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Basis direction of our PInT research

Loves widely usable method, especially
the method usable to hyperbolic PDEs
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Issue of the parareal method for
hyperbolic PDEs:

Parareal convergence

ODE

- Parabolic PDE

~

S
\
\
|
|
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>- Relatively good

T pe—

- Hyperbolic PDE

BAD
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Why so bad?

F(Ty, Troy, UE™ 71 /\/\/ *M. Gander and M. Petcu,

Coarse solver Phase difference Analysis of a Krylov

|

|

G, T 1 V) - T Ty USY)
/\/\/ subspace enhanced

r—— ® parareal algorithm for
Time slice OSC'”a,t'.?”S oy linear problems, ESAIM
(Time subdomain) -~ ,° - ! ' Proc, 25, (2008), 114-129.
~ ./ *

vV

® Hyperbolic PDEs represents wave phenomena.
® If there is Phase Difference between fine and coarse solver’ s
result 2 Oscillations appears at the edge of time slice.

® That gives damage the convergence of the parareal method.

Our challenge

3
Reducing the phase difference between fine/coarse solvers



Example of oscillations in parareral iteration for
advection equation

Profile of ® at t=0.5 after 10 iteration
with time-coarsening ratio Rfc=25 without relaxation of iteration

Fine/coarse solver :TVD/CN

Fine/coarse solver
CIP3rd method

-200 |- .

_400 | 1 | N N | 1
0 0.5 1 15 2 X

step

X
step
Oscillation amplitudes much depend on numerical
Integration methods (may be accuracy of pahse calcultion).
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We studied the impact of phase difference on the
parareal convergence using most simple problem,

(a) Most simple problem:
- Simple harmonic motion
- Simplest hyperbolic PDE

This gives the exact phase to
fine/coarse solver.

We tried to check the effect of
% X ( 2m )2)(: 0 phase difference by adding the erro

o it " \Teye to coarse solver by value .
(b) Time integrator: TS T
Modified Newmark-B Method % 0l & 5 NI[;=1,OOO i
This method can give the exact phase < f il ]
. . . »n 107F g £=1.001 .
for the simple harmonic motion ® L g -
independent on time step width € by T w0 E
the modified &t’, 6T'. = ;
@ 10 :
Fine solver Coarse solver . ]
St ot oT ‘ ‘:
t <« '

'
9 5 5t -1 0T + 1 10°8 YN N SR ! .,' P " SI P I
o \/ (Sm Mcyc) 1 {nff(m \/ (Sinz rpmti) - 1} 0 10 20 30 40 30 60 70 80

Ilteration number krar

This results shows that very very small phase
difference causes the convergence difficulty.



We studied the impact of phase difference on the
parareal convergence using most simple problem,

(a) MOSt S|mp_le pr_oblem. This gives the exact phase to
- Simple harmonic motion fine/coarse solver.

- Simplest hyperbolic PDE _
We tried to check the effect of

2 o N2 ) _
$ % + (TZ_) X—0 phase difference by adding the erro
_______ o v to coarse solver by value ¢.

b) Time integrator: ————
Therefore, we focus on development of

the method that reduce phase
difference between fine/coarse
solver by apply the very accurate
phase calclation method to
fine/coarse solver,




How do we develop very
accurate phase calclation

method ?




This research approach:1

Approach based on the
engineering method

Dramatically Improving the
conventional calculation

method of advection equation to
Increase the phase accuracy
Conventional method

+ n—1

LT in—1 N +m -
¢ = ¢ FSCPE_T, —adiy g0

T

0?‘(5 + (38_7;(.?') - U
g + c0zg =|0 0p) + 0y = 0

Improvement method Orx + cdax =0

g= 0.0
\ / / X = Uag
n— mJr n— n m- n
Prgar + SNty h ) = Blaa +SCPE e e

Approach based
on mathematics of
parareal method

Ui = F(Tnngfl:Uiii)
+ {G(Tns L1, Ui—l) — G, Th_1, Ui:i)}

Speedup

~ *‘?\'Tts _ A‘F\Ttg . i\"TtS

~ I&’par + % - Ii’pa-r _I_Bfga?‘ - I;’PGT
Residual
TeS(Kpa?") B (C,TdTmp)Kpar_l Krar_q N |

TBS(]‘) - (Kpa'r _ 1)1 H ( ts 73)

j=1
® OT < ot

® Reduce the time span:
T > 2MNnc} {I=1} T_{I}
® efc
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Methods overview of advection term calculation

Methods that are tried in this study

Conventional 1st: CIP scheme improvement: advecting the

main method much phase information by the gradient and
Stabilization: curveutre of value @.
numerical damping o -
Accuracy: 2"d: STRS scheme: achieving the stabilization
Space and time and error elimination using “space and time
higher order terms reversal symmetry “ base on the physics.
Advecting only 3rd: Hybrid of CIP method and STRS scheme
amplitude of
variables 8y b+ cOpp = 0
Org + cOrg = 0 Main issue : Gap of phase
[ g = Oy ]\ accuracy between fine
Orp + cOpp = 0 L not\eh eﬁg coarse sv?r

Hybrid:  _\ ___
STRS-CIP./ <~~~ ‘ |

? R
8

II not yet success

Oph+ cOpch =0 F “There is a limit in the use.




This research approach:2

Conventional methods of advection equation lose phase

accuracy for high grid based wave number waves except
CIP3rd method.

Dispersion relations numerical calculation for advection equation.

------------------------------

M= ) k2T 2T
0.6 —-—LW . A ma=C
—— g Ny
G o5 _._M el ~
Soaflc op O 5L \
m L ]
e 03 e
(N 3 3 "
0.2 _'. l
01f N/ _
°C o5 1 15: & 25 A1  ATWMOX |
L HadngyT i) wm=2 5 % 203;
, i - 25 e
R&x = 2%/ n |ike wave number

Grid based wave number : k=211/A= 211/m/AX
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Simple and Typical Benchmark Problem
Including high grid based wave number waves

Step wise advection problem Sin wave advection problem
with very rough grids

< 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1
~ —O— Analytical
e 1r B 7] — o— CIP3rd
: —o— CIP5th
0.8F : i 1F ;
| o8l 3
' 0.6 .
0.6 . 0.4 ]
--—-- Step - 0.2} .
0.4} Curved - of ]
I 0.2 ]
I 0.4} 3
0.2 | = -0.6 -_ _-
: 0.8k ]
ol i - af ]

~—0 05 1 15 2 25 3

X
Most tough problem: Most simple problem:
Including broad and high Including high grid
grid based wave number based wave number
waves one wave.
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Simple and Typical Benchmark Problem
Including high grid based »=ve p- ar” ]

Engineering peoples
using CFD every time
ask me that the
parareal method work
well for step wise
shape or rough grid /—

o oroblem: SN Wave adveghioBiem
Including broad and high Ag high grid
grid based wave number based wave number
waves one wave.

Step wise advection pry

10



Method improving the
calculation method of advection

25



Conventional calculation method of advection term

(A) Groupe using only variables amplitude

Linear type( CFL-free form used
by the Semi-Lagrangian scheme)

Upwind: 1st order
, n— 1 ‘ ,
(.D;I = (r")-? ! + ECF ((.“")Ldfs(c) - (Did)
Lax-Wndroff: 2nd order
‘ e 1 i e ]
o = (D:I by EQ {((x‘- + 1)5")21,15@) - 299];1! s (Cr — UQ‘I)?dﬁ:(c)}
QUICK: 2nd order
1
in_ gn—1 in—1 in—1 am—1 _ qin—1
o =0+ gCF {7c)id—2.-;(n) T TPy — 3Pia — ‘;(f‘)id+s(p)}
QUICKEST: 3rd order
n— 1 i . oy
o =gt + goF {*(Cﬁ‘ - 1)¢?d,125(c) —3(CE —Cr - Z)G')ind—ls(r)
~3(=CE+ 2 + Do — (G- 3 + 20k }
Upwind: 3rd order
, o 1 P e o n—
("’)? = (.D? ! + ECI‘ {7("‘931.'—125((‘) + 6("’):;1—%9((:) - 5(;"),‘_5,’ - 2q9?ri+{9(c)}
Kawamura and Kuwahara: 3rd order
1 ;
in _ n—1 in—1 in—1 yn—1 gn—1
op =d¢p  + g‘fF {*2@?(1723@) + low?dfs(c) =99y + 2didrse) — Q:ld+25(r)}
Central : 4th order

1
o n—1 n—1 n—1 in—1 in—1
G)? - (")? + ﬁ(f‘ {7(’0?(1*28((.‘) + Sw?dfs(c) - 8(“')'?d+s(c) + ("‘):1(_{4»2‘9(5)}

General formula

g __ an—1 _ g +mT (m—1
©; = @y *ng“' Ei:—-m* a'l(")i+is(c)

Non linear type

TVD 3rd oeder
at@i = —Aif

. -(1
fiv172 = ff+)1/z

1 — ‘
T { A= RO ) AS g+ (L4 RUOT ) Ao |

1 _ _ . ‘
- 1(:141/2 {(1 - Af)\Ij("i+3/2}A(:")i+2/3 +(1+ k)lp(ri1/2)A(f)i+1/2}

o _Lp oo -
fis1p = B {{'iﬂ/z@? + ("i+1/2(-91*1}

(:;:_1/2 = (c+ e|)ix1/2, iy = (e =le|)it1y2

PPM : Piecewise-Parabolic Method
ENO : Essentially Non-oscillatory
WENO: weighted ENO

(B) Groupe using variables and those gradients

CIP3rd method: 8¢+ cd.¢ =0
Oig +cOpg =0

g = 0.0

" (x;) = Fiﬁ_l(:ﬁi — cot)
g™ (x:) = O FI (s — cot)

26




Improve the CIP3rd Method
1o CIP51h method




What i1s CIP scheme?

B . Constrained Interpolation Profile scheme?
B CIP method advects variable’s gradients as the phase

information. 01 + cOpch = 0
0rg + cOrg =0
g = 0,9

B The phase accuracy of CIP method is higher than other
conventional methods for especially high wave number.

05 1 181 2 25 81
: W2 am=4) Wm=2)
R&Y = 2T

like wave number 12



Up stream calculation and time integration

pefrormed by back-trace and shift operation (CFL free
formulais used here:

) * Considering the equation on the grid i
Back-t1race : Shit operation
Space time plane

n ty )
X
Velocity :C=const. Velocity :C=const.
n-1
- ° - —
id-1 (id ' id )id-1 X

id = grid that is near i grid of cell (id, id-1)

0t
f1d=f:—INT(X“p> i cot
1 ] Ax 1—INT Ax

Back-trace points finding et
Ep =1 —xiq=1; — 0t — 139 = —cot — (1r; — x5q) = —cot — Ax(i —id) = —cdt + AzINT (—)
Upstream finding Ax
Dy = —s(c)Azx, s(c) = SIGN(1.0,c¢)

20



Detail of Formula Point

CIP 3rd method CIP 5th method (We developed it as
more accurate CIP at this time.)

0rp + cO,p = 0 Oy + cOpd = 0
i g+ crg =0 g+ cOrg =0, Oix+cox=0
g=0,¢ (gradient) g=0,0, x=0:g (gradient,

: . o : : curvature
® Space discretization: by the cubic interpolation function )

o(x) = Fig(x) = ajq(x — iL'Q'_d)S + big(xr — :I:id)g + gid(®x — xiq) + bid
9(x) = 0y Fia(z) = 3aa(z — 21)” + 2bia(x — wia) + g:a(z — i) py the Sth interpolation function

d(x) = Fig(x) = aq(x — 23q)° + big(x — 2i0)* + cia(x — 210)> + xia/2(x — 230)* + gia(T — 2i4) + bia
g(z) = 0, Fiq(x) = bajg(z — 2i9)* + dbig(x — 259)% + 3cia(z — 24)% + xid(x — Tiq) + Gia
x(x) = 02 Fig(x) = 20aq(x — .’L’id):% + 12bq(x — ;r:mg)Q + 6cia(r — 4q) + Xid

1
Aid = 55 6 (fﬁid—.sc — Pig) — 3 Jid—s(c) T Gid Dp+1/2 id—s(c) — Xid DZ‘
Qg = Di'g {=2(¢id—s(e) — id) + (Gia—s(e) + 9id) Dr } li}‘ tol 0 )= Hbismatey * 60 20ia-s0 = xia) Ok}
lb . big = DT {=15(dia—s(e) — Pia) + T(Gid—s(e) + 8/T9ia) Dr — (Xia—s(c) — 3/2x:ia) DT }
biq = Dz {3(ia—se) — Gia)1(Gia—s(e) + 29ia)Dr } 1‘“
F Cid = fo) {10(¢ig—s(c) — Bia) — HGia—ste) — 3/29ia) Dr + 1/2(Xia—s(c) — 3xia) D}

® Up-date(time integration) ;: by Semi-Lagrange scheme
O™ (w;) = FIy~ Y (, — edt) 6" (x:) = Fiy~ " (wi = cdt)

g" (x:) = O Fjy (i — cot) 9" (x1) = DuFiy (i — cdt)
X" (@) = O2F (i — edt)

n 1 4 n 1
—1 -1 (J1)= E +E 5 f +X1d/2£ +(J1d£1~ + Pid
_ (f'e) = ba;, }f + 4}) E}- 3’ E}f + X:dff' + _9'_-
()‘n(ff") — 3(}"{1 16 . 2}) 5111 + (}' ld id 1d 1d
- N id >F id i ) Zd (f'i) — {}a?d L f, + ].Qb:i 16}. + 6(?& ! - +X‘,:d

30



Code of CIP-5th method

do j=1,Ny; do i=1, Nx
cx =0.5d0*(v1(i-1, j, D+v1(, j, 1))
ida =i—int (cx*dt/dx)

Set of the Xgi

ais =sign(1.0, cx)

=—cx*dt+dx*real (i-ida)

advection idam=ida-int (ais)
fv = vl (ida, j, 3)
F)EiffifT]E?tEErES gfi =gf (ida, j,1) ! dfai/dx
ggfl ggf(lda IR ddfal/dx/dx
==yl \|ua||| J 3/ \:‘.(.da J u;
. aidl=—dxb*ais*( 6.0% dfi &
Calculation of & +3.06(  gf (idam j, 1)+  gfi)*dxkais &
. & + 0.5%(  ggf(idam, j, 1)-  ggfi)*ddx )
the coefficient bidi= dxd*  (-15.0% dfi &
i & - (7. Oxgf (idam, j, 1)+8. 0% gfi)*dx*ais &
()f fSF)llf]EE & - ( ggf (idam, j, 1)-1. b*ggfi)*ddx )
I cidl=—dx3*ais*( 10.0* dfi &
fl]f](:tl()r] & + 4. 0% ( gf (idam, j, 1)+1.5% gfi)*dx*ais &
& 075 get(iaam, j,1)=3.70*ge 1) *ddX J
Update of v2 (i J,3)= &
] &(((( aidl*xgi+ bidl)*xgi+  cidl)*xgi+0. 5xggfi)*xgi+gfi)*xgi+fv
variables gfn (i,J, 1)=&

& ((( 5.0xaidl*xgi+ 4.0xbid1)*xgi+3. 0xcidl) *xgi+

gefn(i, j,1)= &
& ((20.0%aidl*xgi+12. 0xbid1)*xgi+6. Oxcidl) *xgi+ gefi

end do; end do

ggfi)*xgi+gfi

CIP-5th method is very simple

and we can easily develop CIP5th code based on CIP3rd method code.

14



Improve the Groupe using
only variables
+0 no-dumping and
accurate phase method:
STRS scheme

*Katsuhiro Watanabe, a novel framework to construct amplitude preserving wave propagation schemes, Japan
Society for Industrial and Applied Mathematics Annual meeting (2010), 123-124.(written in Japanese) 32



What is STRS(Space-Time Reversal
Symmetry) scheme?

STRS scheme is based on a symmetry of advection equation.

That symmetry is the PARITY CONSERVATIVENESS, which is
expressed by following formula in CONTINUUM SPACE.

Parity Transformation P: ( ': ) = ( :; ) = ( ":’, )

CONSERVATIVE
0ip + cOpp = 0 Oy @+ cOpd =0

. Ax . —Ax . A P
¢c=c(x,t) = lim — = lim = lim =c =c(t,z)
r—0 /At r—0 — /At x—0 At

Space and Time Reversal Symmetry guarantees the
CONSERVATIVENESS of the amplitude ®.

parity transformation (also called parity inversion) is the flip in the sign of coordinate
N T 4% (parity transformation) (F— DD EZEDFEEREESEEH2ETHD,
I\T 4 IEE (parity inversion) EHFEAR,

33




How to construct the STRS scheme of linear type of
advection differencing schemes

LT

_|_
General formula:  ¢' = ¢! " + S(pE" ”H*‘?ﬂl@gm (A)

We can convert it to STRS scheme mechanically.

-1st step: Perform the Parity Transformation on RHS of eq.(A)
-2nd step: Replace LHS of eq.(A) by that.
Then we get formula (B.1). Let’s check the STRS of eq.(B.1)

+
Didda- +SCFE+ + WD —ls(e) — CszdaJr +5CFE+ —m- “¢@da++zs(c (8.1)

n—1 n
m ’n"?’?,j:
CONSERVATIVE P ( - J - ( |

tda~
[ -1

Parity Transformation in
the discretization space

Cbzda+ + SCFE+m oy Qﬁzda,++ls(c) Qﬁ?da— -+ SCFZE:?i;»ﬁalgb?da—_ls(c) (B.2)

This scheme gives
(a) stable, (b) no damping of amplitudes numerical methods.



Most simple example: STRS scheme of Upwind 1St order
1 (L TL 1 LT l LT n
(1 — ECJ&) Qbida— + ECF(’D?'-({G_—O—S{C} = (1 - icf‘) “zda}" + C.F ﬁijida—li—_ (c)

Stability analysis using fourier transform

Pigat = PieTIMMET

kmA  k A
@ida¥ﬂ:s(c) — ;e TIFMAT T s(c)Ax

/

Time development formula of value ®
for mode | in complex plane

¢n (1 —Cp) + Cpetiks(@hn) grikmAz
'C.b;:.l_l B (1 - Cf‘) —|— CFE—j-!‘CSI:C)&J:) ﬁ—j.‘-?m.r’_‘m:

\_




In this case, phase correction can be done as here.

ﬂ\lumerical phase speed \
tan(260,,..m)

(1 — (p)sin(mkAzx) + (psin(k(m + s(c))Ax
(1 = (p)sin(mkAzx) + (psin(k(m + s(c))Ax
= Q(CF)

— wm m E m E Em o E EE S e e Em Ee Ew E omw
— — — e
— _—
- o
- —
-

-~

—y

=
— =
_- _—
——_—_ _____
e o o e o e e e s o e Eem R S

2 tan™ ! (Q) = Ophy £ 2CpnykAx SolveO and use it!
\ from physical dispersion relation /

Kawamura and Kuwahara-3rd, central-4th etc. schemes can
be transformed to STRS scheme as same way!

However, phase adjustment is available
for upwind 1t and one mode case,

very special case only. -



Improve the CIP3rd method
by STRS scheme:
STRS-CIP scheme




STRS-CIP formula

We can easily get STRS-CIP formula from CIP3rd scheme
by the Parity Transformation.

The formula is Parity CONSERVATIVE,
but this still dose not work.
Reason why, not yet clear.
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Then, we tried an approximation version : STRS-CIP3rd _mod.

B Method :
1st step: getthe gradient g by CIP3rd.
2nd step: get the value ® using STRS-CIP3rd formula with given gradient g.

B Check the improvement : Results of ® distribution

- sin wave (5grids/wave) advection (t=2: after 20 cycles)

- Space [0,2] xTime: [0, 2]

- CFL=0.1 Exact STRS-CIP3rd_mod

CIP3rd

We can improve CIP3rdd by STRS @ o

approximation.
0.05

But that improvement is small.
Then, we skipped this one this study. 0

-> Future challenge. oosk N

' —o0— C|P3:I'd ;

- —°— STRS-CIP3rd_mpod
01F o |

19 101 192 193 194 195
X 19




Check impacts of
conventional methods
improvement

Benchmark: Step Shape Advection



Check the CIP5th method performance
by CIP3rd vs CIP5th method

Parameters of the test

Physical condition

® 1D advection of step shape
= speed c=1.0

® Space [0,3] xTime: [0,0.5 or 2.25]

Numerical analysis
condition

® Num. of meshes: 300 - dx=0.01
® Width of time step -dt=0.005,0.0025,0.00125

- CFL=0.5, 0.25, 0.125
® Boundary condition : continuous

® |nitial condition =2 x=0--0.5:®=1.0, x > 0.5: ®=0.0

Advection
numerical method

® CIP3rd vs CIP5th method

41



(a) Results of @ distribution (t=0.5)

— 12 | ' | ' | ' | ' | ' | ' | ' |
i(/ —O— CIP5thCFL0.5
e 1 —O— CIP5thCFL0.25
.. .. —O0— CIP5thCFL0.12
Initial condition i gng:dgFLg.lzg
sl CIP3rdCFLO5 |
0.6}
D(x) !
X s 0.4}
0.75 1L=3.0 [
0.2}
0_
0.2 '

l 5 1 1, ] I I I N
0.92 0.94 0.96 098 1 1.02 1.04 1.06
X



(b) Results of ® distribution(t=2.25) (*) Zoomed part

——o— CIP5th.CFL0.5
—a—— CIP5th.CFL0.125
——— CIP3rd.CFLO0.5
—o— COP3rd.CFL0.125

A~~~ — 1 r 1 r 1 r 1 r 1 r T 1 0.6 I ' I I ' I
Xt - - . -
'\9'/ 1k ] 0.58 |- Analytical .
I ] 0.56 | “ -
0.8} - 0.54 CIP5!th.CFLO.125 ]
i ZOOM i :
o | —
06k i 0.52 _
! ] 0.5 | a
0.4} - i ]
_ i _ 0.48 _
0.2F | 0.46 - -
! 0.44 | -
Or *J 0.42 -
' ' 0.4

L L ' ' ' N N | L | L | L | L |
2!6 2.|65 2!7 2.|75 2!8 2.;35 2!9 2.746 2.748 2.75 2.752 2.754
X X

CIP-5th method = Step shape is sharp.
- Phase accuracy is better.

=» Improvement has been achieved! »



Benchmark: Sin Wave Advection
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No-damping and no phase error STRS

scheme using phase adjustment for one mode
Parameters of the test

Test problem

® Advection of sin wave (one mode wave)
* P(x)=sin(2rrmAXx((i-1)/A+0.5)), A=0.1
— g(x)= d®P(x)/dx
=21rm/A cos(2mrmAXx((i-1)/A+0.5))
* 10grids/wave(m=10) or 5grid/wave(m=20)
- velocity ¢=1.0

® Space [0,2] xTime: [0, 2]

Analysis condition:
space and time
descritaization

® dx=0.01 or 0.02. 200 or 100 meshes
—|=dx x 200=2

® dt =0.001 or 0.002(CFL=0.1)

® Boundary condition : cyclic

STRS scheme vs
Conventional
scheme

® TVD 3rd (3rd order) ® STRS-Upwind 1st order
® CIP scheme 3rd order with phase adjustment
® CIP 5th (5t ordr) (Exact for one mode wave)
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Results after T=2.0 (20 cycles )

10 grids/wave 5 grids/wave
Exact . Excact
—_—?—T i-gsvirm?;eaigjﬁg\?vzugra 3rd —O— STRS phase adjustment
—o— TVD3rd —Oo— TVvD3rd
—e— CIP3rd —e— CIP3rd
— —= - CIPEth —=— CIP5th
1 1k ' ' '
D osf 0.8F
0.6f 06k
0.4} 0.4fF
0.2} 02k
of \ oL
0.2} 02k
0.4} 04}k
0.6} 0.6F
0.8} 08k
1k 1k | . |
1.8 1.85 1.9

Phase improvement has been achieved
by CIP5th and STRS phase adjust cases
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Parareal calculation

-Ot: time step width of fine solver:
-OT: time step width of coarse solver:

set by the CFL condition: Ax/v > 0t
oT >> ot

a7



Purpose of benchmark test

Study the impact of the phase difference between
fine/coarse solver 1o the parareal convergence

B Set the same method of advection calculation in
fine/coarse solver

B Phase accuracy increases along TVD3rd = CIP3rd->
CIP5th-> STRS.
= phase difference decrease!

4 Fine solver with 6t . t
Phase |
accuracy I

Corse solver with 6T
>

TVD3rd - CIP3rd-> CIP5th-> STRS
with phase adjustment.
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Parareal codes for each methods

Fine solver ot Coarse solver st
Parareal CN-TVD as reference.
> o >
§ Numerical flux construction S | | Numerical flux construction
- (D)
£ Time integrator: Crank Nicolson E Time integrator: Crank Nicolson
=R A
Parareal CIP3rd, CIP5th
2 > 2 >
2 CIP function construction ﬁ CIP function construction
)
- : : .
E Time integrator: Semi-Lagrange = | Time integrator: Semi-Lagrange

—

Parareal STRS

with

phase adjustment

-

STRS coefficient construction

Time loop

Time integrating: STRS-Euler-1st

——

Time loop

-

STRS coefficient construction

Time integrating: STRS-Euler-1st

—

same method in fine/coarse solver
= Ot << OT : onlv difference




Convergence test
of the parareal iteration

Benchmark: Step Advection
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Numerical test: Parameters

® C =1.0and Space [0,3] X Time: [0, 2.0]

® (a) advection of step shape See the initial
Test problem ® (b) advection of step like wave } condition

f(x)=0.5(1-tanh((x-x0)/xi), xi : width of step bellow
- x0=1.0, '
- Xi =SQRT(2D/k)=SQRT(2/k): 0.035(k=1600),0.07(k=400)

Space and time
descritaization

dx=0.01, 200meshes (10grids/wave) —L=dx X 200=2
6t =0.001(CFL=0.1)
Boundary condition : continuous

Number of time slices: 20
Time coarsening factor Rfc = 25 (6T= 0.025)

PinT condition

In|t|a| COﬂdItIOn ar Z\DOF |( _( K? —l|2
J’P‘:(h ) = = T1mar,
' ' ' ' \'D()f

- i “Step” and “Smooth curves” are
0.6 L e . used as initial condition.
0.4l Step i - When smoothness of curve

Increases, the number of grid
based high wave number waves

decrease.
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Results : Residual during the parareal iteration:

STEP SMOOTH CURVE
% 105 T ' J ' ! ' ! ' ! 105 T T T T T T T T T
o
< e
< 0
N 10k o 10°
S L dU ‘
I
- 5 .
10 10'°E %OM
©
0 _
1020 & CN.TVD 10°F g CcN-TVD
—0O— CIP3rd —O— CIP3rd
—e—— CIP5th —e—— CIP5th
-15 R
10 1 N 1 N 1 N 1 1 | 10 n 1 N 1 N 1 N 1 N 1
0 5 10 15 20 0 5 10_ 15 20
Iteration number Krar lteration number Krar

Ui = F(TnaTn—leﬁ:ﬁ)

Relaxatlon paramEter G=1 .O + « {G(T?Ig Tn—l ' Uﬁ—l) - G(Tn: Tn—l: Ui‘l:Ji)}

* CIP methods and reduce of the grid based high wave
number waves improves the convergence.
% CIP5th has not so much effectiveness than CIP3rd.
- Reason why not yet clear ?



Step

SMOOTH
CURVE

Influence of parareal iteration realxation
Relaxation: NO g=1 === Relaxation: 0=0.2

5 10°F 10°
o 2
X
N’ E_
<U) 10°F 10°
QO
= 1
T 0°F 10°
S
-10 -10
D0 —8— CN-TWD 0 & cNTVD
nd —O— CIP3rd —O— CIP3rd
—e— CIP5th _ e CIPSth
101 108
E_1 N | N | N | N 1 | L 1 L 1 N 1 N 1
0 5 10 15 20 0 5 10 15 20
c 1055I T T T T T T T T 105 T T T T T T T T T E
g Tk
X E
N—r E E =
< 10% 3 10° 3
% Residua rebound 1 EOOO0000000000 3
| - 3 3
< °°F E 10° Qooooooooooooooq-,cuo 3
F 9-6-6-0-0-0-0-0-0-90-0-90-0-0 E
2 4 3 —8— CN-TVD E
) 107k : 107
F —8— CN-TWD 1 —O— CIP3rd
8:) £ —O— CIP3rd E —e— CIP5th
. —e— CIP5th
10-15' -é 10-15 1 " 1 " 1 " 1 " 1 -§
o5 10 15 20 0 5 10 15 ngar
lteration number Kpar Iteration number K

Relaxation is effective for residual rebound,
but Not so much effective ?



CIP-5th looks not so much effective than CIP-3rd, really ?
Then, check the profile of variable along iteration=-=-

CIP-5th is very
accurate even for

o vl s ol vl ol vl e

Change of the
profile @ along

ol

Residual res”™ (Kpa)

Kpar=1.
Kpar. 3 g
10 - :g
—o— CN-TVD 3
—O0— CIP3rd 3
. F —— CIP5th £
10 - 1 i 1 " 1 " 1 i 1 -E
0 5 10 15 20
I[teration numper Krar
[T T T T | [ T T T T T T T T T T T T T
>< 1F CN_TVD 1 1F - CIP'Sth T
0.8F 408} N i
06k 406F | i
oal \Q Joat i Kpar -
I —e— 1
i Kpar _02_ —a— 3
0.2F 10 - | —e— 5
B —_—a— 20 10
ol _ oF L —o— 20 .
365 35 275 33 355 T R T T T
2.65 2.7 2.75 2.8 2.85 565 57 575 28 2.85 X
X X

Profile show that CIP-5th is effective even for first sate of the iteration! 28



Benchmark:
sin wave with rough grids
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Parameters of numerical test

® Advection of sin wave (one mode wave)
- O(x)=sin(2mmAXx((i-1)+0.5)) (m=10)
Test probl em — g(x):_ d®(x)/dx=21Tm cos(2mmAx((i-1)+0.5))
= Velocity ¢c=1.0
® Space [0,2] X Time: [0,2.0]

® dx=0.01, 200meshes (10grids/wave)

Analysis condition: L =dx X 200=2

space and time ® 5t =0.001(CFL=0.1)
descritaization ® Boundary condition : cyclic
PinT condition ® Number of time slices: 20

® Time coarsening factor:
Rfc = &t/6T =6, 12, 24 (6T=0.006, 0.012, 0.024)

"'-I\I'.L}(}j"

'\D(JF rKpar 19
. (KPaT) Z |Izn 1 _Ilﬂ 1 |
res = TMar,




Results

Rfc=6 Rfc=12 Rfc=24

101 T T T T T T T T T 0w T T T T T T T T T 0w T T T T T T T T 3
= —— TVDICN 4 ]
S —+— CIP3rd \ 3
7 \N—— STRS 3
< I 1 3
O | i
o 3
S0 ol j ]
© -
-] 5 05 I :
o10 Ny, 3
% ~o ——o— TVD/CN =
] / ‘ —o— CIP3rd ]
Y, ;10 010F | TVD/CN R U CIP5th .
Cipth : o TR
0 15 015 STRS 0°E, . ] L 1 A ] A ] E

10 \ \ \ ] \ ] L . . .

° ° v v ” ’ It ratlon numb rKlf’alr O 5 ’ ” ?
lteration number Kprar ?’[era'uon number Kpar

Ut = F(T,, T, UFY)

Relaxation o=1.0
+a{G(T,,Th-1.UE_)) — G(T,,,T,—1, U]}

At the stage of iteration start,
- Residual corresponding to the phase difference

- Small phase difference gives small residual.
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Rfc=6 Rfc=12 Rfc=24

10°F" ' ' ' ' ' ' ' T Jof’ ' ' ' T ' T " e T
= il —+— TVD/CN i - ;
S F —+— CIP3rd : C ]
\'d 10°E ——+—— CIP5th 10°E 10°E ;
~"F —— STRS  _ _ - - .
D E . o= 2 2 ]
T F
'8 10°F i 0SE ]
n [ 2 - —o— TVDICN ;
(4b) o = i —o— CIP3rd 3
0 p0F - TVD/CN o0 F Cipeth 3

i i ——s— CIP3rd - o S :
3 2 ——=— CIPS5th - © 3
101 : o :I _.I_ STRS \ ] \ ] 0% :' . L . L . 1 1 1 ]
= S T R T S—Ty 0 5 10 15 20 0 5 10 15 pg‘r)
lteration number Kpar Iteration number Krar lteration number K
i U, = F(T,, T, U,
Relaxation a=1.0 n= I 1 Uno)
+a {G(ﬂ“ ﬂl_l?Ui—l) o G(TnaTn—l:U:ﬁ:]i)}

Along the iteration,
- Smaller phase difference causes larger residual rebound!
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Good and bad news

Good: we achieved very small residual at the
start stage of iteration for very tough
problem.

Bad: along the iteration, smaller phase
difference causes the residual

rebound, reason why not yet unclear
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Summary and Future Work

60



Summary:

B \We have achieved BIG STEP in the CFD method view.

Exact

STRS phase adjustment
TVD3rd

CIP3rd

CIP5th

B But, that BIG STEP dose not work well for the parareal

(Kpan

Residual res®

<

method. Still, we have the residual rebound problem.

Rfc=6 Rfc=12 Rfc=24
— Fo' L — Jowf™ T T T T3
—+— TVD/CN 3 3
—+— CIP3rd E 3
CIP5th J10°F F10°F -7~
—>— SIRS  __ = ] < A
- =~ : : / N
Ju0°F -
; 1. N g
::]O'S_ —:073 \".-——"
; 1 E —o— TVD/ICN
. . 4 C —o— CIP3rd
L — & TVD/CN N hi CIP5th
] —oa— CIP3rd T —%— SIRS

! :]O'lsil . |

I T R T —T)
Iteration number Kprar

CIP5th
—s— STRS

S T T,
Iteration number Kprar

;15:_

0 5 . 10 15 20
Iteration number Krar
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Future work

B Now, | have tool that help us to study the impact of
the phase difference to parareal convergence. Using

that tool, we continue to develop the method for PinT
of advection equation.

Rfc=6 Rfc=12 Rfc=24

——a— TVD/CN
—o— CIP3rd N

—e— STRS

_ Residual res” (Kpean
S % s 3 3 =
7 \wf')’\.v;l
L 1 B30
1 e
1
L 1 _
\
\
7 i
A-IIIIL-IIIIIIIII-I—IIIIIlIlII
E 5 = = S
& 3 o L <

: L =5 L . 3 10 i5 20
5 10 15 20 0 5 . 10 15 20 .
Iteration number Kpar Iteration number Kpar Iteration number Krar

B Also, development of STRS-CIP scheme is challenge.
Maybe, it gives another BIG STEP.

~ o~
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