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TD 3 - Quillen functors, Derived functors and (a bit of) homotopy colimits

Exercice 1. A model structure on Cat (Charles Rezk)
Denote Cat the category of small categories. We assume that it is complete and cocomplete. We

let W denote equivalences of categories and C denote functors that are injective on objects. We let
F denote functors F : A → B such that for every isomorphism g : F (a) → b of B, there is a map
f : a→ a′ with g = F (f); such functors are called isofibrations.

1. Denote ∗ the category with one object and no non-trivial arrows, and I the category with two
objects 0, 1 and exactly one isomorphism in each direction. Let i : ∗ → I be the inclusion at 0.
Show that F = RLP ({i}).

2. Show that W verifies 2-out-of-3, and that W, C and F are stable under retracts.

3. (a) Show that every functor F of C ∩W has a left inverse G which is also a quasi-inverse and
such that the natural transformation FG ≃ id is equal to the identity on the image of F .

(b) Deduce that F ⊂ RLP (C ∩W).

4. Show that C ⊂ LLP (F ∩W).

5. Let F : A → B be a functor. Denote Path(F ) := A×B BI where the map BI → B is the source
map, and Cyl(F ) := A × (I

∐
A B). Show that F factors through Path(F ) and Cyl(F ); deduce

that (C,F ,W) is a model structure on Cat. What are the fibrant objects, the cofibrant objects?

Exercice 2 (Derived functors in homological algebra vs model categories). The goal of this exercise
is to understand how the model-categorical notion of derived functor generalizes what you have seen

in homological algebra. Let A F−→ B be an additive functor between abelian categories. We suppose
that F is right exact.

1. Consider the projective model structure on Ch≥0(A). Show that F sends quasi-isos between
cofibrant objects to quasi-isos in Ch≥0B. Deduce that it has a total left derived functor in the
model categorical sense.

2. Show that LF (V ) ∼= F (P ) where P is a projective resolution of V .

3. What is the link between the homological-algebraic derived functors LiF (V ) and LF (V ) ?

4. Apply this to prove the existence and identify the total derived functors of HomR(−,M):

Ch≥0(A)op → Ch≥0(A).

Identify them with the derived functors Extj(−,−) from the homological algebra course. Distin-
guish between the cases of projective and injective structures, and explain how this affects the
computations.

5. Take R a commutative ring. Do the functors − ⊗ − : Ch≥0(R) × Ch≥0(R) → Ch≥0(R) and
Hom(−,−) : Ch≥0(R)op × Ch≥0(R)→ Ch≥0(R) have total derived functors?

Exercice 3 (Composition of Derived Functors). Let F : C1 → C2 and G : C2 → C3 be functors and let
Wi be a class of morphisms in Ci.

1. Assuming all the relevant total left derived functors exist, use their universal properties to
construct a natural transformation LG ◦ LF → L(G ◦ F ).
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2. Suppose now that C1, C2 and C3 are model categories and that F and G are left Quillen functors.
Show that G ◦ F is a left Quillen functor.

3. Show that the arrow of 1) induces a natural equivalence L(G ◦ F ) ≃ (LG) ◦ (LF ).

4. Let (L,R) be an adjoint pair. Show that L is left Quillen if and only if R is right Quillen.

5. Suppose the restriction of a functor F to cofibrant objects sends acyclic cofibrations to weak
equivalences, show that F is left derivable. (Hint: Ken Brown’s lemma).

Exercice 4 (Slice categories II, by Victor Saunier). Let (C,F ,W) be a model structure on A. Let
f : X → Y be a morphism. Recall that we defined in the first exercise sheet a model structure on
every slice category A/X.

1. Show that the functor f! : A/X → A/Y which postcomposes by f admits a right adjoint f∗ and
describe it.

2. Show that the pair (f!, f
∗) is a Quillen pair of adjoints.

3. Suppose A is right proper, i.e. weak equivalences are stable under pullback by fibrations, and
that f ∈ W. Show that the pair (f!, f

∗) is a Quillen equivalence.

4. (Rezk) Suppose that for every weak equivalence f , the pair (f!, f
∗) is a Quillen equivalence.

Show that A is right proper.

On homotopy (co)limits

Exercice 5 (Homotopy colimits). In this exercise, we first deal with generalities on homotopy pushouts
and then specialize to chain complexes with the projective model structure. Let C be a model category
and let I be the category given by the diagram-shape

b c

a

1. Let f : X → Y be a natural transformation of diagrams X,Y ∈ Fun(I, C). Show that f has the
left lifting property with respect to all projective acyclic fibrations if and only if the the natural
maps

Xa

⊔
Xb

Yb → Ya, Xb → Yb, Xc

⊔
Xb

Yb → Yc

are cofibrations in C. (Here we mean the usual pushouts in C.)
Deduce that a diagram Y : I → C is cofibrant if and only if Yb is cofibrant in C and the maps
Ya → Yb and Ya → Yc are cofibrations. Moreover, show that X → Y has the left lifting property
with respect to projective fibrations if and only the above three maps are acyclic cofibrations.

2. Show that the category of diagrams Fun(I, C) admits the projective model structure (without
using the result seen in class that such a structure exists since I is very small).

3. Show that the colimit functor colim: Fun(I, C)→ C is a left Quillen functor.

4. Assume that C is left proper (i.e. weak equivalences are stable under pushouts along cofibrations).
Show that any pushout diagram

B C

A A
⊔
B

C

f

where f : B −→ C a cofibration, is also a homotopy pushout diagram.
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5. Case of Topological spaces. Assume now that C = Top.

(a) Using that Top is proper (as seen in exercise 3. from the sheet on Quillen model structure),
show that there is a canonical isomorphism

L colim(X ← A→ Y ) ∼= X

h⊔
A

Y = X
⊔

A×{0}

Cyl(A→ Y )

in Ho(Top) between the homotopy pushout computed by the projective model structure
and the formula given by the mapping cylinder.

(b) Give a formula for computing the homotopy colimit of a tower (X0 → X1 → X2 → . . . ) as
well as the homotopy limit of a tower (· · · → Y2 → Y1 → Y0).

6. Case of chain complexes. Assume now that C is the model category of chain complexes over
a ring R.

(a) Show that C is left proper.

(b) Let g : A → B be a map of chain complexes. Recall that the mapping cone of g, denoted
C(g), is the chain complex given in level n by Bn⊕An−1 and whose differential Bn+1⊕An →
Bn ⊕ An−1 is given (b, a) 7→ (∂B(b) + g(a),−∂A(a)). Let I denote the chain complex given
by R⊕R in degree 0 and R in degree 1 with differential given by ∂R : R→ R⊕R given by
r 7→ (−r, r). We define the mapping cylinder of g, denoted Cyl(g), as the pushout in chain
complexes of

A B

I ⊗A Cyl(g)

g

i0

where the vertical arrow A → I ⊗ A is induced by the inclusion i0 : R → I corresponding
to the inclusion of the second factor R ↪→ R ⊕ R in degree 0. The differential on I ⊗ A is
given by r ⊗ a 7→ ∂R(r)⊗ a+ (−1)deg(r)r ⊗ ∂A(a). Show that the mapping cone of g is the
pushout of

I ⊗A Cyl(g)

C(IdA) C(g).

(c) Let ∆1 be the category with two objects and one non trivial morphism in between them.
Show that the construction of the mapping cone defines a functor C : Fun(∆1,Ch(R)) →
Ch(R) sending natural transformations objectwise given by quasi-isomorphisms to quasi-
isomorphisms.

(d) Let Y := (0 ←− A
g−→ B) be a diagram in C. Show that there exists a diagram of the

form Y ′ := (0←− A′ g′−→ B′) with g′ a cofibration and A′ and B′ cofibrant, together with
a natural transformation u : Y ′ → Y which is objectwise a weak equivalence. Notice that
by the previous question the induced map C(g′)→ C(g) is a weak equivalence.

(e) Let Y := (0 ←− A
g−→ B) be a diagram in C with A and B cofibrant and g a cofibration.

Show that A → I ⊗ A is a weak equivalence and show that we can construct a zigzag of
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diagrams Y ← Y ′ → Y ′′ of the form

0 A B

C(A) A B

C(A) I ⊗A Cyl(g)

g

g

g

where each vertical arrow is a weak equivalence and the map I⊗A→ Cyl(g) is a cofibration.

(f) Let Y := (0 ←− A
g−→ B) be any diagram. Conclude that the mapping cone C(g) is a

model for the homotopy colimit of the diagram Y .

Exercice 6. We recall the definition of a coend : Let F : Iop → sSet be a functor and G : I → sSet
be another functor. We define their coend denoted F ⊗I G as the following coequalizer∐

f :i→j

F (j)×G(i) ⇒
∐
i∈I

F (i)×G(i)→ F ⊗I G

which is a simplicial set.

1. We admit that ∗ ⊗I G computes the colimit of the functor G. Let X be a simplicial set, that
we see as a functor sSetop → sSet by seeing X(n) as a discrete simplicial set. The geometric
realization of X is defined as the coend ∆[−]⊗X ∈ Fun(sSetop, sSet). Convince yourself that
it is well-named and compute it.

2. Fix a small category I. Recall why Fun(I, sSet) has the projective model structure. Consider
the coend pairing defined by

sSetD
op × sSetD → sSet

which sends (F,G) to F ⊗ G. Our goal is to see how this pairing interacts with the model
structure. Show that if we fix a cofibrant G,it preserves weak equivalences in the F variabl (hint
: show it on the generating cofibrations + small object argument).

3. Deduce that if X is a simplicial set which is cofibrant for the projective model structure, then
the geometric realization ∆[−] ⊗sSetop X is a model for the homotopy colimit of X seen as a
functor ∆op → sSet.

Actually, this fact is true even if X is not projectively cofibrant, but we need more work : the Reedy
model structure on simplicial objects.

Exercice 7. We assume that there is a model structure on sSet∆
op
, called the Reedy model structure,

such that

(a) The weak equivalences are the objectwise weak equivalences.

(b) The cofibrations are the maps f : F → G such that for all n, the map

F [n] ⊔LnF LnG→ G[n]

is a cofibration. Here LnF denotes the n-th latching object defined by Ln(F ) = colimf :k→n,k<n F (k)

(c) The fibrations are the maps such that for all n, the map

F [n]→ G[n]×MnG MnF

is a fibration. HereMnF denotes the n-th matching object defined byMn(G) = limf :k→n,k>nG(k).
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1. Show that the geometric realization functor sSet∆
op → sSet is left Quillen for the Reedy

structure. Hint : show that its right adjoint is right Quillen.

2. Deduce from the previous exercise that |X| ≃ hocolimX for any simplicial set X.

Exercice 8 (The fundamental theorem of homotopy theory, after Geoffroy Horel). We assume the
result of the previous exercise. Let F : sSet→ sSet be a homotopical functor that preserves homotopy
colimits. Then F is naturally weakly equivalent to the functor

X 7→ X ⊗L F (∗)

If you are familiar with simplicial cofibrantly generated model categories, you can try to do the exercise
replacing the target of F by any such model category M .
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