QUELQUES EXERCICES POUR LE COURS DE TOPOLOGIE ALGÉBRIQUE ÉLÉMENTAIRE FEUILLE N°1: NOTION D'HOMOTOPIE, DEGRÉ ET INDICE DES LACETS.

Exercices élémentaires :

Ces exercices sont là pour vous aider à vérifier si vous avez (ou non...) assimilé le cours !

Sur l'homotopie, la contractibilité, les rétractes par déformation:

Exercice 1. (cônes, espaces des chemins, recollements . . .) Soit X un espace topologique et $f: X \to Y$ une application continue.

- 1. Le **cône sur** X est l'espace topologique quotient $C(X) := (X \times [0,1])/((x,1) \sim (y,1))$. Montrer que X s'identifie¹ à un sous-espace fermé de C(X) et que $X \mapsto C(X)$ est un foncteur dans la catégorie des espaces topologiques². Montrer que C(X) est contractile.
- 2. Soit X, Y deux espaces topologiques, A une partie non-vide de X et $f: A \to Y$, une application continue. Le **recollement de** X **sur** Y **par** f est l'espace topologique quotient

$$X \cup_f Y := (X \coprod Y)/(x \sim f(x), x \in A).$$

- (a) Donner un critère pour construire des applications continues $X \cup_f Y \to Z$ en fonctions d'applications continues $X \to Z$ et $Y \to Z$.
- (b) Montrer que si A est fermé, alors Y s'identifie à un sous-espace de $X \cup_f Y$. Si de plus X, Y sont compacts, montrer que $X \cup_f Y$ est compact.
- (c) (La sphère S^3 obtenue par un "collage" classique) Montrer que S^3 est obtenue en recollant deux "tores pleins" $D^2 \times S^1$ au moyen de l'application identique

$$D^2 \times S^1 \supset S^1 \times S^1 \to^{\operatorname{Id}} S^1 \times S^1 \subset S^1 \times D^2.$$

Indication: On identifiera S^3 au sous-ensemble de \mathbb{C}^2 défini par l'équation $|z_1|^2 + |z_2|^2 = 1$ et les tores pleins aux sous-ensembles définis par $|z_1| \leq |z_2|$ et $|z_1| \geq |z_2|$.

3. Soit $x \in X$ un point de X. On note $P_*X = \{f : [0,1] \to X, f(0) = x\}$ l'espace des chemins (issus de x) que muni de la topologie compacte-ouverte. Montrer que P_*X est contractile.

Exercice 2 (Un peu de rétraction par déformation). Configurations de 3 points distincts dans C

- 1. Montrer que $\mathbb{C} \setminus \{0,1\}$ se rétracte par déformation sur l'ensemble X formé de la réunion des cercles de centre 0 et 1 et de rayon 1/2 (ne pas oublier de faire un dessin !).
- 2. Montrer que $C_2 = \{(z_1, z_2) \in \mathbb{C}^2, z_1 \neq z_2\}$ se rétracte par déformation sur S^1 identifié à l'ensemble des couples (0, u) pour $u \in S^1$.
- 3. Montrer que $C_3 = \{(z_1, z_2, z_3) \in \mathbb{C}^3, \text{distincts}\}$ se rétracte par déformation sur $S^1 \times X$ identifié à l'ensemble des triplets (0, u, uv) pour $u \in S^1$ et $v \in X$.

Autour du degré et relèvement des angles

Exercice 3. (Additivité du degré)

Soient $f, g: S^1 \to S^1$ deux applications continues telles que f(1) = g(1) (on identifie S^1 avec $\{z \in \mathbb{C}, |z| = 1\}$. On définit deux "produits" de f et g:

- $fg: S^1 \to \mathbb{C} \setminus \{0\}$ est défini par (fg)(t) = f(t)g(t) pour tout $t \in S^1$, c'set à dire le produit ponctuel.
- $f \star g(t) = f(t^2)$ pour $\text{Im } t \geq 0$ et $f \star g(t) = g(t^2)$ pour $\text{Im } t \leq 0$ ("dessiner" ce produit et se convaincre qu'il ne s'agit que de la composition de lacets).

 $[\]overline{\ }^1 \text{c'est}$ à dire qu'il existe un homéomorphisme entre X et un sous-espace de C(X).

²uniquement pour ceux qui connaissent la notion de catégorie !

- 1. (une version du principe de Eckman-Hilton) Montrer que fg et $f \star g$ sont continues, homotopes mais distinctes en général (indication: penser à utiliser l'unité).
- 2. Montrer que $\deg(fg) = \deg(f \star g) = \deg(f) + \deg(g)$.

Exercice 4. (Calcul du degré)) Soit $f: S^1 \to \mathbb{C} \setminus \{0\}$ une application de classe C^1 et notons $g: \mathbb{R} \to \mathbb{C} \{0\}$ l'application définie par $g(\theta) = f(\exp(i\theta))$. Soit D le demi axe réel positif, c'est à dire la droite $D = \{z \in \mathbb{C}, \operatorname{Im} z = 0, \operatorname{Re} z > 0\}$. On suppose que pour tout $t \in S^1$ tel que $f(t) \in D$, f soit transverse à D à savoir que pour $\theta \in \mathbb{R}$ tel que $\exp(i\theta) = t$ on a $\operatorname{Im} g'(\theta) \neq 0$. On dira que f coupe D positivement ou négativement en f suivant le signe³ de $\operatorname{Im} g'(\theta)$ que l'on notera $\operatorname{sign}_t f$.

- 1. Montrer que l'ensemble $f^{-1}(D)$ est fini.
- 2. Soit t_1 et t_2 deux éléments de $f^{-1}(D)$ consécutifs sur le cercle. Notons $g_{t_1,t_2}: S^1 \to \mathbb{C} \setminus \{0\}$ un chemin fermé qui va de 1 à $f(t_1)$ dans D puis parcourt f entre t_1 et t_2 et revient à 1 dans D. Calculer son degré.
- 3. En déduire la formule: $\deg f = \sum_{t \in f^{-1}(D)} \operatorname{sign}_t f$.

Exercice 5. (Problème de croisement) Peut on joindre les coins opposés d'un carré par deux chemins continus (restant en dehors du carré) qui ne se rencontrent pas ?

Mathèmatiquement, on considérera le carré $C = [-1,1] \times [-1,1]$ et $f,g:[0,1] \to C$ deux applications continues $f,g:I \to \mathbb{R}^2 \setminus \mathring{C}$ telles que f(0) = (-1,-1), f(1) = (1,1), g(0) = (-1,1), g(1) = (1,-1). (Indication: montrer par l'absurde qu'il existe $s,t \in [0,1]$ tels que f(s) = g(t) en considérant l'indice par rapport à la courbe image de f convenablement refermée.)

Exercice 6. (Tore...) Soit T_2 l'espace topologique quotient $\mathbb{R}^2/\mathbb{Z}^2$ (attention on quotiente par le groupe \mathbb{Z}^2 , pas juste l'ensemble). Montrer que T_2 se plonge dans \mathbb{R}^3 et n'est pas contractile.

Exercice 7. (D'Alembert-Gauss via le degré) Soit P un polynôme unitaire de degré d ne s'annulant pas sur \mathbb{C} .

- 1. Montrer que l'application $H: S^1 \times]0, 1[\to S^1$ définie par $\gamma(t,u) = \frac{P\left(t\frac{1-u}{u}\right)}{|P\left(t\frac{1-u}{u}\right)|}$ s'étend en une application continue $S^1 \times I \to S^1$.
- 2. Evaluer H(-,1) et H(-,0) et en déduire le théorème de D'Alembert-Gauss.

Exercice 8. (Une jolie, quoique un peu taupinale, preuve du théorème du relèvement des angles) Soit $P(S^1) := \{f : [0,1] \to S^1, f \text{ continue}\}$ l'ensemble des applications continues de l'intervalle dans le cercle unité $S^1 \subset \mathbb{C}$ et $P(\mathbb{R}) := \{f : [0,1] \to S^1, f \text{ continue}\}$ l'ensemble des fonctions continues de l'intervalle dans \mathbb{R} . On munit $P(\mathbb{R})$ et $P(S^1)$ de la topologie de la convergence uniforme.

- 1. Montrer que les structures de groupe naturelle de $(S^1;\cdot)$ et $(\mathbb{R},+)$ font de $P(S^1)$ et $P(\mathbb{R})$ des groupes topologiques (où la multiplication est ponctuelle comme dans l'exercice 3).
- 2. Montrer que l'exponentielle $t\mapsto \exp(it)$ induit un morphisme de groupes topologiques $P(\mathbb{R})\stackrel{e}{\to} P(S^1)$ dont l'image est ouverte.
- 3. Montrer que $P(S^1)$ est connexe et en déduire le théorème de relèvement des angles (on aura le droit de se rappeler qu'un sous-groupe ouvert d'un groupe topologique est nécéssairement fermé).

Autres exercices

Ceux-là arrivent en vrac! Ils sont aussi (je pense) plus difficiles que les précédents.

³autrement dit selon que D coupe la courbe suivant le sens trigonométrique ou non

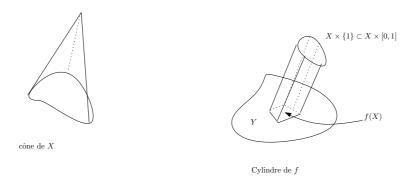


Figure 1: Le cône de X et le cylindre de $f: Y \to X$

Exercice 9. (Théorème de Borsuk-Ulam en dimension 2)⁴

Ce théorème se formule souvent sous la forme: à tout moment, il existe deux points antipodaux sur la terre sur lesquels la température et la pression sont les mêmes.

Moins prosaïquement, Soit $f: S^2 \to \mathbb{R}^2$ une application continue. Montrer qu'il existe $(x,y,z) \in S^2$ tel que f(x,y,z) = f(-x,-y,-z). (Indication: raisonner par l'absurde et considérer l'application $(x,y,z) \mapsto \frac{f(-x,-y,-z)-f(x,y,z)}{||f(-x,-y,-z)-f(x,y,z)||}$).

Exercice 10 (Cylindre et cône d'une application). Le cylindre de f est le recollement $Cyl(f) := X \times [0,1] \cup_{f \times \{0\}} Y$ où $f \times \{0\}$ est donné par $f \times \{0\} : X \times \{0\} \cong X \xrightarrow{f} Y$. Le cône de f est le recollement $C(f) := C(X) \cup_{f \times \{0\}} Y$.

- 1. Montrer que X et Y s'identifient à des sous-espaces fermés de Cyl(f) et décrire le type d'homotopie de Cyl(f).
- 2. Montrer que si $f_0: X \to Y$ et $f_1: X \to Y$ sont homotopes, alors $Cyl(f_0)$ est homotope à $Cyl(f_1)$ et $C(f_0)$ est homotope à $C(f_1)$. En déduire que si $\psi: Y \to Y'$ est une équivalence d'homotopie alors Cyl(f) et C(f) sont respectivement homotopes à $Cyl(\psi \circ f)$ et $C(\psi \circ f)$.

Exercice 11. (Le bonnet d'âne) Soit T un triangle dans \mathbb{R}^2 (avec son interieur) et notons p, q, r ses sommets. On appelle bonnet d'âne le triangle dont on a identifié les arètes de la façon suivante: [p, q] avec [q, r] et [p, q] avec [p, r]. Montrer que le bonnet d'âne est un espace contractile (en l'identifiant au cône d'une application du cercle dans lui-même).

Exercice 12 (Graphes et arbres). On appelle graphe un complexe cellulaire non-vide de dimension (plus petite que) 1 (cf le cours) et arbre un graphe connexe qui n'admet pas de lacets.

- 1. Montrer qu'un arbre T est contractile et est un rétracte par déformation de n'importe quel sommet (indication: commencer par le faire pour un arbre fini. Puis, si T' est un sous-graphe contractile de T et $\gamma:[0,1]\to T$ est une arête telle que $\gamma(0)\in T'$ et $\gamma(1)\in T-T'$, montrer que l'on peut étendre l'homotopie entre T et un de ses sommets à $T\cup_{\gamma(0)}\gamma$.)
- 2. Montrer que tout graphe admet des sous-arbres maximaux (indication: utiliser le lemme de Zorn). Combien y-a-t-il de chemins entre 2 sommets d'un arbre ?
- 3. Soit G un graphe connexe et T un sous-arbre maximal. On note $q:G\to G/T$ la projection sur le quotient. Montrer que G/T est homéomorphe à un bouquet de cercles: c'est à dire l'espace quotient $\left(\coprod S^1\right)\Big/\sim$ où \sim est la relation déquivalence qui identifie tous les points base des différents cercles (on choisit, arbitrairement, un point base sur chaque cercle).
- 4. Construire une section $r: G/T \to G$ de q (Indication: fixer un sommet v_0 dans T et pour toute arete γ dans $G \setminus T$, considérer l'application $t \mapsto c_{\gamma(1)}^{-1} \circ \gamma \circ c_{\gamma(0)}$ où, pour tout sommet $v \in G$, $c_v : [0, 1/3] \to T$ est une paramétrisation d'un chemin de v_0 à v, c_v^{-1} est le chemin paramétré dans l'autre sens et $\gamma : [1/3, 2/3] \to G$ une paramétrisation de l'arête γ).
- 5. Montrer que $G \to G/T$ est une équivalence d'homotopie. En déduir qu'un graphe est contractile si et seuleument si c'est un arbre.

⁴on en verra, en exerice ou en cours, un version plus générale plus tard