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@ Large differences in spatial scales.
@ Long-term computations.
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Geological disposal of nuclear waste

Deep underground repository
(High-level radioactive waste)

CJMOSES 0405950

Challenges: 1> Estimate the error at each iteration of
@ Different materials — strong the DD method

heterogeneity, different time scales.
@ Large differences in spatial scales. 1 Develop stopping criteria to stop the

DD iterations as soon as the

@ Long-term computations. discretization error has been reached

Q use space-time DD methods
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Robin domain decomposition for a two-phase flow problem Two phase flow equation and DD in time

Domain decomposition in space Space-time domain decomposition

e e g
P =

@ Discretize in time and apply the DD @ Solve time-dependent problems in the
algorithm at each time step: subdomains, in parallel,
@ Solve stationary problems in the @ Exchange information through the
subdomains, in parallel, space-time interface - - - FoIIowmg
@ Exchange information through the [Halpern-Nataf-Gander (03), Martin (05)]
interface

© Same time step on the whole domain.
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Robin domain decomposition for a two-phase flow problem Two phase flow equation and DD in time

Domain decomposition in space

v
v

@ Discretize in time and apply the DD
algorithm at each time step:
@ Solve stationary problems in the
subdomains, in parallel,
@ Exchange information through the
interface

© Same time step on the whole domain.

Space-time domain decomposition

@ Solve time-dependent problems in the
subdomains, in parallel,

@ Exchange information through the
space-time interface - - - Following
[Halpern-Nataf-Gander (03), Martin (05)]

Q Different time steps can be used in
each subdomain according to its
physical properties.

- - - Following [Halpern-C.J.-Szeftel (12),
Hoang-C.J.-Jaffré-Kern-Roberts (13)]



Robin domain decomposition for a two-phase flow problem Multidomain problem: Physical form

Two—phase immiscible flow with discontinuous capillary pressure curves
-« - Following [Enchery-Eymard-Michel 06]

Nonlinear (degenerate) diffusion equation in each subdomain

For f € L2(Q x (0, T)) and a final time T > 0, find u; : Q; x [0, T] — [0, 1],
i =1,2, such that:

3[U,‘ = AgD/(U,') = f, in Q,’ X (0, T),
U/(',O) - U(), in Qfa
ui=gi, on I',-D X (0, T).

Kirchhoff transform o;

oi(U;) = /O  ErEkE

Capillary pressure

Global mobility of the gas
mi(u;) : [0,1] = R l

)\,‘(U,') : [07 1] — R

e QcRY d=2,3 .
] @ U initial gas saturation
@ u scalar unknown gas saturation .
) ) @ g boundary gas saturation
@ 1 — uis the water saturation
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Robin domain decomposition for a two-phase flow problem Multidomain problem: Physical form

with the nonlinear interface conditions (physical transmission conditions)

VL,O1(U1)~I'I1 = —VLpz(Ug)Tlg, onl x (0, T),
m (1) = ma(e), onl x(0,T),

rx(0,T)

—
g

o) Q0 o
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with the nonlinear interface conditions (physical transmission conditions)

VL,O1(U1)~I'I1 = —VLpz(Ug)Tlg, onl x (0, T),
71'1(U1) = 7'('2(U2)7 onl x (07 T)7

rx(0,T7)

7

—
-

o (0) i(u)

Q Q

- - - Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08'), Ern et al (10),

Brenner et al. (13)]
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7

—
-

o (0) i(u)

Q Q

- - - Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08'), Ern et al (10),
Brenner et al. (13)]

@ where 71 : U — max(m(u), m2(0)) and 7 : u — min(ma(u), 71 (1))



Robin domain decomposition for a two-phase flow problem Multidomain problem: Physical form

with the nonlinear interface conditions (physical transmission conditions)

VL,O1(U1)~I'I1 = —VLpz(Ug)le, onl x (0, T),
m1(ur) = Ta(Ue), onl x(0,T),

rx(0,T7)

—
-

Ta(0)1

Q Q TR I —
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Robin domain decomposition for a two-phase flow problem Multidomain problem: Physical form

with the nonlinear interface conditions (physical transmission conditions)

VL,D1(U1)-I'I1 = —V(,DQ(UQ)TIQ, onl x (0, T),

ﬁ1(U1) = ﬁg(uz)7 onl x (0, T), = |_|1(U1) = |_|2(U2)
rx(0,7)
7
= ‘
-

- - - Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08'), Ern et al (10),
Brenner et al. (13)]

@ where 71 : U — max(m(u), m2(0)) and 7 : u — min(ma(u), 71 (1))

@ MM;(u) ::/ “min (A,owj‘1(u))du -+« smoother than 7;
mp(0) J€{1:2}



Robin domain decomposition for a two-phase flow problem Multidomain problem: Physical form

with the nonlinear interface conditions (Robin transmission conditions)

V1 (ur)-ny + o 2N (U1) = =V (Uz)-N2 + o 2M2(Ue),
V() -Nz + c2,1M2(U2)) = —Ver(Ur)-Ny + 1M1 (1),

where «; ; are free parameters which optimized convergence rates.

rx(0,T7)

)
T
-— )
'
]
)

Q 923 ‘ — I —

wx

- - - Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10),
Brenner et al. (13)]
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Robin domain decomposition for a two-phase flow problem Multidomain problem: Physical form

with the nonlinear interface conditions (Robin transmission conditions)

V1 (ur)-ny + o 2N (U1) = =V (Uz)-N2 + o 2M2(Ue),
V() -Nz + c2,1M2(U2)) = —Ver(Ur)-Ny + 1M1 (1),

where «; ; are free parameters which optimized convergence rates.

rx(0,T7)

7

)
T
-— )
'
]
)

o
Q 923 — I — 1

- - - Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10),
Brenner et al. (13)]

@ where 71 : u — max(m(u), m2(0)) and 72 : u — min(m2(u), 71(1))
@ MMi(u) ::/ " min (A,owj’1(u))du -+« smoother than 7;
mp(0) JE{1:2}
@ Extended to the Ventcell DD method in [Ahmed-S-A.H.-Japhet-Kern-Vohralik (18)]
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Robin domain decomposition for a two-phase flow problem Weak solution

We now define a weak solution to this problem which satisfies:
Q@ vcH (O, T;H(Q);
Q u(-.0) = w;
Q vi(u) € L3(0, T; H (4 (2)), where u; := ulq,, i = 1,2;
where HJ, () := {v € H'(Q),v = ¢i(gi) on T7}
Q M(u,-) € L30, T; Hiy.(Q));
where Hy, 1(Q) := {v € H'(Q),v = N(g,-) on 9Q}
@ Forall ¢ € [2(0, T; H3(R)), the following integral equality holds:

T 2
[) { (Oru, ¢>H—1(Q),H3(Q) + Z (Vei(u), V¢)Qf —(f, ) }dt =0
i=1



Robin domain decomposition for a two-phase flow problem OSWR
OSWR algorithm

For k > 0, at step k, solve in parallel the space-time Robin subdomain problems
(i=1,2):

rx(0,T7)
ouf — Api(Uf) = f, in Q; x (0, T), 74
uf(-,0) = uo, in Qj, .
ei(uf) = ¢i(g), onl? x(0,T), ==
Vei(ulf)-ni + o ;Ni(uf) = Wi, onT x (0,T), Q Q

with
° VUi i= —Vo(u Yy oMy ), j=(B-i), k>2,

@ VY is an initial Robin guess on I x (0, T).

- - - well-posedness of Robin problem following [Ahmed-Japhet-Kern, in preparation]

10/25



Robin domain decomposition for a two-phase flow problem OSWR

= The discrete solution is found using the cell centered finite volume scheme in
space and the backward Euler scheme in time for the subdomain problem
- - - Following [Enchéry-Eymard-Michel (2006)]
u,f;;’ € Po(7n.i) x Po(EF): unknown discrete saturation at each time step 0 < n < N

' ,/
! |
‘ :
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Robin domain decomposition for a two-phase flow problem OSWR

= The discrete solution is found using the cell centered finite volume scheme in
space and the backward Euler scheme in time for the subdomain problem
- - - Following [Enchéry-Eymard-Michel (2006)]
u,f;;’ € Po(7n.i) x Po(EF): unknown discrete saturation at each time step 0 < n < N

] ’ 7
' H
| ‘

= At each OSWR DD step k > 1 and each time step n > 1, Newton—Raphson
iterative linearization procedure is used to linearize the local Robin problem
At each linearization step m > 1, find u,’j:,’”'” € Po(Tni) x Po(ER)

= Define uy,"|;, := u'""™ where I, is a subinterval in time

s For a posteriori estimates: P! continuous, piecewise affine in time functions

11/25
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Q |u-— D,’j;mllﬁ < Fully computable estimators
N e’

unknown

. ~k,m k,m k,m k,m k,m
® Goal: |[u—1Up " llg <nsp” +Npp +Tm =+ Thin
N———
unknown
@ Results on a posteriori error estimates valid during the iteration of an algebraic solver

[Becker-Johnson-Rannacher (95), Arioli (04), Arioli-Loghin(07), Patera & Renquist (01),
Meidner-Rannacher-Vihharev (09), Jiranek-Strako$-Vohralik (10), Ern-Vohralik (13)]
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@ Results on a posteriori error estimates valid during the iteration of an algebraic solver
[Becker-Johnson-Rannacher (95), Arioli (04), Arioli-Loghin(07), Patera & Renquist (01),
Meidner-Rannacher-Vihharev (09), Jiranek-Strako$-Vohralik (10), Ern-Vohralik (13)]

@ More recent results on coupling DD and a posteriori error estimates [V.Rey-C.Rey-Gosselet (14)]
Dirichlet & Neumann subdomain problems = H(div, ) flux at each DD iteration
Following [Prager-Synge (47), Ladeveze-Pelle (05), Repin (08), Ern-Vohralik (15)]

© not applicable to more general (e.g. Robin, Ventcell) transmission conditions
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Estimates and stopping criteria in a two-phase flow problem Strategy

Q |u-— DZ;’”Hn < Fully computable estimators
N e’

unknown
. ~k,m k,m k,m k,m k,m
® Goal: |[u—1Up " llg <nsp” +Npp +Tm =+ Thin
N———
unknown

@ Results on a posteriori error estimates valid during the iteration of an algebraic solver
[Becker-Johnson-Rannacher (95), Arioli (04), Arioli-Loghin(07), Patera & Renquist (01),
Meidner-Rannacher-Vihharev (09), Jiranek-Strakos-Vohralik (10), Ern-Vohralik (13)]

@ More recent results on coupling DD and a posteriori error estimates [V.Rey-C.Rey-Gosselet (14)]
Dirichlet & Neumann subdomain problems = H(div, ) flux at each DD iteration
Following [Prager-Synge (47), Ladeveze-Pelle (05), Repin (08), Ern-Vohralik (15)]

© not applicable to more general (e.g. Robin, Ventcell) transmission conditions

@ In our contribution: develop a posteriori estimates for DD algorithms where on the interfaces,
neither the conformity of the flux nor that of the saturation are preserved for unsteady
degenerated non linear problem
Following [Nochetto-Schmidt-Verdi (00), Cancées-Pop-Vohralik (14), Di Pietro-Vohralik-Yousef (15)]
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Estimates and stopping criteria in a two-phase flow problem Strategy

Steady diffusion equation

u=-S8Vp, in Q

V-u=f, in Q
P=0b on IpnNoQ
—u-n=gn on I'nNo

D S-A.H., C. Japhet, M. Kern, and M. Vohralik, A posteriori stopping criteria for optimized Schwarz domain
decomposition algorithms in mixed formulations, Comput. Methods Appl. Math., (2018), Accepted.
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Estimates and stopping criteria in a two-phase flow problem Strategy

Unsteady diffusion equation

u=-SVp, in Qx(0,T)

¢%+V-u:f, in Qx(0,T)
P =0gp on pNoQx(0,T)
—u-n=gn on xNaNx(0,T)
p(-,0) = po in

@ S-A.H., C. Japhet, M. Kern, and M. Vohralik, A posteriori stopping criteria for optimized Schwarz domain
decomposition algorithms in mixed formulations, Comput. Methods Appl. Math., (2018), Accepted.

@ S-A.H., C. Japhet, and M. Vohralik, A posteriori stopping criteria for space-time domain decomposition for
the heat equation in mixed formulations, Electron. Trans. Numer. Anal., (2018), Accepted .
PINT 2017 by M. Kern

In this contribution: we take up the path initiated in the two papers above

14/25
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QiU ™) ¢ H' ()
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method gives T E HHAD T=12 =24y ufnmy ¢ (@) = k™™ ¢ H (@)

© Robin DD method gives u’"™™ ¢ H(div , Q) and N(u™™) jumps accros I
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Extension to Robin DD for nonlinear problem in this work
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Estimates and stopping criteria in a two-phase flow problem Strategy

@ |u-— u,7 My < Fully computable estimators
_V_
unknown depend on Hiv,2) flux and a saturation which have good properties

QiU ™) ¢ H' ()
n(uk""‘)w‘mf) N(upe™™) ¢ H'(Q)

© Robin DD method gives u’"™™ ¢ H(div , Q) and N(u™™) jumps accros I

© FV method gives uj™" ¢ H'(Q), i=1,2 :>{

Strategy:
Follow [l Schmidt-Verdi (00), Cancés-Pop-Vohralik (14), Di Pietro-Vohralik-Yousef (15), S-A.H., C. Japhet, M. Kern, and M. Vohralik (18)]
Extension to Robin DD for nonlinear problem in this work

o Postprocessmg uh, (uhT is piecewise constant and not suitable for the energy norm)
~k,m

where U u = (yhT ) with 2% € P! - (Pa(Th,i))
”k m used for theoretical analysis and g,hT ; used in practice for the estimators

@ Saturation and flux reconstructions:

@ Reconstruction saturation sk nm.— !

n.m)

@ where ¢/ € P! (Pa(Th,i) N H'(£))-conforming in each subdoamin
@ modified to ensure the continuity across the interface: My (sk M= I'Ig(s'h‘z” ™

[} a’h‘ ™ : H(div, Q)-conforming and local conservative in each element, piecewise constant in time

15
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Estimates and stopping criteria in a two-phase flow problem

Potential reconstructions (2 subdomains)

Strategy

o i s '
u, (from DD solver) gp:’”'"’ : postprocessing

~k, —1/ ~k,
then @,"" := ¢; (me,nji)

r‘%‘\‘\‘
e
&'ﬁ%\“\\\

;:l;.n.m c H1(Q,)

k,n,m _ _—1¢ . k.nm
then "™ := o (2,) 16705



Estimates and stopping criteria in a two-phase flow problem Theorem

Following [Di Pietro-Vohralik-Yousef (14), Cancés-Pop-Vohralik (14)]
Extension to Robin DD

Qi =120.62@)), X =20 tH@), X =120, tH @)

_ Dk,m 2 ~k,m 2 Dk,m

2 L L
~k,my, 2 hid P 2
o — @M% = 21 lei(u) = i@ DGy ; + - llu = By s + =0 = 820 Dl 1 g
= 7

2
okom 2 k,m 2 T Sk,my 2 t Skmy2 o t—
o — ag™I§ = llu— g™ I5 +22/0 (Hw,-(u/) — eilin)IIg, ; +/0 leitu) = ei(@ ") g, ¢~ 5ds |t
i=1 ’ ’

where L, is the maximal Lipschitz constant of the functions ¢

Theorem

If g € L2(0, T; HY(RQ)), where @lg, := wi(u;) — @i(sf™), i = 1,2, then

~K, Lo /=7 «, k, k, k, K,
llu— 8"y < \ ?w 26T — 10" +1gp” + 0" + gy + My

. k.m ~k.m ~k.m
which depend on o,/ ", 2, &y



Estimates and stopping criteria in a two-phase flow problem Reconsuction techniques

0 - Postprocessing function @ﬁ M of ap,'(u,’;;"}) J

@k ™M ¢ Po(Th,;) at each iteration k, at each time step n, n = 0, ..., N, and at each linearization
step m, is constructed as:

~knm k,n,m
-V lk =upilk, VK€ Th,

(e~ (gh )71)K
|—KI‘ =ue""k, VK ETh.

@ 5yt ¢ H'()

18/25



Estimates and stopping criteria in a two-phase flow problem Reconsuction techniques

0 - Postprocessing function @ﬁ’"”" of ap,'(u,’;;"}) J

@k ™M ¢ Po(Th,;) at each iteration k, at each time step n, n = 0, ..., N, and at each linearization

step m, is constructed as:
~k,n,m ‘ _ u

—vgpp nmye, VK € Thy,

(U (Epl™) 1)k
h—’ — u}k(ynyle7 VK € Th,.

K]
@ &g HY(S)
1 - Piecewise continuous polynomial ;ﬁ " in each subdomain J
ko, . 1 .
2T = Tau(Ey (%) = 7 S ET M k(x) € Pa(Thi) 0 H' ()
X

KETx
21 (x) = gilgi(x)) on TP
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Estimates and stopping criteria in a two-phase flow problem Reconsuction techniques

2 - Reconstruction saturation

. . . P VN ] _ —17,k,n,m
reconstruction saturation in each subdomain: s, 1= ¢; (#,;")

According to the weak solution u, we require that

@ 55", € H'(0, T HT())
@ wi(splh) € L3(0, T; HY (g (2))
lo)) =il (25 = 25T € HL g (90)

@ My(sf™Mg,) = Ma(sf™Mq,) on T

knm

891(

-where N;, 1 </ < 2, is chosen as follows:

ni(sﬁan,mmi(xr)) = 5

;
° W(sgnm Nk = U™ VK eTh

- using suitable constants ak ™™ and the by the bubble function on K.

iy (@) + Moy (@] (xr)))
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Estimates and stopping criteria in a two-phase flow problem Reconsuction techniques

3 - Equilibrated flux reconstruction a,f;’" J

oM e PO(H(div, Q)),

Uk,n,m _ uk,n—1
(f” - KK vl 1> =0, VKeTh
K

-n

lFAll
210 @ Average of the fluxes on the interface
Ih Iip)
T
]
Q1 {1 13 Q
r] Fl

where B; and B, are the two bands surrounding the interface I in 3D

20/25



Estimates and stopping criteria in a two-phase flow problem Reconsuction techniques

3 - Equilibrated flux reconstruction a,f;’"

K,n,
m_ Y TU
Tn
lrAll
2 [0
1:1 f:2
|
I
Qs Qa
r] Fl

oM e PO(H(div, Q)),

ghomm 1> =0, VK€ T
K

@ Average of the fluxes on the interface
@ Misfit of mass balance in each subdomain

where B; and B, are the two bands surrounding the interface I in 3D
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3 - Equilibrated flux reconstruction a,f;’" J

oM e PO(H(div, Q)),

Uk,n,m _ uk,n—1
(f”— KK _v.ak-”””,1> =0, VKeTh
K

Tn h

rf
|
T3 [T @ Average of the fluxes on the interface
@ Misfit of mass balance in each subdomain
i g - o .
== Z @ Distribute the misfit by coarse grid problem
.
4
951 T/% TF% Q9

where B; and B, are the two bands surrounding the interface I in 3D
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3 - Equilibrated flux reconstruction a,f;’" J

oM e PO(H(div, Q)),

Uk,n,m _ uk,n—1
(f” - KK vl 1> =0, VKeTh
K

-n

r
ch : T @ Average of the fluxes on the interface
@ Misfit of mass balance in each subdomain
iR ia B @ Distribute the misfit by coarse grid problem
@ Add the corrections to the averages
.
(o7 r’% Tr% Qb

where B; and B, are the two bands surrounding the interface I in 3D
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3 - Equilibrated flux reconstruction a,f;’" J

oM e PO(H(div, Q)),

-n

Uk,n,m _ uk,n—1
(f” - KK vl 1> =0, VKeTh
K

T
ch : T @ Average of the fluxes on the interface
@ Misfit of mass balance in each subdomain
i m @ Distribute the misfit by coarse grid problem
@ Add the corrections to the averages
: @ Solve local Neumann problem in the bands
W l“/% sz Qo

where B; and B, are the two bands surrounding the interface I in 3D
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e Numerical experiments
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Numerical experiment with two rock types
Let Q = [0,1]3, Q = Q4 Ny, where I = {x = 1/2}. We consider the capillary pressure
functions and the global mobilities given respectively by

m(u) =502,  mu)=5u®+1, XN(u)=u(l—u),ie{l,2}.

u=0.9
¥ @ Homogeneous Neumann boundary
conditions are fixed on the remaining part
of 902

@ f=0inQandug =0

@ 7m(0) =m(uy) = uf = —
Here, the gas cannot enter the subdomain Q5 if 71 (uy) is lower than the entry pressure
1
m(uy), with uff = — ~ 0.44.
1( 1 ) 1 \/5
@ Robin transmission conditions o = a4 2 = g 1.

@ The implementation is based on the Matlab Reservoir Simulation Toolbox (MRST)
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Stopping criterion

DD:
/S
-wﬂ., @ Classical stopping criterion: Residual < 10~
~*+7ldd
#-total @ Adaptive stopping criterion:

k,m k,m _k,m
Ngg < 0.1max<nsg™,

adaplive stopping criteria

Error components estimators

classical stopping criteria

* Number of OSWR fterations :
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Numerical experiments

Stopping criterion

—
~~Ttm
~~7ldd

—p=total

adaptive stopping criteria

Error components estimators

classical stopping criteria

" Number of OSWR iterations

5

adaptive stopping criteria

Error components estimators

classical stopping criteria

Nul{wber éf Newton itera{ions (subdoma\h 1)

DD:
@ Classical stopping criterion: Residual < 10~
@ Adaptive stopping criterion:
ngc’jm < 0.1 max n;;m, miem
Newton at final iteration of OSWR, t = 6.6:
@ Classical stopping criterion:
Residual < 1078

k,n,m
("] Thin. < 0.1 max

i=1,2

k,n,m _k,nm _k,n,m
Msp,i »™hm,i > Tlad,i |

adaptive stopping criteria

Error components estimators

classical stopping criteria

Number of Newion iterations (sut;domain 2)

6
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Numerical experiments

Saturation u(t) fort =2.9
Estimated error for t = 2.9

24/25



Numerical experiments

Saturation u(t) for t = 6.6
Estimated error for t = 6.6
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Numerical experiments

Saturation u(t) fort =13

Estimated error for t = 13
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Numerical experiments
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Saturation u(t) fort =15
Estimated error for t = 15
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Numerical experiments

Saturation u(t) fort =15
Estimated error for t = 15

Capillary pressure m(u(t), -) for t = 6.6 Estimated DD error for t = 6.6
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Numerical experiments

Saturation u(t) fort =15
Estimated error for t = 15

Capillary pressure w(u(t),-) for t =15 Estimated DD error for f = 15
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Numerical experiments

Conclusions

@ The quality of the result is ensured by controlling the error between the approximate
solution and the exact solution at each iteration of the DD algorithm.

@ Different components of the error have been distinguished.
@ An efficient stopping criterion for the DD iterations has been established.

@ Many of the DD and linearization iterations usually performed can be saved.

Future work
@ Assess how much computing time can be saved
@ Develop an a posteriori coarse-grid corrector

@ Extend to advection-diffusion
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@ Many of the DD and linearization iterations usually performed can be saved.
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@ Assess how much computing time can be saved
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@ S-A.H.-Japhet-Kern-Vohralik, accepted, 2018 (steady case)

@ S-A.H.-Kern-Japhet-Vohralik, EDP-Normandie Proceedings, 2018 (unsteady case - heat equation)
@ S-A.H.-Japhet-Vohralik, accepted, 2018 (unsteady case - heterogenous)

@ Ahmed-S-A.H.-Japhet-Kern-Vohralik, Preprint hal, 2018, submitted (two phase flow - nonlinear)

Thank you for your attention!
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