
G. Ginot, H. Pourcelot - Intro. à l’homotopie M2- Paris 13 - Paris 6 2018-2019

Gabriel-Zisman localization and Model structures

Exercice 1 (Model structures on the category of sets). Let Sets denote the category of sets. Show
that (Sets,W = bijections,Fib = All,Cof = All) determines a model structure.

In fact, there are precisely nine model structures in the category of sets. See link.

Exercice 2 (Whitehead Theorem for model categories). The goal is to prove that in a model category
C, if X, Y are both fibrant and cofibrant objects, then a map f : X → Y is a weak equivalence if and
only if it is an homotopy equivalence.

1. Letf
l∼ g be left homotopic. Show that f is a weak equivalence if and only if g is a weak

equivalence.

2. Let i : X
∼
↪→ C be an acyclic cofibration where X is both fibrant and cofibrant and C is fibrant.

Prove that there is a retraction r of i and then show that r is an homotopy inverse of i.

3. Deduce from the previous question that a weak equivalence between fibrant and cofibrant objects
is an homotopy equivalence.

4. Let f : X → Y be an homotopy equivalence between fibrant and cofibrant objects, and let

f : X
i
↪→
∼
C

p
� Y be a factorization where the first map is an acyclic cofibration.

(a) Prove that C is both fibrant and cofibrant and that if g is an homotopy inverse of f , with
left homotopy H : C ′ → Y between idY and f ◦ g, there is a lift H ′ : C ′ → C such that
p ◦H ′ = H and H ′ ◦ i0 = i ◦ g.

(b) Deduce that H ′ ◦ i1 ◦p is homotopical to idC (one can note that i has an homotopy inverse)
and then that it is a weak equivalence.

(c) Prove that p is a retract of a weak equivalence and then conclude.

Exercice 3 (Gabriel-Zisman localization). Let C be a small category and W a subset of the set of
morphisms in Fun(I, C) where I is the category with two objects 0 and 1 and a unique non-trivial
morphism 0→ 1. A localization of C with respect to W is a functor

l : C → C[W−1]

satisfying the following universal property: For any category D, composition with l:

Fun(C[W−1],D)→ Fun(C, D)

is a fully faithful functor and its essential image consists of those functors C → D sending W to
isomorphisms. In other words, l, if it exists if the universal functor sending W to isomorphisms.

1. Check that C[W−1], if it exists, is unique up to canonical equivalences of categories.

2. Show that when C is the category with a single object ∗ and a monoid M of endomorphisms, and
W = M then C[W−1] is equivalent to the category with one object ∗ and M+ as endomorphisms,
with M+ the group completion of M .

Exercice 4. Let F : C → D be a functor having a right adjoint G : D → C1. Let W denote the
collection of morphisms f in C such that F (f) is an isomorphism in D. Show that the following are
equivalent:

1D is said to be a reflexive subcategory of C.
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1. G is fully faithful;

2. The natural transformation F ◦G→ IdD is an isomorphism;

3. The natural functor C[W−1]→ D is an equivalence of categories.

Exercice 5. Let L : C → C be a functor and denote by LC ⊆ C its essential image. Show that the
following are equivalent:

1. There exists a functor F : C → D with a fully faithful right adjoint G : D → C and a natural
isomorphism between G ◦ F and L;

2. When regarded as a functor C → LC, L is a left adjoint to the inclusion LC ⊆ C;

3. There exists a natural transformation α : IdC → L such that for each object X ∈ C, the natural
morphisms L(αX) and αL(X) are isomorphisms.

Exercice 6. Let C = ModZ be the category of abelian groups.

1. (Localization at a single prime) Let p be a prime. Show that the base change functor −⊗ZZ[1p ] :
ModZ → ModZ[ 1

p
] is a localization functor along the class W of all maps of abelian groups

f : X → Y such that both Kerf and cokerf are p-torsion groups. (Hint: Use the flatness of Z[1p ]
over Z.)

2. Show that the map Q→ Q⊗ZQ sending q 7→ q⊗1 is an isomorphism. Use this and the Exercice
3 to show that the category of Q vector spaces is a localization of the category of abelian groups.

These examples are really important as we will see later when studying rational homotopy theory.

Exercice 7. Check that C[W−1] exists, given by the following pushout in Cat (the category of small
categories): ∐

f∈W I //

��

C

l
��∐

f∈W J // C[W−1]

where J is the category with two objects 0 and 1 and unique morphism 0→ 1 which is an isomorphism.2

Exercice 8 (Explicit descripition). In this exercice we review an explicit model for the Gabriel-
Zisman localization. Given the pair (C,W) we construct a new category D as follows: the objects are
the objects of C, morphims from X to Y are given by strings of the form

X → X1 ← X2 → X3 ← ...→ Xn → Y

where all arrows going to the left are inW, submitted to the following equivalence relation: two strings
are equivalent if there exists a commutative diagram

X1

��

X2
oo // X3

��

· · ·oo

��

// Xn

��

  
X

>>

  

Y

X ′1 X ′2
oo // X ′3 · · ·oo // X ′n

>>

where the vertical arrows are in W. Composition is given by concatenation of strings. Show that this
equivalence relation is well-defined and that D, together with the canonical functor C → D sending
X 7→ X and (f : X → Y ) 7→ X → Y = Y is a localization of C along W.

2Why do pushouts in Cat exist?
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Exercice 9. In this exercice we check that the construction of the the previous exercice can be
simplified whenever W satisfies some additional properties. Suppose that:

1. W is stable under compositions;

2. For any diagram

X ′

X
f //

s

OO

Y

with s ∈ W, there exists a way to complete this diagram in a commutative diagram

X ′
g // Y ′

X
f //

s

OO

Y

t

OO

with t ∈ W.

3. Given f, g : X → Y , if there exists s ∈ W such that f ◦ s = g ◦ s then there exists t : Y → Z
such that t ∈ W and t ◦ f = t ◦ g.

In this caseW is said to be a calculus of (right) fractions. Under these hypothesis we consider for each
X ∈ C the category WX/. whose objects are morphisms s : X → X ′ with s ∈ W and morphisms are
commutative triangles over X. Assume that W forms a calculus of fractions. Show that:

1. For each X ∈ C, WX/. is a filtered category.

2. The category CW whose objects are given by the objects of C, hom-sets HomCW (X,Y ) are
given by colimu:Y→Y ′∈WY/.

HomC(X,Y
′) and compositions are induced from compositions in C,

is well-defined.

In other words, morphisms in CW between X and Y are given by equivalence classes of strings
of lenght one

X → Y ′ ← Y

where the left arrow belongs to W. This simplifies the general explicit description given in (6).

3. Show that the canonical functor Q : C → CW induced by the identity on objects and by the
canonical map

HomC(X,Y )→ colimu:Y→Y ′∈WY/.
HomC(X,Y

′)

on morphisms, is well-defined;

4. Show that if s : X → X ′ is a map in W and Y is an object in C then the composition map −◦ s

HomCW (X ′, Y )→ HomCW (X,Y )

is a bijection. Conclude that Q sends W to isomorphisms.

5. Show that Q is a localization of C along W.

6. Show that if C is an additive category and W is a calculus of fractions then the localization
functor Q preserves finite colimits and C[W−1] is also additive.
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Exercice 10. The following generalizes the exercice (4): Let C be an abelian category and let D ⊆ C
be a thick subcategory, ie, a full subcategory such that for each exact sequence

0→ X1 → X2 → X3 → 0

in C, X2 is in D if and only if X1 and X3 are in D. Let W denote the colllection of morphisms f in C
such that Kerf and cokerf are in D. Show that W admits a calculus of fractions and that C[W−1] is
equivalent to the pushout C/D in Cat given by

D

��

// C

��
0 // C/D

Exercice 11 (The canonical model structure in Cat). Let Cat denote the 1-category of small cate-
gories and morphisms given by functors between them. Let W be the collection of functors which are
equivalences of categories.

1. Show that the Gabriel-Zisman localization Cat[W−1] is equivalent to the category whose objects
are small categories and morphisms are isomorphism classes of functors.

2. A functor F : C → D between small categories is said to be an isofibration if for every object
c ∈ C and every isomorphism f : F (c)→ d in D, there exists an object c′ ∈ C and an isomorphism
u : c → c′ such that d = F (c′) and f = F (u). Show that an isofibration that is an equivalence
of categories is surjective on objects. Conversely, show that if a functor F is fully faithful and
surjective on objects then it is an isofibration.

3. A functor F : C → D is said to be a cofibration if it is injective on objects. Let Fib denote the
collection of all isofibrations and Cof the class of cofibrations. Show that (Cat,W,Fib,Cof) is a
model structure and identify its fibrant-cofibrant objects.

4


