− 1-
simplices of ∆[n] along the n− 2-simplices. Consider the diagram

⊔
0≤i<j≤n

∆[n− 2]
u //
v
//
⊔

0≤i≤n
∆[n− 1]

p // ∆[n]

where the map p is induced by the inclusions of the faces of ∆[n]. Each copy of ∆[n − 2] on
the l.h.s corresponds to a copy of [n] where both i and j are missing. Similarly, each copy of
∆[n− 1] on the r.h.s corresponds to a copy of [n] where a single element i is missing. The map
u is induced by the boundary maps ∂j−1

n−1 : ∆[n− 2]→ ∆[n− 1] and the maps v are induced by
the boundary maps ∂in−1 : ∆[n− 2]→ ∆[n− 1]. Check that the image of p is the set of simplices
in ∆[n] belonging to ∂∆[n] and conclude that ∂∆[n] is isomorphic to the co-equalizer of (u, v).

6. Let X be a simplicial set. Show that for each n ≥ 0 the squares⊔
σ∈Xn, σ non-deg

∂∆[n]σ //

inclusion

��

Skn−1(X)

��⊔
σ∈Xn, σ non-deg

∆[n]σ // Skn(X)

are cocartesian. This allows us to construct X by induction on n.

7. (Horns) Recall the notion of j-horn Λjn the sub simplicial set of ∆[n] in which the jth face and
the interior have been removed.

(a) Prove that the m-simplices of Λjn are the order preserving maps p : [m]→ [n] whose image
does not contain the set [n]− {j}.

(b) Describe the horn using boundaries and skeletons.

(c) Deduce that HomsSet(Λ
r
n, X) is in bijection with the set of n-tuples of (n − 1)-simplices

(x0, . . . , x̂r, . . . xn) of X such that for all i, j 6= r and i < j, one has dixj = dj−1xi.

1this is nothing more than the left Kan extension along the inclusion in
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(d) Prove that a simplicial set is fibrant if and only if, for any k ≤ n and n-tuple of (n − 1)-
simplices (x0, . . . , x̂r, . . . xn) of X satisfying that, for all i, j 6= r and i < j, dixj = dj−1xi,
then there exists a n-simplex x ∈ X such that di(x) = xi for all i 6= k.

8. Deduce that the simplicial set ∆[n] is not fibrant for n ≥ 1.

Solution 2. The first three questions are really meant to make the reader play with simplicial sets in
its categorical incarnation.

1. First note that since the maps in ∆ are non-decreasing, then the preimage f (−1)({i}) of any
integer i ∈ [n] is either empty or is an interval {j, j+1, . . . , j+k}. Now let {jt · · · < j1} be the (possibly
empty) ordered subset of [m] of all integers j such that f(j) = f(j + 1). Also, let {i1 < · · · < ik} be
the (possibly empty) ordered subset of [n] consisting of all values in [n] which are not in the image
of f . Then, since f is nondecreasing, we have that f(1) is the least integer in [n] \ {i1 < · · · < ik}. If
1 /∈ {j1 < · · · < jt}, then f(2) is the least integer in ([n] \ {i1 < · · · < ik}) \ {f(1)}. If 1 = j1, then
f(2) = f(1) by definition of j1. We can continue this reasoning inductively to see that the data of
the two ordered sets {jt < · · · < j1} and {i1 < · · · < ik} uniquely determined f . Now, note that the
definition of εk is precisely a map which identifies the value of k and k+ 1 and that ∂j is precisely the
map jumping ahead the value j. Hence, the previous description of f in terms of the two ordered sets
gives that

f = ∂ik ◦ · · · ◦ ∂i1 ◦ εjt ◦ · · · ◦ εj1

and further that any composition g = ∂i′k ◦ · · · ◦ ∂i′1 ◦ εj′t ◦ · · · ◦ εj′1 (where the integers j’s are in
decreasing order and the i’s are in increasing order) satisfies that the ordered set of values not taken
by g is {i′1 < · · · < i′k} and that the ordered subsets of integers j who take the same value as j + 1
is {j′t < · · · < j′1}. This proves the uniqueness of the decomposition while above we have seen the
existence.

The uniqueness and existence of the decomposition implies that ∆ is freely generated by [n] and
the faces and degeneracies together with the cosimplicial identities seen in class. Indeed, let ∆′ be the
free category generated by those. Then we have a canonical functor ∆′ → ∆ which is the identity on
objects and on the ∂i, εj . We are left to prove that this functor is a bijection on the Hom-sets. It is
clearly surjective since every map of ∆ decomposes as a composition of faces and degeneracies. Let
q ∈ Hom∆′([m], [n]) . Then q is a finite composition of faces and degeneracies and the cosimplicial
identities implies that we can switch around the sj and ∂i so that we can first apply only composition
of sj ’s and then a composition of ∂i’s. Further they allow to reorder the composition of sj ’ as well as
the one of the faces ∂i’s so that the j are in decreasing order and the i are in increasing order. We do
not know a priori if such a decomposition is unique. Anyway, assume q, p ∈ Hom∆′([m], [n]) have the
same image in ∆. Take a decomposition of q and p as above. Then their image in ∆ have the same
decomposition and since there is uniqueness of the decomposition in ∆, the two decomposition are
the same. Hence the maps are the same. Which concludes the proof that ∆′ is isomorphic to ∆.

2. If f : [n] → [m] is an epimorphism then it is necessarily surjective. Indeed, if it misses the
value j, then τj ◦ f = id ◦ f where τj : [n] → [n] is the map sending j to j − 1 and is the identity on
other values. This contradicts the epimorphim property. The reciprocical assertion is obvious since a
non-surjective map is already an epimorphism f of sets and that maps of ∆ are non-decreasing ones.
By the first question, an epimorphism is written (uniquely as) a composition f = εjt ◦ · · · ◦ εj1 with
j1 > · · · > jt. The cosimplicial identities implies that ∂j1 ◦ · · · ◦ ∂jt ◦ f = id which shows that there is
a section of f .

3. Note that a n-simplex σ : ∆[n]→ X is degenerated if σ can be factored as

∆[n]
σ //

s

��

X

∆[m]

x

==
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with s an epimorphism for some m < n. The existence of the decomposition follows from the fac-
torization properties of ∆. The unicity of the pair is more subtle: let us redo the proof seen in class:
Suppose (s, x) and (s′, x′) are two pairs verifying the hypothesis. Then as every epimorphism splits,
both s’ and s admit sections, say, t and t’ resp. Using the fact s and s’ are epimorphisms we deduce
the relations x = σ ◦ t and x′ = σ ◦ t′ so that x = x′ ◦ s′ ◦ t. Since by hypothesis x is non-degenerated,
we must have s′ ◦ t a monomorphism and thus n′ ≥ n. By the symmetric argument we deduce n ≥ n′
so that n = n′. Moreover, as s′ ◦ t is order preserving, it must be the identity map of [n] so that x = x′.
This implies s′ = s.

4. The inclusion functor in : ∆≤n ↪→ ∆ induces by precomposition a functor sSet = Fun(∆op, Set)→
Fun(∆op

≤n,Set) given by (∆op F→ Set) 7→ (∆op
≤n

in→ ∆op F→ Set). We denote (in)∗ this functor. Thus for
a simplicial set Y•, we have, for k ≤ n that (in)∗(Y•)k = Yk and the structure maps are simply the
restriction of the one of Y to the indexes lower than k.

(a) To prove the formula (in)!(T )∗ := colim
∗→k≤n

T (k) defines a functor we have first to check we have a

natural simplicial structure on (in)!(T )∗. if f : [m]→ [`] is a map in ∆, then by precomposition we

get, for any map [`]→ [k] another map in ∆ defined by [m]
f→ [`]→ [k], hence we get a canonical

map f∗ : colim
[`]→[k],k≤n

T ([k])→ colim
[m]→[k],k≤n

T ([k]) induced by the identity map T (k)→ T (k) sending

the T (k) indexed by j : [`]→ [k] to the one indexed by j◦f : [m]→ [k]. We have (f ◦g)∗ = g∗◦f∗
hence (in)!(T )∗ is indeed a simplicial set. Similarly a natural transformation (T (k)→ U(k))k≤n
induces a map of colimits ( colim

m→k≤n
T (k) −→ colim

m→k≤n
U(k))m∈N by post-composition which shows

that (in)! is indeed a functor.

We need to check the adjunction formula. Let g = (gk : Xk → (in)∗(Y•)k = Yk)k≤n be a
map in Fun(∆op

≤n, Set) where X ∈ Fun(∆op
≤n, Set) and Y• ∈ sSet. We wish to define a map

θ(g) : (in)!(X)• → Y•, that is, for every m ∈ N, a map colim
m→k≤n

X(k) → Ym commuting with

the faces and degeneracies which by universal property of colimits is equivalent to the data
of a map θj(g) : X(k) → Ym for each j : [m] → [k] (such that for all composable arrows

[m]
i→ [` ≤ n]

j→ [k ≤ n], one has θj◦i(g) = θj(g) ◦ i∗ where i∗ : X(k) → X(`) is the structure
map given by the functor X). Since Y• is a simplicial set, the map j : [m] → [k] gives the map
j∗ : Yk → Ym, so that we can define

θj(g) := X(k)
gk→ Yk

j∗→ Ym.

This map passes to the colimit since for all non-decreasing map i : [` ≤ n] → [k ≤ n] one has
i∗ ◦ g = g ◦ i∗. That the map θ(g) induced on the colimit is a map of simplicial sets follows from
the formula (j◦f)∗◦gk = f∗◦j∗◦gk. We also define, for any simplicial set map f : (in)!(X)• → Y•
a natural trasnformation (that is a map of functors) ψ(f) : X → (in)∗(Y•) as follows. As seen

above the map f is equivalent to the data of set maps X(k)
f(j)→ Ym for any j : [m] → [k]

(compatible with factorisations [m]
i→ [` ≤ n]

j→ [k ≤ n] as above). Taking id : [k] → [k]

yields g(k) : X(k)
f([k]

id→[k])−→ Yk. The compatibility precisely gives that (g(k))k≤n is a natural
transformation. It is immediate (from the definition of θid) that ψ(θ(g)) = g. For the other
direction, note that by definition of the simplicial structure of (in)! given above, in simplicial
degree m, the contribution of the component X(k) indexed by j[m] → [k ≤ n] in the colimit is

precisely induced by j∗ of the component corresponding to [k]
id→ [k] in simplicial degree k. Hence

if f : (in)!(X)→ Y• is a simplicial set morphism, we have that the induced map X(k)
f(j)→ Ym is

equal to X(k)
f([k]

id→[k])→ Yk
j∗→ Ym which shows that θ ◦ ψ(f) = f and the adjunction formula is

proved, since the naturality follows from the universal property of colimit.

(b) Let X : ∆≤n → Fun(∆op
≤n, Set). By Yoneda, X is a colimit of representables X([m]) with m ≤ n.

Using the fact that both i! and i∗ commute with colimits we are reduced to show that X([m])→
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i∗(∆[m]) is an isomorphism for m ≤ n. This is an immediate check by the above explicit formulae
for the adjunction. The fully faithfulness is implied by the fact that the unit is an isomorphism
since we have bijections

Hom((in)∗(X), (in)∗(Y )) ∼= Hom((in)!((in)∗(X)), Y )
∼=−→ Hom(X,Y )

where the last one is given by precomposition with the unit.

(c) As we have seen in the explicit description of the adjunction in (a), notice that (in)!(in)∗(X) →
X is given by the colimit colimh:[m]→(in)∗(X)∆[m] so that all its p-simplices for p > n are
degenerated. Moreover, thanks to the previous exercise, the k-simplices of (in)!(in)∗(X) → X
are in bijection with the k-simplices of X for k ≤ n, so it is injective. To conclude that the map
is injective for p > n we use Eilenberg-Zilber’s lemma to reduce the question to non-degenerated
simplices which by this discussion are necessarily of dimension ≤ n.

(d) This follows because ∆ is the colimit of the categories ∆≤n and by the universal property of
colimits in categories, presheaves over ∆ are the limit of presheaves over each ∆≤n.

5. Note that the boundary of the standard simplex ∆[n], denoted as ∂∆[n], can be defined as
Skn−1∆[n] since it is obtained by removing from ∆[n] the unique n-simplex non-degenerated (and there
are no higher dimensional ones). Thus it is generated by the non-degenerate simplices in dimension
< n. But each of these simplices contains at most n vertex of ∆[n] (these vertex each corresponding
to an integer i ∈ {0, . . . , n}) hence is included in a face [n] \ {j} and thus in the image of p. On
the other hand since the source of p has no simplices in dimension ≥ n its image lies necessarily in
Skn−1∆[n] = ∂∆[n]. The fact p ◦ u = p ◦ v is nothing but the simplicial identity ∂j−1

n−1 ◦ ∂in = ∂in−1 ◦ ∂
j
n

for i < j. One checks that ∂∆[n] is indeed the coequalizer by showing it has the universal property.
Any simplicial set map f :

∐
0≤i≤n ∆[n − 1] → Y such that f ◦ u = f ◦ v is defined uniquely by

its restriction in degrees 0 to n − 1. It defines a map from ∂∆[n] → Y by setting its value on all
degree n− 1-non degenerate simplices to be given by the restriction of f to the component ∆[n− 1]
corresponding to i (in other words, one uses the injective increasing maps ∂in to identify

∐
0≤i≤n ∆[n−1]

with
∐

0≤i≤n Homnon decreasing([•], [n]\{i})). To check that this map is indeed a simplicial set map,
we only need to check the faces compatibility since there are no higher non-degenerate simplices. But
these faces identities are exactly provided by the simplicial identity on faces which is the coequalizer
condition on u and v.

In concrete terms the main point is that the diagram

[n− 2]
∂i //

∂j−1

��

[n− 1]

∂j

��
[n− 1]

∂i // [n]

is a pullback in ∆ (which boils down to intersection). Hence ∆[n− 2] ∼= ∆[n− 1]×∆[n] ∆[n− 1] and
the latter is isomorphic to ∆[n− 1]×∂∆[n] ∆[n− 1] because the map to δ[n] factors through ∂∆[n].

6. To check that this is true it is enough to check that each restriction (ik)
∗ is cocartesian for

k ≥ 0. More easily, as all the simplicies are n-truncated, it is enough to check that the diagram is
cocartesian after applying (ik)

∗ for k ≤ n. This is clear when k < n as in this case the vertical left
arrow is an isomorphism. In other words, the diagram is a pushout for what concerns simplexes of
dimension < n. It is enough to check that this holds for k = n. But this is true as in k=n the top line of
the diagram does not have non-degenerated cells so that the only cells added at the non-degenerated
cells of X encoded by the (

∐
σ∈Xn,σ non−deg ∆[n]σ)n. This makes the skeleton n of X.

7.

(a) Recall that ∆[n]k = Hom∆([k], [n]), hence a k-simplex of ∆[n] is a non-decreasing application with
value in {0, . . . , n}. The n-simplex is the identity map id : [n] → [n]. Note that if f : [k] → [n]
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is a k-simplex, then all its iterated degeneracies εjk ◦ · · · εj1 ◦ f have the samie image in [n] as
f (as εk ◦ f does not change the image because it is obtained as f ◦ εk where the last map is
surjective). Hence ∂∆[n]k is included in the subset of non-surjective non decreasing map from [k]
to [n]. Similarly the i-face of id : [n]→ [n] is the map ∂i : [n−1] ∼= [n]\{i} ↪→ [n] and, reasoning
in the same way, this allow to see the sub-simplicial set generated by the i-face has the subset
of all non decreasing maps with values in [n] \ {i}; its only non-degenerate n− 1-simplex is thus
identified with ∂in and its iterated degeneracies are precisely the maps f : [k]→ [n] whose image
is exactly [n] \ {i}. It follows that ∂∆[n] is the subset of all non-surjective maps and further,
since Λin is obtained by removing the i-face in ∂∆[n], we get that the k-simplices of Λin are the
the non-decreasing maps p : [k]→ [n] whose image does not contain the set [n]− {j}.

(b) We claim that Λrn is the coequalizer of the diagram

∐
0≤i<j≤n,i,j 6=r ∆[n− 2]

u //
v
//
∐

0≤i 6=r≤n ∆[n− 1] .

the difference with question 5 being that we remove one component ∆[n− 1] in the right (pre-
cisely the one associated to the k-th face (as well as those that maps onto it). The maps u
and v are defined as in question 5. Then we get the claim by noticing as in question 5 that
∆[n − 2] ∼= ∆[n − 1] ×∆[n] ∆[n − 1] ∼= ∆[n − 1] ×Λr

n
∆[n − 1] where the maps to ∆[n − 1] →

∆[n] are induced by ∂i and ∂j with i, j 6= r. Hence the above coequalizer is isomorphic to∐
0≤i<j≤n,i,j 6=r ∆[n− 1]×Λr

n
∆[n− 1]

u //
v

//
∐

0≤i 6=r≤n ∆[n− 1] which is Λrn by definition.

(c) Using that HomsSet(∆[m], X) ∼= Xm and moving colimits out of Hom, the previous question shows
that

HomsSet(Λ
r
n, X) ∼= Equalizer

( ∏
i 6=r

Xn−1

u∗ //

v∗
//
∏

i,j 6=r,i<j
Xn−2

)
where u∗ and v∗ are the boundary maps dj−1 and di. This is exactly the result.

(d) Let p :
∐

0≤i 6=r≤n ∆[n − 1] → ∆[n] be thr map induced on the component i by ∂i. Then as in
question 5. its image is precisley the r-horn Λrn. It follows that the restriction HomsSet(∆[n], X)→

HomsSet(Λ
r
n, X)) is precisely the map onto the equalizer of (c) induced by the maps Xn

∏
i6=r di−→∏

i 6=r
Xm−1. The result now follows from the previous question.

8. It suffices to prove that ∆[1] is not. Consider the map Λ2
0 → ∆[1] given by the pair

(
ε0({0}), [1]

id→
[1]
)
. Then d1([1]

id→ [1]) = 0 7→ 0 = {0} = d1(ε0({0}) which proves by (c) that it does define a
simmplicial set maps.

Assume a lift exists ∆[2] → ∆[1] exists, then by (d), we shall have x ∈ ∆[1]2 such that d2(x) =

[1]
id→ [1] and d1(x) = ε0({0}). The simplicial identity further tells that d1(d0(x)) = d0(d2(x)) =

[0]
∂id◦d0

1−→ [1] = 0 7→ 1 and furtehr that d0(d0(x)) = d0(d1(x)) = {0}. Hence d0(x) : [1] → [1] is a
non-decreasing map f such that d1(f) = f(0) = 1 but d0(f) = f(1) = 0 which is absurd.

Exercice 3 (Detailled construction of the Nerve of a category). In this exercise and the following, we
establish a link between the theory of categories and the theory of simplicial sets. More precisely, we
check that we can translate the information provided by a category C into a simplicial set, called the
nerve of C and denoted by N(C). We will see that this translation does not lose any information and
that in fact the theory of categories can be seen as a sub-theory of that of simplicial sets.

6



1. The category of simplexes ∆ can be canonically identified with a full subcategory of Cat, spanned
by the categories of the form [n] := [0 → 1 → · · · → n]. Use this inclusion and the previous

exercise to produce an adjunction sSet
τ ++

Cat
N
kk sending τ(∆[n]) = [n].

2. Let C be a small category. Check that the functor N is characterized as follows: N(C)n consists
of composable strings of morphims in C of lenght n:

X0
f0 // X1

f1 // . . . .
fn−1 // Xn.

In particular, the 0-simplexes of N(C) are the objects of C and the 1-cells are morphisms in C.
Describe the face and degeneracy maps in terms of compositions and identity morphims.

3. Show that the canonical morphism induced by the inclusion τ(∂∆[n]) → τ(∆[n]) = [n] is an
isomorphism of categories for n ≥ 3. Describe both τ(∂∆[1]) and τ(∂∆[2]).
(Hint: use the construction of ∂∆[n] as a cokernel).

4. Deduce that the canonical map τ(sk2(X)) → τ(X) is an isomorphism of categories for every
simplicial set X. In other words, the category τ(X) only depends on the 2-skeleton of X.

5. Let X be a simplicial set. Check that the category τ(sk2(X)) is isomorphic to the quotient
of the free category with X0 as objects and X1 as morphisms under the following relation on
morphisms:

• for every 2-simplex σ : ∆[2]→ X, we identify ∂1(σ) with the composition ∂0(σ) ◦ ∂2(σ).

• for every x ∈ X0, identify ε0(x) with Idx

6. Let C be a category and describe the category τ(sk2(N(C)). Conclude that the adjunction map
τ(N(C))→ C is an isomorphism of categories and that N is fully faithful.

7. Let In denote the sub-simplicial set (subfunctor) of ∆[n] given by
⋃n
i im αi ⊆ ∆[n] where

αi : ∆[1] → ∆[n] is the map sending 0 → i and 1 7→ i + 1. Show that In is the colimit of the
diagram

∆[1] ∆[1] . . . ∆[1]

∆[0]

∂0

<<

∂1

bb

∆[0]

∂1

bb
∂0

==

. . . ∆[0]

∂0

<<

∂1

aa

where ∆[1] appears n times.

8. Let C be a category and let N(C) denote its nerve. Show that the composition with the inclusion
In ⊆ ∆[n] produces a bijection

HomsSet(∆[n], N(C)) ∼= HomsSet(In, N(C))

for all n ≥ 2. Conclude that the canonical map τ(In) → τ(∆[n]) = [n] is an isomorphism of
categories for n ≥ 2.

Solution 3. Note that the category [n] := [0 → 1 → ... → n] is just the category associated to the
poset 0 < 1 · · · < n. In particular an order preserving map [n] → [m] is a functor from the category
[n] to the category [m] (as one can simply check by hand).

1. Let us define N : Cat → sSet as the functor defined as follows. To a small category C we
associate the family of sets N(C)n := HomCat([n], C), in other words the set of functors from the
category [n] to C. Since the morphisms of ∆ are precisely the non-decreasing application which as we
have seen are functors between categories of the form [n], it is immediate that any non-decreasing
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map f [n] → [m] induces a map f∗ : N(C)m = HomCat([m], C) −◦f−→ HomCat([n], C) = N(C)m by
composition of functors. By functoriality of composition of functors, we obtain a well defined functor
N(C) = HomCat(−, C) : ∆op → sSet given by the collection of the (N(C)n)n∈N. The construction shall
really look like the construction of Sing•(X) for a space. We use the collection of the categories [n]
as an natural cosimplicial category where in the latter we were using the natural cosimplicial space
(∆n)n≥0. That being seen, it is natural to find the left adjoint of the functor N by mimicking the
definition of the geometric realization. More concretely, we set τ : sSet → Cat by setting τ(X•) :=
(
∐
n∈NXn× [n])

∐
(
∐

f :[n]→[m]∈∆Xm×[n])

(
∐
m∈NXm× [m]) to be the pushout2 in Cat given by the diagram

τ(X•) :=
∐
n∈N

Xn × [n]
f∗←−

∐
f :[n]→[m]∈∆

Xm × [n]
f∗−→

∐
m∈N

Xm × [m]

where f∗ is just induced by the map f∗ : Xm → Xn given by the simplicial structure of X• and
f∗ is just induced by f : [n] → [m]. Note that since ∆[n] has a unique non-degenerate n-simplex
(id : [n] → [n]) and all others non-degenerate simplices are faces of it, then, it is immediate that
the pushout defining τ(∆[n]) is nothing more than the category [n] itself. The proof that the two
constructions are indeed an adjunction can be done in a similar way to the proof of the geometric
realisation case seen in class; one only needs to replace continuous maps ∆n → Y by functors, and
elements t ∈ ∆n by objects of [n].

A companion proof is to use that every simplicial set is the colimit X• ∼= colim∆[n]→X• ∆[n]. Since
τ is defined by a colimit, it shows that to prove the adjunction it is enough to check it on all ∆[n].
But then we have

HomsSet(∆[n], N(C)) ∼= N(C)n = HomCat([n], C) ∼= HomCat(τ(∆[n]), C)

where the first identity is given by the Yoneda Lemma for ∆[n] as seen in class.

Remark: the pushout formula defining τ shows that for every degenerate simplex σ ∈ Xn, the category
{σ} × [n] is collapsed into the category {y} × [j] corresponding to the unique non-degenerate simplex
y ∈ Xj that σ is an iterate degeneracy of. Hence, as for the geometric realisation of spaces, the
category τ(X•) is uniquely defined by the non-degenerate simplices. Further, the set of objects of
τ(X•) is exactly the set X0 of vertices and every non-degenerate 1-simplex σ yields a morphism
d1(σ)→ d0(σ) in τ(X•).

2. We have seen that N(C)n = HomCat([n], C). Since [n] has only n + 1 objects (the integers
0, . . . , n) and exactly one non-identity morphisms i→ j between two objects i, j such that i < j (and
no such morphism for j ≥ i, a functor is given by n + 1-objects X0, . . . Xn ∈ C and one morphism
fi : Xi → Xi+1 for any i < n.

3. Since ∂∆[1] = ∆[0]
∐

∆[0] has only two non-degenerates simplices both of degrees 0, we find
from the explicit description above of τ that τ(∂∆[1]) is a discrete category with two objects. Similarly,
∂∆[2] has three non-degenerates vertices and three non-degenerates 1-simplices linking them. τ(∂∆[2])
is a category with three objects and four morphisms - the three morphisms given directly as the
images of the 1-simplexes and a new morphism generated by the free composition of the only possible
composable arrow: namely the one linking 0 → 1 → 2; this composition has no reason to be the the
arrow 0 → 2 corresponding to the third edge since there are no higher non-degenerate simplices to
identify them.

Now, for n ≥ 3, we use the result of question 5 of Exercise ?? and that, since τ is a left adjoint, it
commutes with colimits. Hence we get that τ(∂∆[n]) is the coequalizer of

∐
0≤i<j≤n τ(∆[n− 2])

τ(u) //

τ(v)
//
∐

0≤i≤n τ(∆[n− 1]) ∼=
∐

0≤i<j≤n[n− 2]
a //

b
//
∐

0≤i≤n[n− 1] .

2this pushout is precisely the coequalizer of the maps f∗, f
∗
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Here the maps a, b are simply induced by the obvious inclusions missing either i or j − 1 (that is di

or dj−1). The colimit is exactly [n] because, unlike for n = 2, any two arrows in the colimit category
corresponding to i → i + 1 → i + 2 whose composition shall be an arrow in the colimit is actually
equal to the arrow i→ i+ 2 in one category [n] \ j (just take j < i or j > i+ 2).

4. We know that X is the colimit of its skeletons and that each skeleton is built by induction via
the pushouts along the inclusions ∂∆[n] → ∆[n]. As τ commutes with colimits the previous exercise
solves the question.

5. Since Sk2(X) has no non-degenerates simplices of degree ≥ 3, we only have to understand the
contributions of non-degenerate simplices of degree 1 and 2. We have seen in question 1 that the
objects of τ(Sk2(X) are X0 and that X1 generates morphisms. Note that if σ ∈ X1 is degenerate,
that is σ = ε0(x), then, in the colimit defining τ(Sk2(X), we have that τ(σ) = ε0(τ(x)) = Idx.
Now it remains to understand the two simplices. But in the two simplex [2] we have that the unique
morphism 0 → 2 is the composition 0 → 1 → 2. But 0 → 2 is just the image d1([1]) by the functor
associated to d1 while the subcategory 0 → 1 ⊂ [2] is the image of d2 and 1 → 2 the one of d0.
Hence the explicit formula of the colimit defining τ shows that every two simplex σ imposes a relation
∂1(σ) = ∂0(σ) ◦ ∂2(σ). We have no other relations since we only need to consider non-degenerates
simplices of degree less than 2.

6. By question 2., N(C)0 is the set of objects of C and N(C)1 is the set of morphisms in C and

N(C)2 is the set of all composable two arrows. Its faces are given by ∂0( X0
f0 // X1

f1 // X2 ) = f1,

∂1( X0
f0 // X1

f1 // X2 ) = f1 ◦ f0 and ∂2( X0
f0 // X1

f1 // X2 ) = f0. Hence by question 5., we
have that τ(Sk2(N(C))) is the free category generated by the objects and arrows of C quotiented by
the relation of composition in C. It is thus isomorphic to C itself. By direct inspection, the adjunction
map τ(N(C))→ C is the map taking the category τ(N(C)) which is the identity on objects and maps
string of arrows to their class in C. By the previous computations it is thus an isomorphism. This
being proved we thus have the isomorphisms

HomCat(D, C) ∼= HomCat(τ(N(D)), C) ∼=sSet (N(D), N(C))

which proves the fully faithfulness of N .

7. This essentially reduces to a computation of colimits of sets.

8. The simplicial set In has exactly n + 1 non-degenerate 1-simplices, denoted αi ∼= {i, i + 1},
and no higher non-degenerates ones. The only relation between these 1-simplices are that d1(αi+1) =
d0(αi) hence, a simplicial set map from In to X• is given by a n-tuple (x1, . . . , xn) satisfying that
d0(x1) = d1(x2) and so on. In other words, HomSSet(In, X) ∼= X1 ×X0 X1 × · · · ×X0 X1. Applying
this to X• = N(C), we obtain that a map from In to N(C) is exactly a string of n-composable
arrows, hence the claimed isomorphism. We take C = [n] = τ(∆[n]). The canonical map τ(In) →
τ(∆[n]) = [n] is by definition the image of the identity of [n] under the map HomCat([n], [n])

−◦τ(i)−→
HomCat(τ(In), [n]) where i : In ↪→ ∆[n] is the inclusion. But by adjunction, and since τ(∆[n]) = [n],
we have a commutative diagram

HomCat([n], [n])

−◦τ(i)

��

∼= // HomsSet(∆[n], N([n]))

−◦i
��

HomCat(τ(In), [n])
∼= // HomsSet(In, N([n]))

where the right vertical map is a bijection by above. Hence the left vertical one is bijective too.

Exercice 4 (Segal conditions and categories). Let N : Cat→ sSet be the nerve functor.
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1. (Grothendieck-Segal condition) Show that a simplicial set X belongs to the essential image of
the functor N (ie, X encodes the information of a category) if and only if the composition map

HomsSet(∆[n], X) −→ HomsSet(In, X)

is a bijection for all n ≥ 2.

2. (Grothendieck-Segal condition via horns) Let X be a simplicial set. Show that X is in the
essential image of N if and only if for all n ≥ 2, all 0 < i < n and for any map of simplicial sets
u : Λin → X there exists a unique factorization of u along the canonical inclusion

Λin X

∆[n]

u

In other words, the composition map gives a bijection

HomsSet(∆[n], X) ∼= HomsSet(Λ
i
n, X).

3. Following the previous question, show that a simplicial set X is the nerve of a groupoid if and
only if for all n ≥ 1 and 0 ≤ i ≤ n and for any map of simplicial sets u : Λin → X there exists a
unique factorization of u along the canonical inclusion (as in the above diagram).
In particular, if C is a groupoid, then N(C) is a Kan complex.

Solution 4. 1. The previous exercise shows that if X is in the essential image of N then the map is
a bijection. To prove the reciprocal assertion, it is enough3 to show that if X satisfies the condition
then the canonical map X → N(τ(X)) is an isomorphism. Since it means that it is a bijection in every
degree, by Yoneda it is enough to check that the induced map

HomsSet(∆[n], X)→ HomsSet(∆[n], N(τ(X)))

is a bijection (since the left hand side is nothing more than Xn and the right hand side is N(τ(X))n).
Using the hypothesis, the l.h.s is in bijection with

X1 ×X0 ×X1 ×X0 .....×X0 X1

n-times. Also because N(τ(X)) is a nerve, the r.h.s by the previous exercise is equivalent to

N(τ(X))1 ×N(τ(X))0
×N(τ(X))1 ×N(τ(X))0

.....×N(τ(X))0
N(τ(X))1

We conclude that the two are the same using the description of τ(X) given above.
2. Consider the commutative square

HomsSet(∆[n], X)
u∗ //

r∗i
��

HomsSet(∆[n], N(τ(X)))

r∗i
��

∼= // HomCat(τ(∆[n], τ(X))

τ(ri)
∗

��
HomsSet(Λ

i
n, X)

u∗ // HomsSet(Λ
i
n, N(τ(X)))

∼= // HomCat(τ(Λin), τ(X))

3the fact that N is fully faithful and τ(N(C) → C is an isomorphism actually implies that the condition is necessary as

well because it implies the right vertical arrow is an isomorphism in the commutative square X
∼= //

��

N(C)

��
N(τ(X))

∼= // N(τ(N(C))
(whose horizontal arrows are induced by an isomorphism between X and an object in the image of N) so that the left
is an isomorphism as well; hence if X is in the essential image of N then X → N(τ(X)) is an isomorphism
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induced by the restrictions to ri : Λin ↪→ ∆[n] for the vertical arrows and composition with the
canonical unit map u : X → N(τ(X)) for the horizontal ones.

To prove that X is in the essential image of N it is enough to prove that u : X → N(τ(X)) is an
isomorphism.

The diagram tells that if u is an isomorphism then to and to prove that the left vertical arrow
is an isomorphism is equivalent to proving that the right one is an isomorphism. Conversely, assume
the right one is an isomorphism and further assume that HomsSet(∆[n], X) → HomsSet(Λ

n
i , X) is an

isomorphism for any 0 < i < n and n ≥ 2., then all vertical arrows in the diagram are isomorphisms.
Let us prove that u is an isomorphism. As we have seen in the previous question it is the same as saying
as the u∗ : HomsSet(∆[n], X)→ HomsSet(∆[n], N(τ(X))) is an isomorphism. By commutativity of the
diagram and since all vertical maps are equivalences, it is equivalent to proving that HomsSet(Λ

i
n, X)→

HomsSet(Λ
i
n, N(τ(X)) is an isomorphism.

By our direct description of N and τ in questions 1 and 5, we have that u is an isomorphism in
degree 0 and 1. Now, assume the result un : Xn → N(τ(X))n has been proven for n ≥ 1 and let us
prove it for n + 1. Since u is an isomorphism in degree ≤ n Λin has no non-degenerate simplices in
degree n and above, it implies that u∗ : HomsSet(Λ

i
n, X)→ HomsSet(Λ

i
n, N(τ(X))) is an isomorphism.

Hence by the above argument it is also the case for u∗ : HomsSet(∆[n], X)→ HomsSet(∆[n], N(τ(X)))
which concludes by induction. since .

So that we are left to show that the canonical map τ(Λin) → τ(∆[n]) = [n] is an isomorphism
of categories for n ≥ 2. For n = 2 the only possibility is Λ1

2 which is isomorphic as a simplicial set
to I2 and we have already seen that τ(I2) → τ(∆[2]) is an isomorphism. Notice that Sk2(∂∆[n]) '
Sk2(Skn−1(∆[n])) ' Sk2(∆[n]). Let us show that τ(Λin))→ τ(∂∆[n])) is an isomorphism of categories
for n > 3. This follows because ∂∆[n] can be obtained from Λin, for any i and n, as a pushout diagram
where we attach the missing n-1-simplex non-degenerated

∂∆[n− 1] //

��

Λin

��
∆[n− 1] // ∂∆[n]

If n ≥ 4 then we know by the exercise 2.3 that τ applied to the left vertical map is an isomorphism
of categories. As τ preserves pullbacks, we deduce that τ(Λin)) → τ(∂∆[n])) is an isomorphism of
categories for n ≥ 4. Finally, for n = 3 one can show τ(Sk2(Λi3)) ' τ(Sk2(∆[3])) = [3] directly. These
arguments work for all 0 ≤ i ≤ n

3. In view of the previous question we have that if X satisfies the lifting properties, then it is in
the essential image of the nerve of a category C; and we can further take C to be τ(X) and in fact
X → N(τ(X)) is an isomorphism so that N(τ(X)) has the same lifting properties as X. We are left
to prove that the additional lifting properties implies that all morphisms in the category τ(X) are

invertible. This is check by looking at the degree 1 of the nerve. Consider an arrow x
f→ y in τ(X)

and let φf : Λ2
2 → N(τ(X)) defined by sending {0, 1} onto f (seen as a 1-simplex of N(τ(X))) and

{0, 2} onto s0(x) = idx (by question 5). The lifting property yields a 2-simplex σ ∈ N(τ(X))2 such
that d2(σ) = f , d1(σ) = idx hence d0(σ) ◦ f = idx and f has a left inverse. Using the horn Λ0

2 we
obtain similarly a right inverse of f . Hence f is invertible as claimed and τ(X) is a groupoid.

Conversely, assume C is a groupoid. Then we claim that N(C) has all the lifting properties. By the
previous question we have seen that τ(Λin)→ τ(∆[n]) is an isomorphism for n ≥ 3 which proved that
the vertical maps in the commutative diagram where isomorphisms, hence the lifting properties and
further have checked the lifting property for Λ1

2. The only remaining parts are Λ0
2 and Λ2

2 but e have
just seen how to use the inversibility of maps to provide the liftings.

Exercice 5 (Classifying space). Let G be a group and let G be the category with one object, whose
endomorphisms are given by G.
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1. Verify that G is a category and describe the n-simplices of its nerve NG.

2. Show that NG is a Kan complex.

3. Let EG be the category whose objects are the elements of G and with a unique morphism between
every two objects. Show that EG is well-defined and describe the n-simplices of its nerve.

4. Show that there exists a functor φ : EG → G sending a morphism g → g′ to g′ · g−1 ∈ EndG(∗).

5. Prove that the induced morphism of simplicial sets Nφ : NEG → NG is a Kan fibration.

6. Show that NEG is contractible. Deduce the homotopy type of NG.

Exercice 6 (Universal Property of Presheaves of Sets). Let C be a small category. We denote by
P(C) the category of functors Cop → Set with natural transformations as morphisms. Objects in this
category are called presheaves (of sets) over C. We have a canonical way to go from C to P(C), namely,
to each object X ∈ C we assign the functor h(X) := HomC(−, X) : Cop → Set. We let h denote this
functor.

1. Let F : Cop → Set be a presheaf over C and let X ∈ C. Given a natural transformation u :
h(X) → F we can produce an element in F (X) as follows: evaluating both h(X) and F at the
object X, u induces a map uX : h(X)(X) := HomC(X,X) → F (X). We consider the element
uX(IdX) ∈ F (X). Show that the assignment HomP(C)(h(X), F )→ F (X) given by u 7→ uX(IdX)
is an isomorphism of sets. Use this to deduce that h is fully faithful. 4

2. Show that P(C) admits all small colimits. (Hint: Construct the colimits objectwise.)

3. Let F ∈ P(C) and denote by C/F the full subcategory of objects over F in P(C) whose source
is of the form h(X) for some X ∈ C. Consider the diagram C/F → P(C) sending (h(X) → F )
to h(X). Show that the canonical arrow

colim
u:h(X)→F

h(X) −→ F

is an isomorphism in P(C) 5. In other words, every presheaf F is the colimit of all representable
presheaves defined over F .

4. Show that h has the following universal property: for any functor Φ : C → D whereD is a category
which admits all small colimits, there exists a unique functor (up to canonical equivalence of
categories) Φ̃ : P(C)→ D which commutes with small colimits and makes the following diagram
commute up to natural isomorphism

C D

P(C)

Φ

h
Φ̃

In other words, P(C) is the universal way to complete C with all small colimits.

5. Check that the previous universal property can be reformulated as follows: if D is a category
having all small colimits, then composition with h induces an equivalence of categories

FunL(P(C),D) ' Fun(C,D)

where FunL(P(C),D) is by definition the full subcategory of Fun(P(C),D) spanned by all functors
which commute with colimits.

4h is also called the Yoneda functor.
5This is a small colimit because the indexing category is small as by hypothesis C is small.
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6. Show that in the context of the previous question, the functor Φ̃ always admits a right adjoint.

7. Let F be a presheaf over C. Show that the category of presheaves over the comma category of
representables over F is equivalent to the category of all presheaves over F , that is,

P(C/F ) ' P(C)/F.

8. Use the conclusion of this exercise to show that in order to produce an adjunction

F : sSet D : G

where D is a category having all small colimits, it is enough to give a functor ∆→ D (also called
a cosimplicial object in D). Observe that the following examples arise in this way:

• (| − | a Sing): the geometric realization of simplicial sets and the singular chain functors,

• (τ a N): the truncation (or categorical realization) and the nerve of categories,

• (C a N): the rigidification functor and the homotopy-coherent nerve of simplicial categories.
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