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Goal of the talk

Explain

Theorem (Hoffoeck and Vespa)

) Lie g
Hielb(A, M) _ TOI’*rSh (1‘7 Lé;,e(A, M))

where
@ AalLie algebra
@ M an A-module
@ HLeib | gibniz homology
e Ik a category (enriched over Vect)
e tand LL®(A, M) functors.
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Recollections

The category I

Objects: [n] ={0,...,n} for n > 0 (with basepoint 0)
Morphisms: '([n], [m]) maps of pointed sets.

Example (n=5, m=3):

0 1
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Recollections

The category I
Objects: [n] = {0,...,n} for n > 0 (with basepoint 0)
Morphisms: '([n], [m]) maps of pointed sets.

The Loday functor

For A unitary commutative algebra and M a A-module,
L(AM): T — k-Mod
[n] —» M A®"
f:[n—[mw—f: Mx A" - M AST
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Recollections

Example for the morphism f € I'([5], [3]) depicted by
0 1 2 3

f(@®ar®@a®az®as®as) =by @by ® b ® bs

where
@ by = ap.a
@ by =a3 b = H a
() b2 = d1aaas jef=1(3i)
@ bz=1
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Recollections

Theorem (Pirashvili, Richter, Robinson, Whitehouse)

For A unitary commutative algebra and M a A-module,
HH&m (A, M) = Tor (t, £(A, M)) for a field k of char 0

HE=(A, M) = Tor! (t, L(A, M)) in the general case

Similar results for E,-homology (Livernet, Richter) of E,-algebras and
Hochschild homology of associative algebras.
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Is there a similar theorem in other contexts?
For instance for algebras over an operad?

First case to try: Lie algebras.
One main problem is that the operad Lie is not a set operad, unlike the

operads As and Com.
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Last recollection

A Lie algebra A is a k-vector space equipped with an anti-symmetric
bracket [—, —] satisfying [a, [b, c]] + [b, [c, &]] + [c, [a, b]] = 0.

The Leibniz homology of a Lie algebra with coefficients in a A-module
M is given by the homology of the complex

(CLeB(A M) = M @ A®" d)

where the differential is given by

dx®ai®...®a) = » +x0a®...8_10[a,a]®...080...0a,
1<i<j<n

+ ) txalea®..080...0a.
1</<n
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Tensor product of functors

Given C a category
F a functor C% — k-Mod (called right ¢-module)
G a functor € — k-Mod (called left C-module)

F ®ce G is the k-module defined by

F®ecG= EBF(C) @k G(c)/ ~

ceC

where x ® G(f)(y) ~ F(f)(x) @k y forall f: ¢ — ¢/, x € F(c’) and
y € G(c).

Proposition
The tensor product of functors is right exact in both variables.
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Tor functor of functors

There is a notion of projective resolutions for C-modules.

Definition

Tor®(F, G) = H.(P. ®¢ G)

where P, is a projective resolution of F in the category of right
C-modules.

Moreover, the previous definitions of the tensor product of functors and
of the Tor functor still hold when € is a category enriched over Vect.
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Where are we?

Remember our goal:

Theorem (Hoffbeck and Vespa)

Hﬁe’b(A, M) = Tor*réﬁ(t, Léf,e(A, M))

Want to define
e the category 'L
@ the functor LL®(A, M) (from It to k-Mod).

First: define a category I'gp, similar to ' but with less symmetries.
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The category gy

Definition: The category l'g,

Objects: [n] = {0,..., n} for n > 0 (with basepoint 0)
Morphisms: I'gx([n], [m]) surjective shuffle maps of pointed sets, that is
maps « such that min(a~"(i)) < min(a~"(j)) whenever i < j.

Example of a morphism « in I'gx([5], [2]):

Py

In this case, 0 < 1 < 3.
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The enriched category I'f, for a symmetric operad

P symmetric reduced operad in Vect (reduced means P(0) = 0)

Definition: The category 't (Hoffoeck and Vespa)
Objects: [n] = {0, ..., n} for n > 0 (with basepoint 0)

Morphisms: TR ([n],[m))= @ P(a"'(0)®...®P(a”"(m)).
a€lgn([n],[m])

Example of a morphism f in I'£, ([5], [2]):

0 2 1 3 4 5
N S | \I/
0 h "
0 1 2

with fo € P(2), i € P(1), € P(3).
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The enriched category 'L

Goal: make explicit the category I't, for P = Lie.

We know a basis of the operad Lie, given in arity n by:

n > 1,0 permutation of {2,...,n}

Note: this basis is related to Lie words of the form
[ X1, Xo2)]s Xo@)]s - - - > Xo ()]
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The enriched category 'L

We obtain a linear basis of I'x¢([n], [m]) by decorating the forests of
Fsn([n], [m]) with elements of the basis of Lie.

In the previous example, 2 elements in the basis are associated to the

shuffle map a.

‘r

0

TN

TN

3 4 5
3\<5/4
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The enriched category 'L

We obtain a linear basis of I'x¢([n], [m]) by decorating the forests of
Fsn([n], [m]) with elements of the basis of Lie.

In the previous example, 2 elements in the basis are associated to the

shuffle map a.

] 3 4 5
] 3 5 4
r K/ -

Leibniz homology as functor homology 12/9/2014

0

TN

+«— (0,2]1/3,4,5)

TN

(0,2[113,5,4)
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The functor LL°(A, M) : TLle — k-Mod

Given a Lie algebra A and a A-module M

Definition (Hoffbeck and Vespa)
The functor £L8(A, M) : TL® — k-Mod is defined on objects by

Ler (A M)([n]) = M & A"

and for a morphism f = (a, f, . .., fn) € T5e([n], [m]), the induced map
fi: M@ A®" —» M A9Mis given by

(@®a1®...0ap)=by®...Q by

where b; =6(fi® @ &) (with 6 the evaluation map).
jea=1(i)
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How to obtain the theorem

Theorem (Hoffbeck and Vespa)

) Lie .
HLeb(A M) = Tor,* (t, LLe(A, M))

Definition: Leibniz homology of a functor 't — k-Mod

The complex CLe%(T) is T([n]) in degree n with the differential
d: T([n]) — T([n— 1]) defined by T(Zogiq’gn +d; ;).

For T = LL®(A, M), we recover the definition of CL#P(A, M).
. . Lie .
We are left to show HEeP(LLE(A M) = Tor. * (t, LLE(A, M))
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How to obtain the theorem

We actually show that for any functor T : 't — k-Mod

Lie

HLeP(T) = Tor.* (t, T)

The idea is to use

Characterisation of a homological functor
If H, is a functor from a category € to k-grMod with
@ Hy(F) is isomorphic to G ®¢ F for all F € ¢-mod

@ H.(—) maps short exact sequences of €-modules to long exact
sequences

@ H;(F) = 0 for all projectives F and / > 0
then H;(F) = Tor(G, F) for all F and all /.
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Idea of the rest of the proof

The proof of the third point relies on a filtration of the complex
cteb(rtie((n], —)) (for a fixed n).

Easy to get a filtration as a vector space, indexed by n-tuples.

Problem : show that this filtration is compatible with the differential.
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Basis of rLe([n], [m]) = forests of m + 1 trees labelled by basis of Lie

0.2 1 3 5 4
[_l] If \</ s (0,2[1]3,5,4)

2

Split tuples can be sent to tuples by forgetting the vertical bars

proj : (0,2|1/3,5,4) — (0,2,1,3,5,4)

The n-tuples can be ordered lexicographically

= partial order on the basis elements of 5 r5([n], [m])
m

Example: (0,2]1|3,5,4) > (0,2|1,83,4,5)
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Filtration

Obtain a filtration (as vector space) of the complex CL#P(r'Le([n], —)),
indexed by n-tuples :

F, = @ K.b
proj(b)>u

where b basis element of @ rLen), [mj).

Problem
Compatibility with the differential?

Recall : d = postcomposition with = + d} ;.
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where everything is explicit.
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The differential is compatible with the filtration:

d(Fy) C Fy.

We obtain in the associated graded complex

ThIS means (d0,1 )*(i07 i1 ’j07j1 )j27j3) = (i07 i17j0)j1 7j27j3)'
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Proposition

In the associated graded complex, the differential d = £(d} )«
removes vertical bars.

d(0,2’1 ‘37 5?4) = (0, 2,1 ‘37 5>4) + (0, 2|1>37 5’4)

Proposition

The associated graded complex splits as a sum of known acyclic
complexes.

The complex CLe®(rLe([n], —)) is acyclic.

This concludes the proof of the theorem.
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Thank you for your attention.
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