G. Ginot, H. Pourcelot - Intro. à l'homotopie

DERIVED FUNCTORS AND HOMOTOPY COLIMITS

- **Exercice 1** (Composition of Derived Functors). 1. Let $F_1 : \mathcal{C}_1 \to \mathcal{C}_2$ and $F_2 : \mathcal{C}_2 \to \mathcal{C}_3$ be functors and let \mathcal{W}_i be a class of morphisms in \mathcal{C}_i . Assuming all the relevant total left derived functors exist, use their universal properties to construct a natural transformation $\mathbb{L}F_2 \circ \mathbb{L}F_1 \to \mathbb{L}(F_2 \circ F_1)$.
 - 2. Suppose now that C_1, C_2 and C_3 are model categories and that F_1 and F_2 are left Quillen functors. Show that all derived functors exist and the natural transformation of the previous exercise is a natural isomorphism.

Exercice 2 (Homotopy colimits). In this exercise, we first deal with generalities on homotopy pushouts and then specialize to chain complexes with the projective model structure. Let C be a model category and let I be the category given by the diagram-shape

$$\begin{array}{c} b \longrightarrow c \\ \downarrow \\ a \end{array}$$

1. Let $f: X \to Y$ be a natural transformation of diagrams $X, Y \in Fun(I, C)$. Show that f has the left lifting property with respect to all projective acyclic fibrations if and only if the the natural maps

$$X(a) \coprod_{X(b)} Y(b) \to Y(a), \quad X(b) \to Y(b), \quad X(c) \coprod_{X(b)} Y(b) \to Y(c)$$

are cofibrations in C. (Here we mean the usual pushouts in C.)

Deduce that a diagram $Y: I \to \mathcal{C}$ is cofibrant if and only if Y(b) is cofibrant in \mathcal{C} and the maps $Y(a) \to Y(b)$ and $Y(a) \to Y(c)$ are cofibrations. Moreover, show that $X \to Y$ has the left lifting property with respect to projective fibrations if and only the above three maps are acyclic cofibrations.

- 2. Show that the category of diagrams $\operatorname{Fun}(I, \mathcal{C})$ admits the projective model structure (without using the result seen in class that such a structure exists since I is very small).
- 3. Show that the colimit functor colim: $\operatorname{Fun}(I, \mathcal{C}) \to \mathcal{C}$ is a left Quillen functor.
- 4. Assume that C is left proper (i.e. weak equivalences are stable under pushouts along cofibrations). Show that any pushout diagram

$$\begin{array}{ccc} B & & \stackrel{f}{\longrightarrow} & C \\ \downarrow & & \downarrow \\ A & \longrightarrow & A \bigsqcup_B C \end{array}$$

where $f: B \longrightarrow C$ a cofibration, is also a homotopy pushout diagram.

5. Case of Topological spaces. Assume now that C = Top.

(a) Using that **Top** is proper (as seen in exercise 3. from the sheet on Quillen model structure), show that there is a canonical isomorphism

$$\mathbb{L}\operatorname{colim}(X \leftarrow A \to Y) \cong X \coprod_A^h Y = X \coprod_{A \times \{0\}} \operatorname{Cyl}(A \to Y)$$

in Ho(Top) between the homotopy pushout computed by the projective model structure and the formula given by the mapping cylinder.

- (b) Give a formula for computing the homotopy colimit of a tower $(X_0 \to X_1 \to X_2 \to ...)$ as well as the homotopy limit of a tower $(\dots \to Y_2 \to Y_1 \to Y_0)$.
- 6. Case of chain complexes. Assume now that C is the model category of chain complexes over a ring R.
 - (a) Show that \mathcal{C} is left proper.
 - (b) Let g: A → B be a map of chain complexes. Recall that the mapping cone of g, denoted C(g), is the chain complex given in level n by B_n⊕A_{n-1} and whose differential B_{n+1}⊕A_n → B_n ⊕ A_{n-1} is given (b, a) → (∂_B(b) + g(a), -∂_A(a)). Let I denote the chain complex given by R ⊕ R in degree 0 and R in degree 1 with differential given by ∂_R : R → R ⊕ R given by r → (-r, r). We define the mapping cylinder of g, denoted Cyl(g), as the pushout in chain complexes of

where the vertical arrow $A \to I \otimes A$ is induced by the inclusion $i_0 : R \to I$ corresponding to the inclusion of the second factor $R \hookrightarrow R \oplus R$ in degree 0. The differential on $I \otimes A$ is given by $r \otimes a \mapsto \partial_R(x) \otimes a + (-1)^{\deg(r)} r \otimes \partial_A(a)$. Show that the mapping cone of g is the pushout of

- (c) Let Δ^1 be the category with two objects and one non trivial morphism in between them. Show that the construction of the mapping cone defines a functor C: Fun $(\Delta^1, Ch(R)) \rightarrow Ch(R)$ sending natural transformations objectwise given by quasi-isomorphisms to quasi-isomorphisms.
- (d) Let $Y := (0 \leftarrow A \xrightarrow{g} B)$ be a diagram in \mathcal{C} . Show that there exists a diagram of the form $Y' := (0 \leftarrow A' \xrightarrow{g'} B')$ with g' a cofibration and A' and B' cofibrant, together with a natural transformation $u : Y' \to Y$ which is objectwise a weak-equivalence. Notice that by the previous question the induced map $C(g') \to C(g)$ is a weak-equivalence.
- (e) Let $Y := (0 \longleftarrow A \xrightarrow{g} B)$ be a diagram in \mathcal{C} with A and B cofibrant and g a cofibration. Show that $A \to A \otimes \Delta^1$ is a weak-equivalence and show that we can construct a zigzag of diagrams $Y \leftarrow Y' \to Y''$ of the form

where each vertical arrow is a weak-equivalence and the map $I \otimes A \to Cyl(g)$ is a cofibration.

(f) Let $Y := (0 \leftarrow A \xrightarrow{g} B)$ be any diagram. Conclude that the mapping cone C(g) is a model for the homotopy colimit of the diagram Y.

Exercice 3 (Bad behavior of Gabriel-Zisman Localization). Let A be a ring and let D(A) := Ho(Ch(A)) denote the derived category of A; it is the Gabriel-Zisman localization of the category Ch(A) of chain complexes in A along quasi-isomorphisms of complexes. We have seen in class that D(A) is the homotopy category of a model structure in Ch(A) with weak-equivalences given by quasi-isomorphisms and fibrations given by levelwise surjections.

1. Show that if E and H are two A-modules seen as complexes concentrated in degree zero, then

$$\operatorname{Hom}_{D(A)}(E, H[n]) \simeq \operatorname{Ext}_{A}^{n}(E, H).$$

- 2. Show that if A is a field, then D(A) is an abelian category¹, equivalent to the category $A^{\mathbb{Z}}$ of \mathbb{Z} -graded A-vector spaces.
- 3. Show that D(A[X]) does not admit colimits in general. (*Hint*: take a non-trivial element $f: A \to A[1]$ and show that if it has a kernel to get a contradiction.)
- 4. Let A be a field and let I be the category with one object and \mathbb{N} as endomorphisms. Show that $\operatorname{Fun}(I, D(A))$ is not equivalent to $D(\operatorname{Fun}(I, \operatorname{Ch}(A)))$. The conclusion is that the theory of diagrams does not interact well with derived categories.

Exercice 4. Let Top_* be the category of *pointed* topological spaces and $U : \operatorname{Top}_* \to \operatorname{Top}$ be the functor forgetting the base point.

- 1. Prove that U is a right adjoint and compute its left adjoint.
- 2. We endow **Top** with Quillen model structure. Find a model structure on **Top**_{*} such that U is right Quillen.
- 3. Generalize the previous construction to any model category \mathcal{C} .

¹see links to homological algebra exercises on the web page, if you are not familiar with this.