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We study scaling limits of non-increasing Markov chains with values in the set of non-negative integers,
under the assumption that the large jump events are rare and happen at rates that behave like a negative
power of the current state. We show that the chain starting from n and appropriately rescaled, converges
in distribution, as n → ∞, to a non-increasing self-similar Markov process. This convergence holds jointly
with that of the rescaled absorption time to the time at which the self-similar Markov process reaches first 0.

We discuss various applications to the study of random walks with a barrier, of the number of collisions
in �-coalescents that do not descend from infinity and of non-consistent regenerative compositions. Further
applications to the scaling limits of Markov branching trees are developed in our paper, Scaling limits of
Markov branching trees, with applications to Galton–Watson and random unordered trees (2010).
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1. Introduction and main results

Consider a Markov chain taking values in the set of non-negative integers Z+ = {0,1,2, . . .},
and with non-increasing paths. We are interested in the asymptotic behavior in distribution of the
chain started from n, as n tends to ∞. Our main assumption is (roughly speaking) that the chain,
when in state n, has a “small” probability, of order cεn

−γ for some γ > 0 and some cε > 0,
of accomplishing a negative jump with size in [nε,n], where 0 < ε < 1. A typical example
is constructed from a random walk (Sk, k ≥ 0) with non-negative steps with tail distribution
proportional to n−γ as n tends to ∞, for some γ ∈ (0,1), by considering the Markov chain
starting from n: (max(n−Sk,0), k ≥ 0). An explicit example is provided by the step distribution
qn = (−1)n−1

(
γ
n

)
, n ≥ 1.

Under this main assumption, we show in Theorem 1 that the chain started from n, and properly
rescaled in space and time, converges in distribution in the Skorokhod space to a non-increasing
self-similar Markov process. These processes were introduced and studied by Lamperti [15,
16], under the name of semi-stable processes, and by many authors since then. Note that Stone
[20] discusses limit theorems for birth-and-death chains and diffusions that involve self-similar
Markov processes, but in a context that is very different from ours.

A quantity of particular interest is the absorption time of the chain, that is, the first time after
which the chain remains constant. We show in Theorem 2 that jointly with the convergence of
Theorem 1, the properly rescaled absorption time converges to the first time the limiting self-
similar Markov process hits 0. In fact, we even show that all positive moments of the rescaled
absorption time converge.
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These results have applications to a number of problems considered in the literature, such as
the random walk with a barrier [14] when the step distribution is in the domain of attraction of a
stable random variable with index in (0,1), or the number of coalescing events in a �-coalescent
that does not come down from infinity [7,14]. It also allows us to recover some results by Gnedin,
Pitman and Yor [9] for the number of blocks in regenerative composition structures, and to ex-
tend this result to the case of “non-consistent compositions”. One of the main motivations for
the present study was to provide a unified framework to treat such problems, which can all be
translated in terms of absorption times of non-increasing Markov chains. Moreover, the conver-
gence of the rescaled Markov chain as a process, besides the convergence of the absorption time,
provides new insights on these results. Finally, our main results are also a starting point for ob-
taining the scaling limits of a large class of random trees satisfying a simple discrete branching
property. This is the object of the paper [11].

Let us now present our main results and applications in a more formal way. Implicitly, all the
random variables in this paper are defined on a probability space (�, F ,P).

Notation. For two positive sequences xn, yn,n ≥ 0, the notation xn ∼ yn means that xn/yn con-
verges to 1 as n → ∞.

1.1. Scaling limits of non-increasing Markov chains

For every n ≥ 0, consider a non-negative sequence (pn,k,0 ≤ k ≤ n) that sums to 1,

n∑
k=0

pn,k = 1.

We view the latter as a probability distribution on {0,1, . . . , n}, and view the family (pn,k,

0 ≤ k ≤ n) as the transition probabilities for a discrete-time Markov chain, which takes inte-
ger values and has non-increasing paths. We will denote by (Xn(k), k ≥ 0) such a Markov chain,
starting at the state Xn(0) = n. For every n ≥ 1, we let p∗

n be the law on [0,1] of Xn(1)/n, so
that

p∗
n(dx) =

n∑
k=0

pn,kδk/n(dx).

Our main assumption all throughout the paper will be the following hypothesis.

(H). There exist:

• a sequence (an, n ≥ 1) of the form an = nγ �(n), where γ > 0 and � : R+ → (0,∞) is a
function that is slowly varying at ∞,

• a non-zero, finite, non-negative measure μ on [0,1],
such that the following weak convergence of finite measures on [0,1] holds:

an(1 − x)p∗
n(dx)

(w)−→
n→∞μ(dx). (1)
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This means that a jump of the process Xn/n from 1 to x ∈ (0,1) occurs with a small intensity
a−1
n μ(dx)/(1−x), and indicates that an interesting scaling limit for the Markov chain Xn should

arise when rescaling space by n and time by an. Also, note that μ([0,1])/an is equivalent as
n → ∞ to the expectation of the first jump of the chain Xn/n, and this converges to 0 as n → ∞.
The role of the factor (1 − x) in (1) is to temper the contribution of very small jumps in order to
evaluate the contribution of larger jumps.

Of course, in (H), the sequence a = (an, n ≥ 1), the function � and the measure μ are not
uniquely determined. One can simultaneously replace a by ca and μ by cμ for any given c > 0.
Also, one can replace � by any function that is equivalent to it at infinity. However, it is clear
that μ is determined up to a positive multiplicative constant (with a simultaneous change of the
sequence a as depicted above), and that γ is uniquely determined.

We will soon see that hypothesis (H) appears very naturally in various situations. It is also
very general, in the sense that there are no restrictions on the sequences (an, n ≥ 1) or measures
μ that can arise. Here is a formal statement, which is proved at the end of Section 4.

Proposition 1. For any finite measure μ on [0,1] and any sequence of the form an = nγ �(n)

where γ > 0 and � : R+ → (0,∞) is slowly varying at ∞, one can find a sequence of probability
vectors ((pn,k,0 ≤ k ≤ n),n ≥ 0) such that (1) holds.

We now describe the objects that will arise as scaling limits of Xn. For λ > 0 and x ∈ [0,1),
let

[λ]x = 1 − xλ

1 − x
, 0 ≤ x < 1, (2)

and set [λ]1 = λ. For each λ > 0, this defines a continuous function x 	→ [λ]x on [0,1]. If μ is a
finite measure on [0,1], then the function ψ defined for λ > 0 by

ψ(λ) :=
∫

[0,1]
[λ]xμ(dx) (3)

and extended at 0 by ψ(0) := limλ↓0 ψ(λ) = μ({0}) is the Laplace exponent of a subordinator.
To see this, let k= μ({0}),d= μ({1}), so that ψ can be written in the usual Lévy–Khintchine
form:

ψ(λ) = k+ dλ +
∫

(0,1)

(1 − xλ)
μ(dx)

1 − x
= k+ dλ +

∫ ∞

0
(1 − e−λy)ω(dy),

where ω is the push-forward of the measure (1 − x)−1μ(dx)1{0<x<1} by the mapping x 	→
− logx. Note that ω is a σ -finite measure on (0,∞) that integrates y 	→ y ∧ 1, as it ought.
Conversely, any Laplace exponent of a (possibly killed) subordinator can be put in the form (3)
for some finite measure μ.

Now, let ξ be a subordinator with Laplace exponent ψ . This means that the process (ξt , t ≥ 0)

is a non-decreasing Lévy process with

E[exp(−λξt )] = exp(−tψ(λ)), t, λ ≥ 0.
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Note in particular that the subordinator is killed at rate k ≥ 0. The function t ∈ [0,∞) →∫ t

0 exp(−γ ξr)dr is continuous, non-decreasing and its limit at infinity, denoted by

I :=
∫ ∞

0
exp(−γ ξr)dr,

is a.s. finite. Standard properties of this random variable are studied in [4]. We let τ : [0, I ) → R+
be its inverse function, and set τ(t) = ∞ for t ≥ I . The process

Y(t) := exp
(−ξτ(t)

)
, t ≥ 0, (4)

is a non-increasing self-similar Markov process starting from 1. Recall from [16] that if Px is
the law of an R+-valued Markov process (Mt , t ≥ 0) started from M0 = x ≥ 0, then the process
is called self-similar with exponent α > 0 if the law of (r−αMrt , t ≥ 0) under Px is Pr−αx , for
every r > 0 and x ≥ 0.

In this paper, all processes that we consider belong to the space D of càdlàg, non-negative
functions from [0,∞) to R. This space is endowed with the Skorokhod metric, which makes
it a Polish space. We refer to [6], Chapter 3.5, for background on the topic. We recall that �r
denotes the integer part of the real number r .

Theorem 1. For all t ≥ 0 and all n ∈ N, we let

Yn(t) := Xn(�ant)
n

.

Then, under the assumption (H), we have the following convergence in distribution

Yn
(d)−→

n→∞Y

for the Skorokhod topology on D, where Y is defined at (4).

A theorem by Lamperti [16] shows that any càdlàg, non-increasing, non-negative, self-similar
Markov process (started from 1) can be written in the form (4) for some subordinator ξ and
some γ > 0. In view of this, Theorem 1, combined with Proposition 1, implies that every non-
increasing, càdlàg, self-similar Markov process is the weak scaling limit of a non-decreasing
Markov chain with rare large jumps.

In fact, as the proof of Theorem 1 will show, a more precise result holds. With the above
notations, for every t ≥ 0, we let Z(t) = exp(−ξt ), so that Y(t) = Z(τ(t)). Let also

τ−1
n (t) = inf

{
u ≥ 0 :

∫ u

0
Y

−γ
n (r)dr > t

}
, t ≥ 0,

and Zn(t) := Yn(τ
−1
n (t)).
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Proposition 2. Under the same hypotheses and notations as Theorem 1, one has the joint con-
vergence in distribution

(Yn,Zn)
(d)−→

n→∞(Y,Z)

for the product topology on D2.

1.2. Absorption times

Let A be the set of absorbing states of the chain, that is,

A := {k ∈ Z+ :pk,k = 1}.

Under assumption (H) it is clear that A is finite, and not empty since it contains at least 0. It is
also clear that the absorbing time

An := inf{k ∈ Z+ :Xn(k) ∈ A}

is a.s. finite. For (Y,Z) = (exp(−ξτ ), exp(−ξ)) defined as in the previous subsection, we let
σ = inf{t ≥ 0 :Y(t) = 0}. Then it holds that

σ =
∫ ∞

0
exp(−γ ξr)dr, (5)

which is a general fact that we recall (21) in Section 3.2 below.

Theorem 2. Assume (H). Then, as n → ∞,

An

an

(d)→ σ,

and this holds jointly with the convergence in law of (Yn,Zn) to (Y,Z) as stated in Proposition 2.
Moreover, for all p ≥ 0,

E

[(
An

an

)p]
→ E[σp].

When p ∈ Z+, the limiting moment E[σp] is equal to p!/∏p

i=1 ψ(γ i).

Note that even the first part of this result is not a direct consequence of Theorem 1 since
convergence of functions in D does not lead, in general, to the convergence of their absorption
times (when they exist).
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1.3. Organization of the paper

We start in Section 2 with a series of applications of Theorems 1 and 2 to random walks with a
barrier, �-coalescents and non-consistent regenerative compositions. Most of the proofs of these
results, as well as further developments, are postponed to Sections 5 (for the random walks with
a barrier) and 6 (for �-coalescents).

In the preliminary Section 3, we gather some basic facts needed for the proofs of Theorems 1
and 2 and Proposition 2, which are undertaken in Section 4. The proof of Proposition 2 and
Theorem 1 will be obtained by a classical two-step approach: first, we show that the laws of
(Yn,Zn), n ≥ 1 form a tight family of probability distributions on D2. Then, we will show that
the only possible limiting distribution is that of (Y,Z). This identification of the limit will be
obtained via a simple martingale problem. Tightness is studied in Section 4.1 and the character-
ization of the limits in Section 4.2. In both cases, we will work with some sequences of martin-
gales related to the chains Xn, which are introduced in Section 3.3. The convergence of (Yn,Zn)

to (Y,Z) is a priori not sufficient to get the convergence of the absorption times, as stated in
Theorem 2. This will be obtained in Section 4.3, by first showing that tβE[Zn(t)

λ] is uniformly
bounded for every β > 0.

Last, a proof of Proposition 1 is given at the end of Section 4.

2. Applications

2.1. Random walk with a barrier

Let q = (qk, k ≥ 0) be a non-negative sequence with total sum
∑

k qk = 1, which is interpreted as
a probability distribution on Z+. We assume that q0 < 1 in order to avoid trivialities. For n ≥ 0,
we let

qn =
∑
k>n

qk, n ≥ 0.

The random walk with a barrier is a variant of the usual random walk with step distribution
q . Informally, every step of the walk is distributed as q , but conditioned on the event that it does
not bring the walk to a level higher than a given value n. More formally, for every n, we define
the random walk with barrier n as the Markov chain (S

(n)
k , k ≥ 0) starting at 0, with values in

{0,1,2, . . . , n} and with transition probabilities

q
(n)
i,j =

{ qj−i

1 − qn−i

, if qn−i < 1,

1{j=i}, if qn−i = 1,
0 ≤ i ≤ j ≤ n.

(This definition is not exactly the same as in [14], but the absorption time An is exactly the
random variable Mn, which is the main object of study in this paper. We will comment further
on this point in Section 5.)

To explain the definition, note that when qr < 1, (qk/(1 − qr),0 ≤ k ≤ r) is the law of a
random variable with distribution q , conditioned to be in {0, . . . , r}. When qr = 1, the quotient



Self-similar scaling limits of non-increasing Markov chains 1223

is not well defined, and we choose the convention that the conditioned law is the Dirac measure
at {0}. In other words, when the process arrives at a state i such that qn−i = 1, so that every jump
with distribution q would be larger than n− i, we choose to let the chain remain forever at state i.
Of course, the above discussion is not needed when q0 > 0.

As a consequence of the definition, the process

Xn(k) = n − S
(n)
k , k ≥ 0,

is a Markov process with non-increasing paths, starting at n, and with transition probabilities

pi,j = qi−j

1 − qi

, 0 ≤ j ≤ i, (6)

with the convention that pi,j = 1{j=i} when qi = 1. The probabilities (6) do not depend on n, so
this falls under our basic framework. As before, we let An be the absorbing time for Xn.

Theorem 3. (i) Let γ ∈ (0,1), and assume that qn = n−γ �(n), where γ ∈ (0,1) and � is slowly
varying at ∞. Let ξ be a subordinator with Laplace exponent

ψ(λ) =
∫ ∞

0
(1 − e−λy)

γ e−y dy

(1 − e−y)γ+1
, λ ≥ 0,

and let

τ(t) = inf

{
u ≥ 0 :

∫ u

0
exp(−γ ξr)dr > t

}
, t ≥ 0.

Then, (
Xn(�t/qn)

n

)
(d)−→

n→∞
(
exp

(−ξτ(t)

)
, t ≥ 0

)
,

jointly with the convergence

qnAn
(d)−→

n→∞

∫ ∞

0
exp(−γ ξt )dt.

For the latter, the convergence of all positive moments also holds.
(ii) Assume that m := ∑∞

k=0 kqk is finite. Then((
Xn(�tn)

n
, t ≥ 0

)
,
An

n

)
(P )−→

n→∞
(((

(1 − mt) ∨ 0
)
, t ≥ 0

)
,1/m

)
,

in probability in D × R+. Convergence of all positive moments also holds for the second compo-
nents.

Of course, this will be proved by checking that (H) holds for transition probabilities of the
particular form (6), under the assumption of 3. This result encompasses Theorems 1.1 and 1.4 in
[14]. Note that Theorems 1.2 and 1.5 in the latter reference give information about the deviation
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for An around n/m in case (ii) of Theorem 3 above, under some assumptions on q (saying
essentially that a random variable with law q is in the domain of attraction of a stable law with
index in [1,2], as opposed to (0,1) in Theorem 3). See also [5] for related results in a different
context.

The Lévy measure of the subordinator γ ξ involved in Theorem 3 is clearly given by

exp(−x/γ )
(
1 − exp(−x/γ )

)−γ−1 dx 1{x≥0}.

Bertoin and Yor [1] show that the variable
∫ ∞

0 exp(−γ ξr)dr is then distributed as

�(1 − γ )−1τ
−γ
γ , where τγ is a stable random variable with Laplace transform E[exp(−λτγ )] =

exp(−λγ ).

2.2. On collisions in �-coalescents that do not come down from infinity

We first briefly recall the definition and basic properties of a �-coalescent, referring the interested
reader to [17,18] for more details.

Let � be a finite measure on [0,1]. For r ∈ N, a (�, r)-coalescent is a Markov process
(�r(t), t ≥ 0) taking values in the set of partitions of {1,2, . . . , r}, which is monotone in the
sense that �r(t

′) is coarser than �r(t) for every t ′ > t . More precisely, �r only evolves by steps
that consist of merging a certain number (at least 2) of blocks of the partition into one, the other
blocks being left unchanged. Assuming that �r(0) has n blocks, the rate of a collision event
involving n− k + 1 blocks, bringing the process to a state with k blocks, for some 1 ≤ k ≤ n− 1,
is given by

gn,k =
(

n

k − 1

)∫
[0,1]

xn−k−1(1 − x)k−1�(dx),

and the blocks that intervene in the merging event are uniformly selected among the
(

n
k−1

)
pos-

sible choices of n − k + 1 blocks out of n. Note that these transition rates depend only on the
number of blocks present at the current stage. In particular, they do not depend on the particular
value of r .

A �-coalescent is a Markov process (�(t), t ≥ 0) with values in the set of partitions of N,
such that for every r ≥ 1, the restriction (�|[r](t), t ≥ 0) of the process to {1,2, . . . , r} is a
(�, r)-coalescent. The existence (and uniqueness in law) of such a process is discussed in [17].
The most celebrated example is the Kingman coalescent obtained for � = δ0.

The �-coalescent (�(t), t ≥ 0) is said to come down from infinity if, given that �(0) =
{{i}, i ≥ 1} is the partition of N that contains only singletons, �(t) a.s. has a finite number of
blocks for every t > 0. When the coalescent does not come down from infinity, it turns out that
�(t) has a.s. infinitely many blocks for every t ≥ 0, and we say that the coalescent stays infinite.
See [19] for more details and a nice criterion for the property of coming down from infinity. By
Lemma 25 in [17], the �-coalescent stays infinite if

∫
[0,1] x

−1�(dx) < ∞.
Starting with n blocks in a (�, r)-coalescent (or in a �-coalescent), let Xn(k) be the number

of blocks after k coalescing events have taken place. Due to the above description, the process
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(Xn(k), k ≥ 0) is a Markov chain with transition probabilities given by

pn,k = P
(
Xn(1) = k

) = gn,k

gn

= 1

gn

(
n

k − 1

)∫
[0,1]

xn−k−1(1 − x)k−1�(dx), 1 ≤ k ≤ n − 1, (7)

where gn is the total transition rate gn = ∑n−1
k=1 gn,k . This chain always gets absorbed at 1.

The total number of collisions in the coalescent coincides with the absorption time An :=
inf{k :Xn(k) = 1}. There have been many studies on the asymptotic behavior of An as n → ∞
[7,10,13,14], in contexts that mostly differ from ours (see the comments below). For u ∈ (0,1]
we let

h(u) =
∫

[u,1]
x−2�(dx). (8)

We are interested in cases where limu↓0 h(u) = ∞ but
∫ 1

0 x−1�(dx) < ∞, so the coalescent
stays infinite by the above discussion.

Theorem 4. Let γ ∈ (0,1). We assume that the function h is regularly varying at 0 with index
−γ . Let ξ be a subordinator with Laplace exponent

ψ(λ) = 1

�(2 − γ )

∫ 1

0

(
1 − (1 − x)λ

)
x−2�(dx), λ ≥ 0, (9)

and let

τ(t) := inf

{
u ≥ 0 :

∫ u

0
exp(−γ ξr)dr > t

}
, t ≥ 0. (10)

Then, (
Xn(�h(1/n)t)

n
, t ≥ 0

)
(d)−→

n→∞ exp(−ξτ ). (11)

Moreover, jointly with (11), it holds that

An

h(1/n)

(d)−→
n→∞

∫ ∞

0
exp(−γ ξr)dr, (12)

and there is also a convergence of moments of orders p ≥ 0.

Note that a result related to (12) is announced in [7] (remark following Theorem 3.1 therein).
Of course, the statement of Theorem 4 remains true if we simultaneously replace h and ψ

in (8) and (9) with ch and cψ for any c > 0. Also, the statement remains true if we change h with
any of its equivalents at 0 in (11) or (12). Theorem 4 specialises to yield the following results
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on beta coalescents. Recall that the beta-coalescent with parameters a, b > 0, also denoted by
β(a, b)-coalescent, is the �-coalescent associated with the measure

�(dx) = �(a + b)

�(a)�(b)
xa−1(1 − x)b−1 dx 1[0,1](x).

Corollary 1. For the beta-coalescent β(a, b) with parameters 1 < a < 2 and b > 0, the process
of numbers of collisions satisfies(

Xn(�n2−at)
n

, t ≥ 0

)
(d)−→

n→∞ exp(−ξτ ),

where ξ is a subordinator with Laplace exponent

ψ(λ) = 2 − a

�(a)

∫ ∞

0
(1 − e−λy)

e−by

(1 − e−y)3−a
dy

and τ the time change defined from ξ by (10), replacing there γ with 2 − a. Moreover, the total
number An of collisions in such a beta-coalescent satisfies, jointly with the previous convergence,

An

n2−a

(d)−→
n→∞

∫ ∞

0
exp

(−(2 − a)ξr

)
dr.

The convergence of all positive moments also holds.

When b = 2 − a, we know from the particular form of the Laplace exponent of ξ that the
range of exp(−ξ) is identical in law with the zero set of a Bessel bridge of dimension 2 − 2b

(see [8]). When, moreover, b ∈ (0,1/2], the time changed process exp(−ξτ ) is distributed as
the tagged fragment in a 1/(1 − b)-stable fragmentation (with a dislocation measure suitably
normalized). More generally, when b ∈ (0,1) and a > 1 + b, the time changed process exp(−ξτ )

is distributed as the tagged fragment in a Poisson–Dirichlet fragmentation with a dislocation
measure proportional to PD∗(1 − b, a + b − 3) as defined in [12], Section 3. In such cases, the
Laplace exponent of ξ can be explicitly computed. See Corollary 8 of [12].

When b = 1 (and still 1 < a < 2), the asymptotic behavior of An is proved by Iksanov and
Möhle in [14], using there the connection with this model and random walks with a barrier. As
mentioned at the end of the previous section, the limit random variable

∫ ∞
0 exp(−(2 − a)ξt )dt is

then distributed as (a − 1)τ a−2
2−a , where τ2−a is a (2 − a)-stable variable, with Laplace transform

E[exp(−λτ2−a)] = exp(−λ2−a).
Besides, Iksanov, Möhle and co-authors obtain various results on the asymptotic behavior of

An for beta coalescents when a /∈ (1,2). See [13] for a summary of these results.

2.3. Regenerative compositions

A composition of n ∈ N is a sequence (c1, c2, . . . , ck), ci ∈ N, with sum
∑k

i=1 ci = n. The integer
k is called the length of the composition. If Xn is a Markov chain taking values in Z+, strictly
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decreasing on N and such that Xn(0) = n, the random sequence

C
(n)
i := Xn(i − 1) − Xn(i), 1 ≤ i ≤ K(n) := inf{k :Xn(k) = 0},

clearly defines a random composition of n, of length K(n). Thanks to the Markov property of X,
the random sequence (C(n), n ≥ 1) has the following regenerative property:(

C
(n)
2 ,C

(n)
3 , . . . ,C

(n)

K(n)

)
conditional on

{
C

(n)
1 = c1

} law= C(n−c1) ∀1 ≤ c1 < n.

This is called a regenerative composition. Conversely, starting from a regenerative composition
(C(n), n ≥ 1), we build, for each n ≥ 1, a strictly decreasing Markov chain Xn starting at n by
setting

Xn(k) = n −
k∑

i=1

C
(n)
i , 1 ≤ k ≤ K(n), and Xn(k) = 0 for k ≥ K(n).

The transition probabilities of the chain are pn,k = P(C
(n)
1 = n − k) for 0 ≤ k < n, pn,n = 0 for

n ≥ 1 and p0,0 = 1.
Regenerative compositions have been studied in great detail by Gnedin and Pitman [8] under

the additional following consistency property: For all n ≥ 2, if n balls are thrown at random into
an ordered series of boxes according to C(n), then the composition of n − 1 obtained by deleting
one ball uniformly at random is distributed according to C(n−1). Gnedin and Pitman [8] show in
particular that regenerative consistent compositions can be constructed via (unkilled) subordina-
tors through the following procedure. Let ξ be such a subordinator and (Ui, i ≥ 1) be an indepen-
dent sequence of i.i.d. random variables uniformly distributed on (0,1). Construct from this an
ordered partition of [n], say, (B

(n)
1 , . . . ,B

(n)

K(n) ), by declaring that i and j are in the same block if

and only if Ui and Uj are in the same open interval component of [0,1]\{1 − exp(−ξt ), t ≥ 0}cl.
The order of blocks is naturally induced by the left-to-right order of open interval components.
Then ((#B

(n)
1 , . . . ,#B

(n)

K(n) ), n ≥ 1) defines a regenerative consistent composition. Conversely,
each regenerative consistent composition can be constructed in that way from a subordinator.

In cases where the subordinator has no drift and its Lévy measure ω has a tail that varies
regularly at 0, that is, ω(x) := ∫ ∞

x
ω(dy) = x−γ �(x), where γ ∈ (0,1) and � is slowly varying

at 0, Gnedin, Pitman and Yor [9] show that

K(n)

�(1 − γ )nγ �(1/n)

a.s.→
∫ ∞

0
exp(−γ ξr)dr.

The duality between regenerative compositions and strictly decreasing Markov chains, coupled
with Theorem 2, allows us to extend this result by Gnedin, Pitman and Yor to the largest setting
of regenerative compositions that do not necessarily follow the consistency property, provided
hypothesis (H) holds. Note, however, that in this more general context we can only obtain a
convergence in distribution.

Let us check here that in the consistent cases, the assumption of regular variation on the tail
of the Lévy measure associated with the composition entails (H). Following [8], the transition
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probabilities of the associated chain X are then given by

pn,k = P
(
C

(n)
1 = n − k

) = 1

Zn

(
n

k

)∫ 1

0
xk(1 − x)n−kω̃(dx), 0 ≤ k ≤ n − 1,

where ω̃ is the push-forward of ω by the mapping x 	→ exp(−x) and Zn is the normalizing
constant Zn = ∫ 1

0 (1 − xn)ω̃(dx). It is easy to see that (1) is satisfied with an = Zn and μ(dx) =
(1 − x)ω̃(dx) since the distributions (pn,k,0 ≤ k ≤ n − 1), n ≥ 1, are mixtures of binomial-type
distributions (we refer to the proof of Proposition 1 or to that of the forthcoming Lemma 9 for
detailed arguments in a similar context). The Laplace transform defined via μ by (3) is then that
of a subordinator with Lévy measure ω, no drift and killing rate k= 0. Besides, by Karamata’s
Tauberian theorem [3], Theorem 1.7.1′, the assumption ω(x) = x−γ �(x), γ ∈ (0,1), where � is
slowly varying at 0, implies that

Zn =
∫ ∞

0
(1 − e−nx)ω(dx) = n

∫ ∞

0
e−nuu−γ �(u)du ∼ �(1 − γ )nγ �(1/n) as n → ∞,

and we have indeed (H) with the correct parameters (an, n ≥ 1) and μ.
Last, we rephrase Theorem 1 in terms of regenerative compositions.

Theorem 5. Let (C(n), n ≥ 1) be a regenerative composition.

(i) Assume that it is consistent, constructed via a subordinator ξ with no drift and a Lévy
measure with a tail ω that varies regularly at 0 with index −γ , γ ∈ (0,1). Then,( ∑

k≤tω(1/n)�(1−γ )

C
(n)
k

n
, t ≥ 0

)
(d)→ (

1 − exp
(−ξτ(t)

)
, t ≥ 0

)
,

where τ is the usual time change defined as the inverse of t 	→ ∫ t

0 exp(−γ ξr)dr .

(ii) When the regenerative composition is non-consistent, assume that E[C(n)
1 ]/n varies regu-

larly as n → ∞ with index −γ , γ ∈ (0,1] and that

E[C(n)
1 f (1 − C

(n)
1 /n)]

E[C(n)
1 ]

→
∫

[0,1]
f (x)μ(dx)

for a probability measure μ on [0,1] and all continuous functions f : [0,1] → R+. Then,( ∑
k≤tn/E[C(n)

1 ]

C
(n)
k

n
, t ≥ 0

)
(d)→ (

1 − exp
(−ξτ(t)

)
, t ≥ 0

)
,

where ξ is the subordinator with Laplace exponent defined via μ by (3) and τ the usual time
change.

As was pointed out to us by a referee, the assertion (i) in this statement actually holds in the
almost-sure sense. This is an easy consequence of [9], Theorem 4.1.
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3. Preliminaries

Our goal now is to prove Theorems 1 and 2 and Proposition 2. We start in this section with some
preliminaries. From now on and until the end of Section 4, we suppose that assumption (H) is in
force. Consider the generating function defined for all λ ≥ 0 by

Gn(λ) =
n∑

k=0

(
k

n

)λ

pn,k = E

[(
Xn(1)

n

)λ]
(13)

with the convention G0(λ) = 0. Then

1 − Gn(λ) =
n∑

k=0

(
1 −

(
k

n

)λ)
pn,k =

∫
[0,1]

[λ]x(1 − x)p∗
n(dx), (14)

where [λ]x was defined around (2). Thanks to (H), we immediately get

an

(
1 − Gn(λ)

) −→
n→∞ψ(λ), λ > 0, (15)

the limit being the Laplace exponent defined at (3). In fact, if this convergence holds for every
λ > 0, then (1) holds.

Proposition 3. Assume that there exists a sequence of the form an = nγ �(n), n ≥ 1 for some
slowly varying function � : R+ → (0,∞), such that (15) holds for some function ψ and every
λ > 0, or only for an infinite set of values of λ ∈ (0,∞) having at least one accumulation point.
Then there exists a unique finite measure μ on [0,1] such that ψ(λ) = ∫ 1

0 [λ]xμ(dx) for every
λ > 0, and (H) holds for the sequence (an, n ≥ 1) and the measure μ.

Proof. For any given λ > 0, the function x 	→ [λ]x is bounded from below on [0,1] by a positive
constant cλ > 0. Therefore, if (15) holds, then, using (14), we obtain that

sup
n≥1

∫
[0,1]

an(1 − x)p∗
n(dx) ≤ 1

cλ

sup
n≥1

an

(
1 − Gn(λ)

)
< ∞.

Together with the fact that the measures an(1 − x)p∗
n(dx),n ≥ 1 are all supported on [0,1],

this implies that all subsequences of (an(1 − x)p∗
n(dx),n ≥ 1) have a weakly convergent subse-

quence. Using (15) again, we see that any possible weak limit μ satisfies ψ(λ) = ∫ 1
0 [λ]xμ(dx).

This function is analytic in λ > 0, and uniquely characterizes μ. The same holds if we only
know this function on an infinite subset of (0,∞) having an accumulation point, by analytic
continuation. �

For some technical reasons, we need for the proofs to work with sequences (an, n ≥ 0) rather
than sequences indexed by N. We therefore complete all the sequences (an, n ≥ 1) involved in
(H) or (15) with an initial term a0 = 1. This is implicit in the whole Sections 3 and 4.
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3.1. Basic inequalities

Let λ > 0 be fixed. By (15), there exists a finite constant c1(λ) > 0 such that for every n ≥ 0,

1 − Gn(λ) ≤ c1(λ)

an

. (16)

In particular, Gn(λ) > 1/2 for n large enough. Together with the fact that an > 0 for every n ≥ 0,
this entails the existence of an integer n0(λ) ≥ 0 and finite constants c2(λ), c3(λ) > 0 such that,
for every n ≥ n0(λ),

− ln(Gn(λ)) ≤ c2(λ)

an

≤ c3(λ). (17)

When, moreover, pn,n < 1 for all n ≥ 1 (or, equivalently, Gn(λ) < 1 for all n ≥ 1), we obtain the
existence of a finite constant c4(λ) > 0 such that, for every n ≥ 1

ln(Gn(λ)) ≤ −c4(λ)

an

. (18)

Last, since (an, n ≥ 0) is regularly varying with index γ and since an > 0 for all n ≥ 0, we get
from Potter’s bounds [3], Theorem 1.5.6, that for all ε > 0, there exist finite positive constants
c′

1(ε) and c′
2(ε) such that, for all 1 ≤ k ≤ n

c′
1(ε)

(
n

k

)γ−ε

≤ an

ak

≤ c′
2(ε)

(
n

k

)γ+ε

. (19)

3.2. Time changes

Let f : [0,∞) → [0,1] be a càdlàg non-increasing function. We let σf := inf{t ≥ 0 :f (t) = 0},
with the convention inf{∅} = ∞. Now fix γ > 0. For 0 ≤ t < σf , we let

τf (t) :=
∫ t

0
f (r)−γ dr,

and τf (t) = ∞ for t ≥ σf . Then (τf (t), t ≥ 0) is a right-continuous, non-decreasing process
with values in [0,∞], and which is continuous and strictly increasing on [0, σf ). Note that
τf (σf −) = ∫ σf

0 f (r)−γ dr might be finite or infinite. We set

τ−1
f (t) = inf{u ≥ 0 : τf (u) > t}, t ≥ 0,

which defines a continuous, non-decreasing function on R+, that is strictly increasing on
[0, τf (σf −)), constant equal to σf on [τf (σf −),∞), with limit τ−1

f (∞) = σf . The functions

τf and τ−1
f , respectively restricted to [0, σf ) and [0, τf (σf −)), are inverses of each other. The

function τf is recovered from τ−1
f by the analogous formula τf (t) = inf{u ≥ 0 : τ−1

f (u) > t}, for
any t ≥ 0.
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We now consider the function

g(t) := f (τ−1
f (t)), t ≥ 0,

which is also càdlàg, non-increasing, with values in [0,1], and satisfies σg = τf (σf −). Note also
that f (t) = g(τf (t)), t ≥ 0, where, by convention, g(∞) = 0. Finally, we have

dτf (t) = f (t)−γ dt on [0, σf )

and

τ−1
f (t) = f (τ−1

f (t))γ dt = g(t)γ dt on [0, σg).

Now, for c > 0, we will often use the change of variables u = τf (r/c) to get that when g(t) > 0
(i.e., t < σg), for any measurable, non-negative function h,

∫ cτ−1
f (t)

0
h(f (r/c))dr = c

∫ t

0
h(g(u))g(u)γ du. (20)

In particular τ−1
f (t) = ∫ t

0 g(r)γ dr for t < τf (σf −). This remains true for t ≥ τf (σf −) since

g(t) = 0 for t ≥ τf (σf −). Consequently, τ−1
f (t) = ∫ t

0 gγ (r)dr for all t ≥ 0 and

σf =
∫ ∞

0
g(r)γ dr. (21)

This also implies that τf (t) = inf{u ≥ 0 :
∫ u

0 gγ (r)dr > t} for every t ≥ 0.

3.3. Martingales associated with Xn

We finally recall the very classical fact that if P is the transition function of a Markov chain X

with countable state space M , then for any non-negative function f , the process defined by

f (X(k)) +
k−1∑
i=0

(Id − P)f (X(i)), k ≥ 0,

is a martingale, provided all the terms of this process are integrable. When, moreover, f −1({0})
is an absorbing set (i.e., f (X(k)) = 0 implies f (X(k + 1)) = 0), the process defined by

f (X(k))

k−1∏
i=0

f (X(i))

Pf (X(i))
, k ≥ 0,

with the convention 0 · ∞ = 0 is also a martingale (absorbed at 0), provided all the terms are
integrable. From this, we immediately obtain the following.
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Proposition 4. For every λ > 0 and every integer n ≥ 1, the processes defined by(
Xn(k)

n

)λ

+
k−1∑
i=0

(
Xn(i)

n

)λ(
1 − GXn(i)(λ)

)
, k ≥ 0, (22)

and

ϒ(λ)
n (k) =

(
Xn(k)

n

)λ
(

k−1∏
i=0

GXn(i)(λ)

)−1

, k ≥ 0, (23)

are martingales with respect to the filtration generated by Xn, with the convention that ϒ
(λ)
n (k) =

0 whenever Xn(k) = 0.

4. Scaling limits of non-increasing Markov chains

We now start the proof of Theorems 1 and 2 and Proposition 2. As mentioned before, this is done
by first establishing tightness for the processes Yn(t) = Xn(�ant)/n, t ≥ 0. We recall that (H)
is assumed throughout the section, except in the last subsection, which is devoted to the proof of
Proposition 1.

4.1. Tightness

Lemma 1. The sequence (Yn,n ≥ 0) is tight with respect to the Skorokhod topology.

Our proof is based on Aldous’ tightness criterion, which we first recall.

Lemma 2 (Aldous’ tightness criterion [2], Theorem 16.10). Let (Fn,n ≥ 0) be a sequence
of D-valued stochastic processes and for all n denote by J (Fn) the set of stopping times with
respect to the filtration generated by Fn. Suppose that for all fixed t > 0, ε > 0

(i) lim
a→∞ lim sup

n→∞
P

(
sup

s∈[0,t]
Fn(s) > a

)
= 0;

(ii) lim
θ0→0

lim sup
n→∞

sup
T ∈J (Fn),T ≤t

sup
0≤θ≤θ0

P
(|Fn(T ) − Fn(T + θ)| > ε

) = 0,

then the sequence (Fn,n ≥ 0) is tight with respect to the Skorokhod topology.

Proof of Lemma 1. Part (i) of Aldous’ tightness criterion is obvious since Yn(t) ∈ [0,1], for
every n ∈ Z+, t ≥ 0. To check part (ii), consider some λ > max(γ,1), where γ denotes the index
of regular variation of (an, n ≥ 0). Then, on the one hand, for all n ≥ 1, since the process Yn is
non-increasing and λ ≥ 1, we have for all (possibly random) times T and all θ ≥ 0,

|Yn(T ) − Yn(T + θ)|λ ≤ Yλ
n (T ) − Yλ

n (T + θ).
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On the other hand, let T be a bounded stopping time in J (Yn). Then �anT  is a stopping time
with respect to the filtration generated by Xn. Applying Doob’s optional stopping theorem to the
martingale (22) yields, for every θ ≥ 0,

E[Yλ
n (T ) − Yλ

n (T + θ)] = n−λ
E

[�an(T +θ)−1∑
i=�anT 

Xλ
n(i)

(
1 − GXn(i)(λ)

)]

≤ c1(λ)n−λ
E

[�an(T +θ)−1∑
i=�anT 

Xλ
n(i)

aXn(i)

]
,

where we used (16) at the last step. Next, since λ > γ , Xλ
n(i)/aXn(i) ≤ c′

2(λ − γ )nλ/an for all
n, i ≥ 0, where c′

2(ε) was introduced in (19) (note that the inequality is obvious when Xn(i) = 0,
since a0 > 0). Hence, for every bounded T ∈ J (Yn) and θ ≥ 0,

E[|Yn(T ) − Yn(T + θ)|λ] ≤ E[Yλ
n (T ) − Yλ

n (T + θ)]

≤ c1(λ)c′
2(λ − γ )

an

E[�an(T + θ) − �anT ]

≤ c1(λ)c′
2(λ − γ )(θ + a−1

n ),

which immediately yields (ii) in Aldous’ tightness criterion. �

4.2. Identification of the limit

We now want to prove uniqueness of the possible limits in distribution of subsequences of
Yn,n ≥ 0. Let (nk, k ≥ 0) be a strictly increasing sequence, such that the process Yn converges
in distribution to a limit Y ′ when n varies along (nk). To identify the distribution of Y ′, recall
the definition of Zn = (Yn(τ

−1
n (t)), t ≥ 0) at the end of Section 1.1. From the discussion in Sec-

tion 3.2, we have

Zn(t) = Yn

(∫ t

0
Zn(r)

γ dr

)
, t ≥ 0.

As in Section 3.2, let τY ′(u) = ∫ u

0 Y ′(r)−γ dr if Y ′(u) > 0 and τY ′(u) = ∞ otherwise, and let Z′
be the process defined by

Z′(t) = Y ′(τ−1
Y ′ (t)),

where τ−1
Y ′ (t) = inf{u ≥ 0 : τY ′(u) > t}, so that

Z′(t) = Y ′
(∫ t

0
Z′(r)γ dr

)
, t ≥ 0.

Then, as a consequence of [6], Theorem 1.5, Chapter 6 (it is in fact a consequence of a step in
the proof of this theorem rather than its exact statement), the convergence in distribution of Yn
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to Y ′ along (nk) entails that of (Yn,Zn) to (Y ′,Z′) in D2 along the same subsequence, provided
the following holds:

σY ′ = inf{s ≥ 0 :Y ′(s)γ = 0} = inf

{
s ≥ 0 :

∫ s

0
Y ′(u)−γ du = ∞

}
= lim

ε→0
inf{s ≥ 0 :Y ′(s)γ < ε},

which is obviously true here since Y ′ is a.s. càdlàg non-increasing. Therefore, the proof of The-
orem 1 and Proposition 2 will be completed provided we show the following.

Lemma 3. The process Z′ has same distribution as Z = (exp(−ξt ), t ≥ 0), where ξ is a subor-
dinator with Laplace exponent ψ .

To see that this entails Proposition 2 (hence Theorem 1), note that τY ′(t) = inf{u ≥
0 :

∫ u

0 Z′(r)γ dr > t} and Y ′(t) = Z′(τY ′(t)), for t ≥ 0, as detailed in Section 3.2. So the pre-
vious lemma entails that the only possible limiting distribution for (Yn) along a subsequence is
that of Y as defined in (4). Since (Yn,n ≥ 0) is a tight sequence, this shows that it converges in
distribution to Y , and then that (Yn,Zn) converges to (Y,Z), entailing Proposition 2.

To prove Lemma 3, we need a pair of results on Skorokhod convergence, which are elementary
and left to the reader. The first lemma is an obvious consequence of the definition of Skorokhod
convergence. The second one can be proved, for example, by using Proposition 6.5 in [6], Chap-
ter 3.

Lemma 4. Suppose that fn → f on D and that (gn,n ≥ 0) is a sequence of càdlàg non-negative
functions on [0,∞) converging uniformly on compacts to a continuous function g. Then fngn →
fg on D.

Lemma 5. Suppose that fn,f are non-increasing, non-negative functions in D such that fn →
f . Let ε > 0 be such that there is at most one x ∈ [0,∞) such that f (x) = ε. Define

tn,ε := inf{t ≥ 0 :fn(t) ≤ ε} and tε := inf{t ≥ 0 :f (t) ≤ ε}
(which can be infinite). Then it holds that tn,ε → tε as n → ∞, and if f (tε−) > ε or f (tε−) =
f (tε), then (

fn(t ∧ tn,ε), t ≥ 0
) → (

f (t ∧ tε), t ≥ 0
)
.

Proof of Lemma 3. Fix λ > 0 and consider the martingale (ϒ
(λ)
n (k), k ≥ 0) of Proposition 4.

This is a martingale with respect to the filtration generated by Xn. Therefore, the process
(ϒ

(λ)
n (�ant), t ≥ 0) is a continuous-time martingale with respect to the filtration generated

by Yn. Next, note that for all t ≥ 0, τ−1
n (t) is a stopping time with respect to this filtration,

which is bounded (by t ). Hence, by Doob’s optional stopping theorem, the process

M(λ)
n (t) = Zn(t)

λ

(�anτ−1
n (t)−1∏
i=0

GXn(i)(λ)

)−1

, t ≥ 0 (24)
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(with the usual convention 0 ·∞ = 0) is a continuous-time martingale with respect to the filtration
generated by Zn.

We want to exploit the sequences of martingales (M
(λ)
n , n ≥ 0) in order to prove that the

processes (Z′(t)λ exp(ψ(λ)t), t ≥ 0) are (càdlàg) martingales with respect to the filtration that
they generate, for every λ > 0. It is then easy to check that − ln(Z′) is a subordinator starting
from 0 with Laplace exponent ψ .

Using the Skorokhod representation theorem, we may assume that the convergence of Zn to
Z′ along (nk) is almost sure. We consider stopped versions of the martingale M

(λ)
n . For all ε > 0

and all n ≥ 1, let

Tn,ε := inf{t ≥ 0 :Zn(t) ≤ ε} and Tε := inf{t ≥ 0 :Z′(t) ≤ ε},
(which are possibly infinite) and note that Tn,ε (resp. Tε) is a stopping time with respect to the
filtration generated by Zn (resp. Z′).

Let C1 be the set of positive real numbers ε > 0 such that

P
(∃t1, t2 ≥ 0 : t1 �= t2,Z

′(t1) = Z′(t2) = ε
)
> 0.

We claim that this set is at most countable. Indeed, fix an ε > 0 and an integer K > 0, and
consider the set

Bε,K = {∃t1, t2 ∈ [0,K] : |t1 − t2| > K−1,Z′(t1) = Z′(t2) = ε}.
Let C1,K be the set of numbers ε such that P(Bε,K) > K−1. If this set contained an infinite
sequence (εi, i ≥ 0), then by the reverse Fatou lemma, we would obtain that the probability that
infinitely many of the events (Bεi ,K, i ≥ 0) occur is at least K−1. Clearly, this is impossible.
Therefore, C1,K is finite for every integer K > 0. Since C1 is the increasing union

C1 =
⋃
K∈N

C1,K,

we conclude that it is at most countable. For similar reasons, the set C2 of real numbers ε > 0
such that P(Z′(Tε−) = ε > Z′(Tε)) > 0 is at most countable.

In the rest of this proof, although all the statements and convergences are in the almost sure
sense, we omit the “a.s.” in order to have a lighter presentation. Our goal is to check that for all
λ > 0 and all ε /∈ C1 ∪ C2,

(a) as n → ∞, the sequence of martingales (M
(λ)
n (t ∧ Tn,ε), t ≥ 0) converges to the process

(Z′(t ∧ Tε)
λ exp(ψ(λ)(t ∧ Tε)), t ≥ 0),

(b) the process (Z′(t ∧Tε)
λ exp(ψ(λ)(t ∧Tε)), t ≥ 0) is a martingale with respect to its natural

filtration,
(c) the process (Z′(t)λ exp(ψ(λ)t)), t ≥ 0) is a martingale with respect to its natural filtration.

We start with the proof of (a). Fix λ > 0, a positive ε /∈ C1 ∪ C2 and recall the definition of
n0(λ) in (17). Let n ≥ n0(λ)/ε. When Zn(t ∧ Tn,ε) > 0, we can rewrite

M(λ)
n (t ∧ Tn,ε) = (

Zn(t ∧ Tn,ε)
)λ exp

(∫ �anτ−1
n (t∧Tn,ε)

0
− ln

(
GXn(�r)(λ)

)
dr

)
. (25)
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This identity is still true when Zn(t ∧ Tn,ε) = 0. Indeed, even when Zn(t ∧ Tn,ε) = 0, for r <

�anτ
−1
n (t ∧ Tn,ε), it holds that Xn(�r) ≥ nε ≥ n0(λ). Therefore, by (17), the integral involved

in (25) is well defined and finite. Hence (25) is valid for all t ≥ 0.
More precisely, as soon as r < �anτ

−1
n (t ∧ Tn,ε), we have by (17) that

− lnGXn(�r)(λ) ≤ c2(λ)

aXn(�r)
,

which, together with the change of variable identity (20), implies that∫ �anτ−1
n (t∧Tn,ε)

0
− ln

(
GXn(�r)(λ)

)
dr ≤ c2(λ)

∫ t∧Tn,ε

0

an

anZn(r)

Zn(r)
γ dr.

Potter’s bounds (19) and the fact that Zn(r) > ε for r < t ∧ Tn,ε lead to the existence of a finite
constant cλ,ε such that for every r < t ∧ Tn,ε ,

c2(λ)anZn(r)
γ

anZn(r)

≤ cλ,ε.

Therefore, for every t ≥ 0,∫ �anτ−1
n (t∧Tn,ε)

0
− ln

(
GXn(�r)(λ)

)
dr ≤ cλ,ε(t ∧ Tn,ε) ≤ cλ,εt.

In particular,

M(λ)
n (t ∧ Tn,ε) ≤ exp(cλ,εt) ∀t ≥ 0. (26)

Now we let n → ∞. Since ε /∈ C1 ∪ C2, we have, by Lemma 5, with probability 1,

Tn,ε → Tε and
(
Zn(t ∧ Tn,ε), t ≥ 0

) → (
Z′(t ∧ Tε), t ≥ 0

)
.

Using (25) and Lemma 4, we see that it is sufficient to prove that(
exp

(∫ �anτ−1
n (t∧Tn,ε)

0
− ln

(
GXn(�r)(λ)

)
dr

)
, t ≥ 0

)
→

n→∞
(
exp

(
ψ(λ)(t ∧ Tε)

)
, t ≥ 0

)
(27)

uniformly on compacts to get the convergence of martingales stated in (a).
Since we are dealing with non-decreasing processes and the limit is continuous, it is sufficient

to check the pointwise convergence by Dini’s theorem. Fix t ≥ 0. It is well known (see [6],
Proposition 5.2, Chapter 3) that the Skorokhod convergence implies that Zn(r) → Z′(r) for all r

that is not a jump time of Z′, hence for a.e. r . For such an r , if Z′(r) > 0, we have nZn(r) → ∞.
Hence if r < t ∧ Tn,ε , we have Zn(r) ≥ ε, so that

− ln
(
GnZn(r)(λ)

)
anZn(r)

γ ∼
n→∞

an

anZn(r)

Zn(r)
γ ψ(λ) →

n→∞ψ(λ),
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using the uniform convergence theorem for slowly varying functions ([3], Theorem 1.2.1). More-
over, as explained above, the left-hand side of this expression is bounded from above by cλ,ε as
soon as n ≥ n0(λ)/ε. This implies, using (20), that∫ anτ−1

n (t∧Tn,ε)

0
− ln

(
GXn(�r)(λ)

)
dr =

∫ t∧Tn,ε

0
− ln

(
GnZn(r)(λ)

)
anZn(r)

γ dr

converges to ψ(λ)(t ∧ Tε) by dominated convergence. Last, note that∫ anτ−1
n (t∧Tn,ε)

�anτ−1
n (t∧Tn,ε)

− ln
(
GXn(�r)(λ)

)
dr ≤ − ln

(
G

Xn(�anτ−1
n (t))(λ)

)
1{t<Tn,ε}

= − ln
(
GnZn(t)(λ)

)
1{t<Tn,ε},

since Xn(�r) is constant on the integration interval and anτ
−1
n (t ∧ Tn,ε) is an integer when

t ≥ Tn,ε . The right-hand side in the inequality above converges to 0 as n → ∞ since nZn(t) >

nε when t < Tn,ε and Gn(λ) → 1 as n → ∞. Finally, we have proved the convergence (27),
hence (a).

The assertion (b) follows as a simple consequence of (a). By (26) we have that, for each t ≥ 0,
(M

(λ)
n (t ∧ Tn,ε), n ≥ n0(λ)/ε) is uniformly integrable. Together with the convergence of (a), this

is sufficient to deduce that the limit process (Z′(t ∧Tε)
λ exp(ψ(λ)(t ∧Tε)), t ≥ 0) is a martingale

with respect to its natural filtration. See [6], Example 7, page 362.
We finally prove (c). Note that(

Z′(t ∧ Tε)
λ exp

(
ψ(λ)(t ∧ Tε)

)
, t ≥ 0

)−→
ε→0

(
Z′(t)λ exp(ψ(λ)t), t ≥ 0

)
for the Skorokhod topology. Besides, for each t ≥ 0 and ε > 0, we have

Z′(t ∧ Tε)
λ exp(ψ(λ)(t ∧ Tε)) ≤ exp(ψ(λ)t).

As before, we can use an argument of uniform integrability to conclude that (Z′(t)λ exp(ψ(λ)t),

t ≥ 0) is a martingale. �

4.3. Absorption times

Recall that An denotes the first time at which Xn reaches the set of absorbing states A. To start
with, we point out that there is no loss of generality in assuming that A = {0}. Indeed, let amax

be the largest element of A. If amax ≥ 1, one can build a Markov chain X̃n starting from n and
with transition probabilities p̃i,j = pi,j for i /∈ A and all j ≥ 0, p̃i,0 = 1 for i ∈ A, so that

X̃n(k) = Xn(k) for k ≤ An and X̃n(k) = 0 if k > An.

Clearly, this modified chain has a unique absorbing state, which is 0, and the transition probabil-
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ities (p̃n,k) satisfy (H) if and only if (pn,k) do. Besides, the first time Ãn at which X̃n reaches 0
is clearly either equal to An or to An + 1. Moreover, constructing Ỹn from X̃n as Yn is defined
from Xn in Section 1.1, we see that supt≥0 |Ỹn(t) − Ỹn(t)| ≤ amax/n. This is enough to see that
the convergence in distribution as n → ∞ of (Ãn/an, Ỹn) entails that of (An/an,Yn) towards the
same limit. This in turn entails the convergence in distribution of (An/an,Yn,Zn) to the required
limit, using a part of the proof of [6], Theorem 1.5, Chapter 6, as already mentioned at the begin-
ning of Section 4.2. In conclusion, if the convergence of Theorem 2 is proved for the sequence
(Ãn/an, Ỹn, Z̃n), n ≥ 0, it will also hold for (An/an,Yn,Zn), n ≥ 0, with the same distribution
limit. In the following, we will therefore additionally suppose that amax = 0, that is,

A = {0}, or equivalently, pn,n < 1 for every n ≥ 1. (28)

We now set out a preliminary lemma that we will use for the proof of Theorem 2.

Lemma 6. For every λ > 0 and β > 0, there exists some finite constant cλ,β > 0 such that for
all n ∈ Z+ and all t ≥ 0,

Zn(t)
λ ≤ cλ,βM

(λ)
n (t) + 1

tβ
, (29)

where the processes M
(λ)
n are the martingales defined in (24). Consequently,

E[Zn(t)
λ] ≤ cλ,β + 1

tβ
.

In the cases where n−γ an → � ∈ (0,∞), our proof can be adapted to get the following stronger
result: There exists some finite constant cλ such that for all n ∈ Z+ and all t ≥ 0, Zn(t)

λ ≤
M

(λ)
n (t) exp(cλ(1 − t)), and consequently, E[Zn(t)

λ] ≤ exp(cλ(1 − t)).

Proof. Fix λ > 0 and β > 0. For a given n, t , if Zn(t)
λ ≤ t−β , then obviously (29) is satisfied,

irrespective of any choice of cλ,β . So we assume that Zn(t)
λ > t−β , and in particular, Zn(t) > 0.

By (24), we have

Zn(t)
λ = M(λ)

n (t) exp

(∫ �anτ−1
n (t)

0
ln

(
GXn(�r)(λ)

)
dr

)
.

Note that Xn(�r) ≥ 1 as soon as r ≤ �anτ
−1
n (t) and Zn(t) > 0. Moreover, under the assump-

tion (28), we have ln(Gn(λ)) ≤ −c4(λ)/an < 0 for every n ≥ 1 by (18). Hence, for all ε > 0,∫ �anτ−1
n (t)

0
ln

(
GXn(�r)(λ)

)
dr

≤
∫ �anτ−1

n (t)

0

−c4(λ)

aXn(�r)
dr =

∫ anτ−1
n (t)

0

−c4(λ)

aXn(�r)
dr −

∫ anτ−1
n (t)

�anτ−1
n (t)

−c4(λ)

aXn(�r)
dr
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≤
by (20)

−c4(λ)

∫ t

0

an

anZn(r)

Zn(r)
γ dr + c4(λ)

infk≥0 ak

≤
by (19)

−c4(λ)c′
1(ε)

∫ t

0
Zn(r)

ε dr + c4(λ)

infk≥0 ak

≤ −c4(λ)c′
1(ε)tZn(t)

ε + c4(λ)

infk≥0 ak

.

Since Zn(t)
λ > t−β , we have, taking ε = λ/2β , the existence of a finite constant cλ,β , indepen-

dent of n and t , such that

Zn(t)
λ ≤ M(λ)

n (t) exp
(
−c4(λ)c′

1(λ/2β)t1/2 + c4(λ)/ inf
k≥0

ak

)
≤ cλ,βM(λ)

n (t)/tβ,

giving the result. �

Proof of Theorem 2. Notice that the first time at which Yn reaches 0 is∫ ∞

0
Zn(r)

γ dr = σn = An/an

using (21) for the first equality and (28) for the second equality. The previous lemma ensures that
supn≥1 E[σn] < ∞, which implies that the sequence (σn,n ≥ 1) is tight. In turn, this implies that
the sequence ((Yn,Zn,σn), n ≥ 1) is tight.

The proof of Theorem 2 will therefore be completed if we prove the uniqueness of possi-
ble limiting distributions of ((Yn,Zn,σn), n ≥ 1) along a subsequence. In that aim, consider a
strictly increasing sequence of integers (nk, k ≥ 0) such that the sequence ((Yn,Zn,σn), n ≥ 1)

converges in distribution along (nk) to a limit (Y ′,Z′, σ ′). By Proposition 2, (Y ′,Z′) has same
distribution as (Y,Z), so by abuse of notations, for simplicity, we write (Y,Z) instead of (Y ′,Z′).
Our goal is to show that σ ′ is the extinction time σ = σY = ∫ ∞

0 Z(r)γ dr , with the notations of
Section 3.2.

By the Skorokhod representation theorem, we may suppose that the convergence of (Yn,Zn,

σn) to (Y,Z,σ ′) is almost sure. It is then immediately checked that a.s.,

σ ′ = lim inf
n→∞ inf{t ≥ 0 :Yn(t) = 0} ≥ inf{t ≥ 0 :Y(t) = 0} = σ,

so in order to show that σ = σ ′ a.s., it suffices to check that E[σ ′] ≤ E[σ ]. To see this, note that
the convergence in the Skorokhod sense implies that a.s., for a.e. t , Zn(t) → Z(t) and therefore,
by Fubini’s theorem, that for a.e. t , Zn(t) → Z(t) a.s. We then obtain that for a.e. t , Zn(t)

γ →
Z(t)γ a.s., and since all these quantities are bounded by 1, we have, by dominated convergence,
that for a.e. t , E[Zn(t)

γ ] → E[Z(t)γ ]. Then, again by dominated convergence, using Lemma 6,
we get

∫ ∞
0 E[Zn(r)

γ ]dr → ∫ ∞
0 E[Z(r)γ ]dr < ∞. Hence, by Fubini’s theorem

E

[∫ ∞

0
Zn(r)

γ dr

]
−→
n→∞ E

[∫ ∞

0
Z(r)γ dr

]
.

But, by Fatou’s lemma,

E[σ ′] ≤ lim inf
n

E

[∫ ∞

0
Zn(r)

γ dr

]
= E

[∫ ∞

0
Z(r)γ dr

]
= E[σ ],
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as wanted. This shows that (Yn,Zn,σn) converges in distribution (without having to take a sub-
sequence) to (Y,Z,σ ), which gives the first statement of Theorem 2.

Since (Yn,Zn,σn) converges in distribution to (Y,Z,σ ), by using Skorokhod’s representa-
tion theorem, we assume that the convergence is almost-sure. Note that the above proof actu-
ally entails the convergence of moments of order 1, E[σn] → E[σ ]. We now want to prove the
convergence of moments of orders u ≥ 0. It is well known (see [4], Proposition 3.3) that the
random variable σ has positive moments of all orders and that its moment of order p ∈ N is
equal to p!/∏p

j=1 ψ(γj). Let u ≥ 0. Since σn → σ a.s., if we show that supn≥1 E[σp
n ] < ∞ for

some p > u, then ((σn − σ)u,n ≥ 0) will be uniformly integrable, entailing the convergence of
E[|σn − σ |u] to 0. So fix p > 1, consider q such that p−1 + q−1 = 1 and use Hölder’s inequality
to get ∫ ∞

1
Zn(r)

γ dr ≤
(∫ ∞

1
Zn(r)

γpr2p/q dr

)1/p(∫ ∞

1
r−2 dr

)1/q

.

Together with Lemma 6 this implies that

sup
n≥1

E

[(∫ ∞

1
Zn(r)

γ dr

)p]
< ∞,

which, clearly, leads to the required supn≥1 E[σp
n ] < ∞. �

4.4. Proof of Proposition 1

Consider a probability measure μ on [0,1], a real number γ > 0 and a function � : R+ → (0,∞)

slowly varying at ∞. Then set an = nγ �(n), let γ ′ be such that max(1, γ ) < γ ′ < γ + 1 and
assume that n is large enough so that nγ ′−1 < an ≤ nγ ′

. For such an n and 0 ≤ k ≤ n − 1, set

pn,k = a−1
n

∫
[0,1−a−1

n )

(
n

k

)
xk(1 − x)n−k−1μ(dx)

+ n1−γ ′
μ({1})1{k=n−�nγ ′

/an}, 0 ≤ k ≤ n − 1.

Clearly, these quantities are non-negative and

n−1∑
k=0

pn,k = a−1
n

∫
[0,1−a−1

n )

(1 − xn)(1 − x)−1μ(dx) + n1−γ ′
μ({1}) ≤ μ([0,1)) + μ({1}) = 1.

Let pn,n = 1 − ∑n−1
k=0 pn,k, in order to define a probability vector (pn,k,0 ≤ k ≤ n) on

{0,1, . . . , n}. Now, for any continuous test function f : [0,1] → R+,

an

n∑
k=0

f

(
k

n

)(
1 − k

n

)
pn,k =

∫
[0,1−a−1

n )

n−1∑
k=0

f

(
k

n

)(
1 − k

n

)(
n

k

)
xk(1 − x)n−k−1μ(dx)

+ ann
−γ ′ �nγ ′

/anf (1 − n−1�nγ ′
/an)μ({1}).



Self-similar scaling limits of non-increasing Markov chains 1241

The term involving μ({1}) clearly converges to f (1)μ({1}) since f is continuous. For the other
term, note that for Bn,x a binomial random variable with parameters n,x,

n−1∑
k=0

f

(
k

n

)(
1 − k

n

)(
n

k

)
xk(1 − x)n−k = E

[
f

(
Bn,x

n

)(
1 − Bn,x

n

)]
,

which converges to f (x)(1 − x) as n → ∞ and is bounded on [0,1] by a constant times (1 − x)

since f is bounded. Hence by dominated convergence,

an

n∑
k=0

f

(
k

n

)(
1 − k

n

)
pn,k →

∫
[0,1]

f (x)μ(dx).

5. Scaling limits of random walks with a barrier

Recall that (qk, k ≥ 0) is a probability distribution satisfying q0 < 1, as well as the definition
of the random walk with a barrier model Xn = n − S(n) and notation from Section 2.1. In the
following, n will always be implicitly assumed to be large enough so that qn < 1.

Proof of Theorem 3. Let us first prove (i). We assume that qn = n−γ �(n), where (�(x), x ≥ 0)

is slowly varying at ∞. We want to show that (H) is satisfied, with an = 1/qn and μ(dx) =
γ (1 − x)−γ dx 1{0<x<1}. From this, the conclusion follows immediately.

Using the particular form of the transition probabilities (6), it is sufficient to show that for
every function f that is continuously differentiable on [0,1],

1

qn

n∑
k=0

qn−k∑n
i=0 qi

(
1 − k

n

)
f

(
k

n

)
−→ γ

∫ 1

0
f (x)(1 − x)−γ dx. (30)

Let g(x) = xf (1 − x). By Taylor’s expansion, we have, for every x ∈ (0,1), g((x + 1
n
) ∧ 1) −

g(x) = g′(x)/n + εn(x)/n, where supx∈[0,1] εn(x) converges to 0 as n → ∞. Therefore, since
g(0) = 0,

1

qn

n∑
k=0

qn−k∑n
i=0 qi

(
1 − k

n

)
f

(
k

n

)
= 1

qn(1 − qn)

n∑
k=0

qkg

(
k

n

)

= 1

qn(1 − qn)

n−1∑
k=0

qk

(
g

(
k + 1

n

)
− g

(
k

n

))
− g(1)

1 − qn

= 1

nqn(1 − qn)

n−1∑
k=0

qk

(
g′

(
k

n

)
+ εn

(
k

n

))
− g(1)

1 − qn

.
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Because of the uniform convergence of εn to 0, this is equivalent as n → ∞ to

1

n(1 − qn)

n−1∑
k=0

qk

qn

g′
(

k

n

)
− g(1)

1 − qn

−→
n→∞

∫ 1

0
x−γ g′(x)dx − g(1)

by a simple use of the uniform convergence theorem for regularly varying functions ([3], Theo-
rem 1.5.2). Integrating by parts, the latter integral is the right-hand side of (30).

Statement (ii) is even simpler. Fix λ > 0. For all k ≥ 1, it holds that n(1 − (1 − k/n)λ)

converges to λk as n → ∞. Moreover, n(1 − (1 − k/n)λ) ≤ max(1, λ)k. Hence, when m =∑∞
k=0 kqk < ∞, we have by dominated convergence that

n

(
1 −

n∑
k=0

pn,k

(
k

n

)λ
)

−→
n→∞λm.

We conclude by Theorems 1 and 2 and Proposition 3. �

Let us now consider some variants of the random walk with a barrier. The results below recover
and generalize results of [14]. Let (ζi, i ≥ 1) be an i.i.d. sequence with distribution (qn, n ≥ 0).
Set S0 = 0 and

Sk =
k∑

i=1

ζi, k ≥ 1,

for the random walk associated with (ζi, i ≥ 1). We let S̃
(n)
k = n∧Sk, k ≥ 0 be the walk truncated

at level n. We also define Ŝ
(n)
k recursively as follows: Ŝ

(n)
0 = 0, and given Ŝ

(n)
k has been defined,

we let

Ŝ
(n)
k+1 = Ŝ

(n)
k + ζk+11{Ŝ(n)

k +ζk+1≤n}.

In other words, the process Ŝ (n) evolves as S, but ignores the jumps that would bring it to a level
higher than n. This is what is called the random walk with a barrier in [14]. However, in the latter
reference, the authors assume that q0 = 0 and therefore really consider the variable An associated
with Xn as defined above, as they are interested in the number of strictly positive jumps that Ŝ (n)

accomplishes before attaining its absorbing state. See the forthcoming Lemma 7 for a proof of
the identity in distribution between An and the number of strictly positive jumps of Ŝ (n) when
q0 = 0.

The processes X̃n = n − S̃(n) and X̂n = n − Ŝ (n) are non-increasing Markov chains with
transition probabilities given by

p̃i,j = qi−j + 1{j=0}qi, p̂i,j = qi−j + 1{j=i}qi, 0 ≤ j ≤ i.

We let Ãn and Ân be the respective absorption times. By an argument similar to that in the above
proof, it is easy to show that when qn is of the form n−γ �(n) for some γ ∈ (0,1) and slowly
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varying function �, then (H) is satisfied for these two models, with sequence an = 1/qn and
measures

μ̃ = δ0 + μ = δ0 + γ (1 − x)−γ dx 1{0<x<1}, μ̂ = μ = γ (1 − x)−γ dx 1{0<x<1}.

Consequently, we obtain the joint convergence of Ŷn = (X̂n(�t/qn)/n, t ≥ 0) and qnÂn to the
same distributional limit as (Yn, qnAn) as in (i), Theorem 3, with the obvious notation for Yn. In
the same way, (Ỹn(�t/qn), t ≥ 0) and Ãn converge to the limits involved in Theorems 1 and 2,
but this time, using a killed subordinator ξ (k) with Laplace exponent

ψ(k)(λ) = ψ(λ) + 1 = 1 +
∫ ∞

0
(1 − e−λy)

γ e−y dy

(1 − e−y)γ+1
, λ ≥ 0.

If ξ is a subordinator with Laplace exponent ψ , and if e is an exponential random variable with
mean 1, independent of ξ , then ξ (k)(t) = ξ(t) + ∞1{t≥e}, t ≥ 0 is a killed subordinator with
Laplace exponent ψ(k).

In fact, we have a joint convergence linking the processes Xn, X̃n, X̂n together. Note that the
three can be joined together in a very natural way, by building them with the same variables
(ζi, i ≥ 1). This is obvious for X̃n and X̂n, by construction. Now, a process with the same distri-
bution as Xn can be constructed simultaneously with X̂n by a simple time change, as follows.

Lemma 7. Let T
(n)
0 = 0, and recursively, let

T
(n)
k+1 = inf

{
i > T

(n)
k : Ŝ (n)

i−1 + ζi ≤ n
}
.

Then the process (X̂n(T
(n)
k ), k ≥ 0) has same distribution as Xn, with the convention that

X̂n(∞) = limk→∞ X̂n(k).

Proof. We observe that the sequence (ζ
T

(n)
k

, k ≥ 1) is constructed by rejecting elements ζi such

that Ŝ
(n)
i−1 + ζi > n, so by a simple recursive argument, given X̂n(T

(n)
k ), the random variable ζ

T
(n)
k+1

has the same distribution as a random variable ζ with distribution q conditioned on X̂n(T
(n)
k ) +

ζ ≤ n. This is exactly the definition of S(n). �

In the following statement, we assume that Xn, X̃n, X̂n are constructed jointly as above. We
let ξ be a subordinator with Laplace exponent ψ as in the statement of (i) in Theorem 3. Let
ξ (k) be defined as above, using an independent exponential variable e. Let τ be the time change
defined as in the Theorem 3, and let τ (k) be defined similarly from ξ (k). Let

Y = (
exp

(−ξτ(t)

)
, t ≥ 0

)
, Ỹ = (

exp
(−ξ

(k)

τ (k)(t)

)
, t ≥ 0

)
.

Proposition 5. Under the same hypotheses as in (i), Theorem 3, the following convergence in
distribution holds in D3:

(Yn, Ỹn, Ŷn)
(d)−→

n→∞(Y, Ỹ , Y ),
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and jointly,

qn(An, Ãn, Ân)
(d)−→

n→∞

(∫ ∞

0
e−γ ξt dt,

∫ e

0
e−γ ξt dt,

∫ ∞

0
e−γ ξt dt

)
.

Proof (sketch). The convergence of one-dimensional marginals holds by the above discussion.
Let (Y (1), Y (2), Y (3), σ (1), σ (2), σ (3)) be a limit in distribution of the properly rescaled 6-tuple
(Xn, X̃n, X̂n,An, Ãn, Ân) along some subsequence. These variables are constructed by three
subordinators, ξ (1), ξ (2), ξ (3), with the same law as ξ, ξ (k), ξ, respectively. Now, we use the
obvious fact that X̃n ≤ Xn ≤ X̂n. Taking limits, we have Y (2) ≤ Y (1) ≤ Y (3) a.s. Taking ex-
pectations, using the fact that Y (1) and Y (3) have the same distribution and using the fact that
these processes are càdlàg, we obtain that Y (1) = Y (3) a.s. Similarly, σ (1) = σ (3) ≥ σ (2) a.s., and
σ (2) is the first time where Y (2) attains 0 (which is done by accomplishing a negative jump).
Moreover, we have X̃n(k) = Xn(k) = X̂n(k) for every k < Ãn. By passing to the limit, we ob-
tain that Y (1) = Y (2) = Y (3) a.s. on the interval [0, σ (2)]. This shows that ξ (1) = ξ (3) and that
ξ (1) = ξ (2) = ξ (3) on the interval where ξ (2) is finite. Since ξ (2) is a killed subordinator, this
completely characterizes the distribution of (ξ (1), ξ (2), ξ (3)) as that of (ξ, ξ (k), ξ), and this al-
lows us to conclude. Details are left to the reader. �

6. Collisions in �-coalescents

We now prove Theorem 4. Using Theorems 1 and 2, all we have to check is that the hypothe-
sis (H) is satisfied with the parameters an = ∫

[1/n,1] x
−2�(dx), n ≥ 1, and ψ defined by (9). This

is an easy consequence of the following Lemmas 8 and 9. We recall that the transition probabili-
ties of the Markov chain (Xn(k), k ≥ 0), where Xn(k) is the number of blocks after k coalescing
events when starting with n blocks, are given by (7).

Lemma 8. Assume that �({0}) = 0 and that u → ∫
[u,1] x

−2�(dx) varies regularly at 0 with
index −γ , γ ∈ (0,1). Then,

gn ∼ �(2 − γ )

∫
[1/n,1]

x−2�(dx) as n → ∞.

Proof. First note that

gn =
∫

(0,1]
(
1 − (1 − x)n − n(1 − x)n−1x

)
x−2�(dx)

= In − Jn,

where, defining by �̃ the push-forward of � by the mapping x 	→ − log(1 − x),

In =
∫

(0,∞]
(
1 − exp(−nx) − n exp(−xn)x

)(
1 − exp(−x)

)−2
�̃(dx),

Jn =
∫

(0,∞]
(
n exp

(−x(n − 1)
)(

1 − exp(−x) − x exp(−x)
))(

1 − exp(−x)
)−2

�̃(dx).
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The integrand in the integral Jn converges to 0 as n → ∞, for all x ∈ (0,∞]. And, clearly, there
exists some finite constant C such that for all x ∈ (0,∞], and all n ≥ 1,∣∣n exp

(−x(n − 1)
)(

1 − exp(−x) − x exp(−x)
)(

1 − exp(−x)
)−2∣∣

≤ C
(
1 − exp(−x)

)−1
.

Hence, by dominated convergence, Jn → 0 as n → ∞. Next, In can be rewritten as

In =
∫

(0,∞]

(∫
(0,x]

n2u exp(−nu)du

)(
1 − exp(−x)

)−2
�̃(dx)

= n2
∫

(0,∞)

exp(−nu)u

(∫
[1−exp(−u),1]

x−2�(dx)

)
du.

Since
∫
[u,1] x

−2�(dx) varies regularly as u → 0 with index −γ ,

u

∫
[1−exp(−u),1]

x−2�(dx) ∼
u→0

u

∫
[u,1]

x−2�(dx)

and these functions vary regularly at 0 with index 1 − γ . It is then standard that∫
[0,t]

u

(∫
[1−exp(−u),1]

x−2�(dx)

)
du ∼

t→0

t2

2 − γ

∫
[1−exp(−t),1]

x−2�(dx)

and then, applying Karamata’s Tauberian theorem (cf. [3], Theorem 1.7.1′), that∫
(0,∞)

exp(−nu)u

(∫
[1−exp(−u),1]

x−2�(dx)

)
du

∼
n→∞

�(3 − γ )

(2 − γ )n2

∫
[1/n,1]

x−2�(dx).

Using �(3 − γ ) = �(2 − γ )(2 − γ ), we therefore have, as n → ∞

gn ∼ In ∼ �(2 − γ )

∫
[1/n,1]

x−2�(dx). �

Lemma 9. For all measures � such that
∫
[0,1] x

−1�(dx) < ∞, and all λ ≥ 0

n−1∑
k=1

gn,k

(
1 −

(
k

n

)λ)
→

n→∞

∫
[0,1]

(
1 − (1 − x)λ

)
x−2�(dx).
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Proof. Note that

n−1∑
k=1

gn,k

(
1 −

(
k

n

)λ)

=
∫

[0,1]

(
n−2∑
k=0

(
n

k

)
xn−k(1 − x)k

(
1 −

(
k + 1

n

)λ))
x−2�(dx)

=
∫

[0,1]

(
E

[
1 −

(
B(n,x) + 1

n

)λ]
− (1 − x)n

(
1 −

(
n + 1

n

)λ))
x−2�(dx),

where B(n,x) denotes a binomial random variable with parameters n,1 − x. By the strong law of
large numbers and dominated convergence (0 ≤ (B(n,x) + 1)/n ≤ 2), we have that

E

[
1 −

(
B(n,x) + 1

n

)λ]
→

n→∞ 1 − (1 − x)λ ∀x ∈ [0,1].

Moreover, (1 − x)n(1 − ( n+1
n

)λ) → 0, for every x ∈ [0,1]. Besides, since 1 − yλ ≤
max(1, λ)(1 − y) for y ∈ [0,1],
n−2∑
k=0

(
n

k

)
xn−k(1 − x)k

(
1 −

(
k + 1

n

)λ)
≤ max(1, λ)

n−2∑
k=0

(
n

k

)
xn−k(1 − x)k

(
1 −

(
k + 1

n

))
≤ max(1, λ)

(
1 − (1 − x + 1/n) + (1 − x)n/n

)
≤ max(1, λ)x.

Using that
∫
[0,1] x

−1�(dx) < ∞, we conclude by dominated convergence. �

Proof of Theorem 4. Under the assumptions of Theorem 4, by Lemmas 8 and 9,

1 −
n∑

k=0

pn,k

(
k

n

)λ

= 1

gn

(
n−1∑
k=1

gn,k

(
1 −

(
k

n

)λ))
∼

∫
[0,1](1 − (1 − x)λ)x−2�(dx)

�(2 − γ )
∫
[1/n,1] x−2�(dx)

as n → ∞ and for all λ ≥ 0. Hence (H) holds by Proposition 3 and Theorem 4 is proved. �
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