Examen: Introduction aux surfaces de Riemann

- 1. Calculer le genre de la surface de Riemann définie par le polynôme $z^n + w^n 1$.
- 2. Soit $\{p_1, p_2, p_3\}$ trois points distincts deux à deux dans $\mathbb{C}P^1$. Montrer que si $\{q_1, q_2, q_3\}$ sont aussi distincts deux à deux, il existe un automorphisme $\varphi : \mathbb{C}P^1 \to \mathbb{C}P^1$ tel que $\varphi(p_i) = q_i$.
- 3. Soit X une surface de Riemann compacte et $\varphi: X \to X$ holomorphe non-ramifiée. Montrer que φ est un biholomorphisme ou X est de genre 1. Donner un exemple dans lequel φ n'est pas un automorphisme.
- 4. Soit $d_{\lambda}(z) = \lambda z$, avec $\lambda > 0$, agissant sur le demi-plan de Poincaré H. Déterminer un domaine fondamental pour le groupe Γ engendré par d_{λ} . Déterminer le quotient H/Γ . Calculer la longueur de la géodésique férmée dans le quotient.
- 5. En utilisant Riemann-Roch, montrer que, sur une surface de Riemann compacte de genre g, il existe une fonction méromorphe avec un seul pôle d'ordre au plus g+1. Montrer que si le genre est ≥ 1 , l'ordre du pôle ne peut pas être 1 et donner un exemple de fonction méromorphe avec un seul pôle d'ordre 2 quand le genre est 1.
- 6. Montrer que, pour tout point p sur une surface de Riemann compacte X de genre $g \geq 1$, il existe une forme holomorphe $\omega \in \Omega(X)$ avec $\omega(p) \neq 0$. Pour une surface de genre 1, montrer qu'il existe une forme holomorphe non-nulle en tout point.
- 7. On défini le fibré holomorphe Q de différentielles quadratiques comme le fibré dont les fonctions de transitions sont

$$g_{ij} = \left(\frac{dz_j}{dz_i}\right)^2.$$

- (a) Montrer qu'on obtient ces fonctions de transition pour le fibré dont les sections holomorphes sont, localement, de la forme $f(z)(dz)^2$, avec f(z) holomorphe.
- (b) Si K est un diviseur associé au fibré canonique, trouver un diviseur D tel que Q = L(D) (Q est le fibré associé au diviseur D).
- (c) Trouver explicitement D tel que Q = L(D) sur $\mathbb{C}P^1$.
- (d) Calculer le degré deg Q.

- (e) Calculer la dimension $\dim h^0(D)$ de l'espace de sections holomorphes de Q sur une surface de Riemann compacte de genre g=0, g=1 et $g\geq 2$.
- 8. Une surface de Riemann X est dite hyperelliptique s'il existe $z:X\to \mathbb{C}P^1$ revêtement ramifié de degré deux (i.e., il existe une fonction méromorphe avec un seul pôle d'ordre 2 ou seulement deux pôles simples).
 - (a) Montrer que toute surface de genre un est hyperelliptique. Montrer que pour tout g > 1, il existe une surface de genre g hyperelliptique.
 - (b) Si X est hyperelliptique, quel est le nombre des points de ramifications (compter avec multiplicités) du revêtement ramifié de $\mathbb{C}P^1$ en fonction du genre de X?
 - (c) Montrer qu'une surface X est hyperelliptique si et seulement si il existe un diviseur $D \ge 0$ avec $\deg D = 2$ tel que $\dim h^0(D) \ge 2$.
 - (d) Si X est hyperelliptique, montrer qu'il existe une involution holomorphe $\tau: X \to X$ ($\tau^2 = Id$). Déterminer cette involution explicitement pour une surface de genre un.