Gabriel-Zisman localization and Model structures

Exercice 1 (Model structures on the category of sets). Let Sets denote the category of sets. Show that (Sets, W = bijections, Fib = All, Cof = All) determines a model structure.

In fact, there are precisely nine model structures in the category of sets. See link.

Exercice 2 (Whitehead Theorem for model categories). The goal is to prove that in a model category C, if X, Y are both fibrant and cofibrant objects, then a map $f: X \to Y$ is a weak equivalence if and only if it is an homotopy equivalence.

- 1. Let $f \stackrel{l}{\sim} g$ be left homotopic. Show that f is a weak equivalence if and only if g is a weak equivalence.
- 2. Let $i: X \xrightarrow{\sim} C$ be an acyclic cofibration where X is both fibrant and cofibrant and C is fibrant. Prove that there is a retraction r of i and then show that r is an homotopy inverse of i.
- 3. Deduce from the previous question that a weak equivalence between fibrant and cofibrant objects is an homotopy equivalence.
- 4. Let $f: X \to Y$ be an homotopy equivalence between fibrant and cofibrant objects, and let $f: X \stackrel{i}{\hookrightarrow} C \stackrel{p}{\twoheadrightarrow} Y$ be a factorization where the first map is an acyclic cofibration.
 - (a) Prove that C is both fibrant and cofibrant and that if g is an homotopy inverse of f, with left homotopy $H: C' \to Y$ between id_Y and $f \circ g$, there is a lift $H': C' \to C$ such that $p \circ H' = H$ and $H' \circ i_0 = i \circ g$.
 - (b) Deduce that $H' \circ i_1 \circ p$ is homotopical to id_C (one can note that i has an homotopy inverse) and then that it is a weak equivalence.
 - (c) Prove that p is a retract of a weak equivalence and then conclude.

Exercice 3 (Gabriel-Zisman localization). Let \mathcal{C} be a small category and \mathcal{W} a subset of the set of morphisms in Fun (I,\mathcal{C}) where I is the category with two objects 0 and 1 and a unique non-trivial morphism $0 \to 1$. A localization of \mathcal{C} with respect to \mathcal{W} is a functor

$$l: \mathcal{C} \to \mathcal{C}[\mathcal{W}^{-1}]$$

satisfying the following universal property: For any category \mathcal{D} , composition with l:

$$\operatorname{Fun}(\mathcal{C}[\mathcal{W}^{-1}], \mathcal{D}) \to \operatorname{Fun}(\mathcal{C}, D)$$

is a fully faithful functor and its essential image consists of those functors $\mathcal{C} \to \mathcal{D}$ sending \mathcal{W} to isomorphisms. In other words, l, if it exists if the universal functor sending \mathcal{W} to isomorphisms.

- 1. Check that $\mathcal{C}[\mathcal{W}^{-1}]$, if it exists, is unique up to canonical equivalences of categories.
- 2. Show that when \mathcal{C} is the category with a single object * and a monoid M of endomorphisms, and $\mathcal{W} = M$ then $\mathcal{C}[\mathcal{W}^{-1}]$ is equivalent to the category with one object * and M^+ as endomorphisms, with M^+ the group completion of M.

Exercice 4. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor having a right adjoint $G: \mathcal{D} \to \mathcal{C}^1$. Let \mathcal{W} denote the collection of morphisms f in \mathcal{C} such that F(f) is an isomorphism in \mathcal{D} . Show that the following are equivalent:

 $^{^{1}\}mathcal{D}$ is said to be a reflexive subcategory of $\mathcal{C}.$

- 1. *G* is fully faithful;
- 2. The natural transformation $F \circ G \to Id_{\mathcal{D}}$ is an isomorphism;
- 3. The natural functor $\mathcal{C}[\mathcal{W}^{-1}] \to \mathcal{D}$ is an equivalence of categories.

Exercice 5. Let $L: \mathcal{C} \to \mathcal{C}$ be a functor and denote by $L\mathcal{C} \subseteq \mathcal{C}$ its essential image. Show that the following are equivalent:

- 1. There exists a functor $F: \mathcal{C} \to \mathcal{D}$ with a fully faithful right adjoint $G: \mathcal{D} \to \mathcal{C}$ and a natural isomorphism between $G \circ F$ and L;
- 2. When regarded as a functor $\mathcal{C} \to L\mathcal{C}$, L is a left adjoint to the inclusion $L\mathcal{C} \subseteq \mathcal{C}$;
- 3. There exists a natural transformation $\alpha: Id_{\mathcal{C}} \to L$ such that for each object $X \in \mathcal{C}$, the natural morphisms $L(\alpha_X)$ and $\alpha_{L(X)}$ are isomorphisms.

Exercice 6. Let $C = \text{Mod}_{\mathbb{Z}}$ be the category of abelian groups.

- 1. (Localization at a single prime) Let p be a prime. Show that the base change functor $-\otimes_{\mathbb{Z}}\mathbb{Z}[\frac{1}{p}]$: $\operatorname{Mod}_{\mathbb{Z}} \to \operatorname{Mod}_{\mathbb{Z}[\frac{1}{p}]}$ is a localization functor along the class \mathcal{W} of all maps of abelian groups $f: X \to Y$ such that both $\operatorname{Ker} f$ and $\operatorname{coker} f$ are p-torsion groups. (Hint: Use the flatness of $\mathbb{Z}[\frac{1}{p}]$ over \mathbb{Z} .)
- 2. Show that the map $\mathbb{Q} \to \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ sending $q \mapsto q \otimes 1$ is an isomorphism. Use this and the Exercice 3 to show that the category of \mathbb{Q} vector spaces is a localization of the category of abelian groups.

These examples are really important as we will see later when studying rational homotopy theory.

Exercice 7. Check that $C[W^{-1}]$ exists, given by the following pushout in Cat (the category of small categories):

$$\coprod_{f \in \mathcal{W}} I \longrightarrow \mathcal{C}$$

$$\downarrow l$$

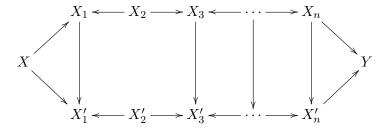
$$\coprod_{f \in \mathcal{W}} J \longrightarrow \mathcal{C}[\mathcal{W}^{-1}]$$

where J is the category with two objects 0 and 1 and unique morphism $0 \to 1$ which is an isomorphism.²

Exercice 8 (Explicit description). In this exercice we review an explicit model for the Gabriel-Zisman localization. Given the pair $(\mathcal{C}, \mathcal{W})$ we construct a new category \mathcal{D} as follows: the objects are the objects of \mathcal{C} , morphims from X to Y are given by strings of the form

$$X \to X_1 \leftarrow X_2 \to X_3 \leftarrow \dots \to X_n \to Y$$

where all arrows going to the left are in W, submitted to the following equivalence relation: two strings are equivalent if there exists a commutative diagram



where the vertical arrows are in W. Composition is given by concatenation of strings. Show that this equivalence relation is well-defined and that \mathcal{D} , together with the canonical functor $\mathcal{C} \to \mathcal{D}$ sending $X \mapsto X$ and $(f: X \to Y) \mapsto X \to Y = Y$ is a localization of \mathcal{C} along W.

²Why do pushouts in Cat exist?

Exercice 9. In this exercice we check that the construction of the previous exercice can be simplified whenever W satisfies some additional properties. Suppose that:

- 1. W is stable under compositions;
- 2. For any diagram

$$X'$$

$$\downarrow s \\
X \longrightarrow Y$$

with $s \in \mathcal{W}$, there exists a way to complete this diagram in a commutative diagram

$$X' \xrightarrow{g} Y'$$

$$\downarrow s \qquad \downarrow t \qquad \downarrow t$$

with $t \in \mathcal{W}$.

3. Given $f, g: X \to Y$, if there exists $s \in \mathcal{W}$ such that $f \circ s = g \circ s$ then there exists $t: Y \to Z$ such that $t \in \mathcal{W}$ and $t \circ f = t \circ g$.

In this case W is said to be a calculus of (right) fractions. Under these hypothesis we consider for each $X \in \mathcal{C}$ the category $W_{X/.}$ whose objects are morphisms $s: X \to X'$ with $s \in W$ and morphisms are commutative triangles over X. Assume that W forms a calculus of fractions. Show that:

- 1. For each $X \in \mathcal{C}$, $\mathcal{W}_{X/.}$ is a filtered category.
- 2. The category $\mathcal{C}_{\mathcal{W}}$ whose objects are given by the objects of \mathcal{C} , hom-sets $Hom_{\mathcal{C}_{\mathcal{W}}}(X,Y)$ are given by $\operatorname{colim}_{u:Y\to Y'\in\mathcal{W}_{Y/.}}Hom_{\mathcal{C}}(X,Y')$ and compositions are induced from compositions in \mathcal{C} , is well-defined.

In other words, morphisms in $\mathcal{C}_{\mathcal{W}}$ between X and Y are given by equivalence classes of strings of length one

$$X \to Y' \leftarrow Y$$

where the left arrow belongs to W. This simplifies the general explicit description given in (6).

3. Show that the canonical functor $Q: \mathcal{C} \to \mathcal{C}_{\mathcal{W}}$ induced by the identity on objects and by the canonical map

$$Hom_{\mathcal{C}}(X,Y) \to \operatorname{colim}_{u:Y \to Y' \in \mathcal{W}_{Y'}} Hom_{\mathcal{C}}(X,Y')$$

on morphisms, is well-defined;

4. Show that if $s: X \to X'$ is a map in \mathcal{W} and Y is an object in \mathcal{C} then the composition map $-\circ s$

$$Hom_{\mathcal{C}_{\mathcal{W}}}(X',Y) \to Hom_{\mathcal{C}_{\mathcal{W}}}(X,Y)$$

is a bijection. Conclude that Q sends \mathcal{W} to isomorphisms.

- 5. Show that Q is a localization of \mathcal{C} along \mathcal{W} .
- 6. Show that if \mathcal{C} is an additive category and \mathcal{W} is a calculus of fractions then the localization functor Q preserves finite colimits and $\mathcal{C}[\mathcal{W}^{-1}]$ is also additive.

3

Exercice 10. The following generalizes the exercice (4): Let \mathcal{C} be an abelian category and let $\mathcal{D} \subseteq \mathcal{C}$ be a thick subcategory, ie, a full subcategory such that for each exact sequence

$$0 \rightarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow 0$$

in \mathcal{C} , X_2 is in \mathcal{D} if and only if X_1 and X_3 are in \mathcal{D} . Let \mathcal{W} denote the collection of morphisms f in \mathcal{C} such that Kerf and cokerf are in \mathcal{D} . Show that \mathcal{W} admits a calculus of fractions and that $\mathcal{C}[\mathcal{W}^{-1}]$ is equivalent to the pushout \mathcal{C}/\mathcal{D} in Cat given by

Exercice 11 (The canonical model structure in Cat). Let Cat denote the 1-category of small categories and morphisms given by functors between them. Let W be the collection of functors which are equivalences of categories.

- 1. Show that the Gabriel-Zisman localization $Cat[\mathcal{W}^{-1}]$ is equivalent to the category whose objects are small categories and morphisms are isomorphism classes of functors.
- 2. A functor $F: \mathcal{C} \to \mathcal{D}$ between small categories is said to be an isofibration if for every object $c \in \mathcal{C}$ and every isomorphism $f: F(c) \to d$ in \mathcal{D} , there exists an object $c' \in \mathcal{C}$ and an isomorphism $u: c \to c'$ such that d = F(c') and f = F(u). Show that an isofibration that is an equivalence of categories is surjective on objects. Conversely, show that if a functor F is fully faithful and surjective on objects then it is an isofibration.
- 3. A functor $F: \mathcal{C} \to \mathcal{D}$ is said to be a cofibration if it is injective on objects. Let Fib denote the collection of all isofibrations and Cof the class of cofibrations. Show that $(Cat, \mathcal{W}, Fib, Cof)$ is a model structure and identify its fibrant-cofibrant objects.