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Motivations and problem setting

Geological disposal of nuclear waste

Deep underground repository
(High-level radioactive waste)

Challenges:

Different materials→ strong
heterogeneity, different time scales.

Large differences in spatial scales.

Long-term computations.

Use space-time DD methods

Z Estimate the error at each iteration of
the DD method

Z Develop stopping criteria to stop the
DD iterations as soon as the
discretization error has been reached
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Robin domain decomposition for a two-phase flow problem Two phase flow equation and DD in time

Domain decomposition in space

Discretize in time and apply the DD
algorithm at each time step:

Solve stationary problems in the
subdomains, in parallel,
Exchange information through the
interface

Same time step on the whole domain.

Space-time domain decomposition

Solve time-dependent problems in the
subdomains, in parallel,

Exchange information through the
space-time interface · · · Following
[Halpern-Nataf-Gander (03), Martin (05)]

Different time steps can be used in
each subdomain according to its
physical properties.
· · · Following [Halpern-C.J.-Szeftel (12),
Hoang-C.J.-Jaffré-Kern-Roberts (13)]
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Robin domain decomposition for a two-phase flow problem Multidomain problem: Physical form

Two–phase immiscible flow with discontinuous capillary pressure curves
· · · Following [Enchery-Eymard-Michel 06]
Nonlinear (degenerate) diffusion equation in each subdomain

For f ∈ L2(Ω× (0,T )) and a final time T > 0, find ui : Ωi × [0,T ]→ [0,1],
i = 1,2, such that:

∂tui −∆ϕi (ui ) = f , in Ωi × (0,T ),

ui (·,0) = u0, in Ωi ,

ui = gi , on ΓD
i × (0,T ).

Kirchhoff transform ϕi

ϕi (ui ) =

∫ ui

0
λi (a)π′i (a)da

Capillary pressure

πi (ui ) : [0,1]→ R
Global mobility of the gas

λi (ui ) : [0,1]→ R

Ω ⊂ Rd , d = 2,3
u scalar unknown gas saturation
1− u is the water saturation

u0 initial gas saturation
g boundary gas saturation
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Robin domain decomposition for a two-phase flow problem Multidomain problem: Physical form

with the nonlinear interface conditions (physical transmission conditions)

∇ϕ1(u1)·n1 = −∇ϕ2(u2)·n2, on Γ× (0,T ),

π1(u1) = π2(u2), on Γ× (0,T ),

Ω1 Ω2

Γ×(0, T )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7

u1∗

π1(u)

π1(0)

π1(1)

u1

π2(0)

π2(u)

π2(1)

u2 u
∗

2

· · · Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10),
Brenner et al. (13)]

where π1 : u 7→ max(π1(u), π2(0)) and π2 : u 7→ min(π2(u), π1(1))

Πi (u) :=

∫ πi

π2(0)

min
j∈{1,2}

(λj ◦ π−1
j (u)) du · · · smoother than πi

Extended to the Ventcell DD method in [Ahmed-S-A.H.-Japhet-Kern-Vohralík (18)]
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Robin domain decomposition for a two-phase flow problem Multidomain problem: Physical form

with the nonlinear interface conditions (Robin transmission conditions)

∇ϕ1(u1)·n1 + α1,2Π1(u1) = −∇ϕ2(u2)·n2 + α1,2Π2(u2),

∇ϕ2(u2)·n2 + α2,1Π2(u2)) = −∇ϕ1(u1)·n1 + α2,1Π1(u1),

where αi,j are free parameters which optimized convergence rates.
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Robin domain decomposition for a two-phase flow problem Weak solution

We now define a weak solution to this problem which satisfies:
1 u ∈ H1(0,T ; H−1(Ω));
2 u(·, 0) = u0;
3 ϕi (ui ) ∈ L2(0,T ; H1

ϕi (gi )
(Ωi )), where ui := u|Ωi , i = 1, 2;

· · · where H1
ϕi (gi )

(Ωi ) := {v ∈ H1(Ωi ), v = ϕi (gi ) on ΓD
i }

4 Π(u, ·) ∈ L2(0,T ; H1
Π(g,·)(Ω));

· · · where H1
Π(g,·)(Ω) := {v ∈ H1(Ω), v = Π(g, ·) on ∂Ω}

5 For all ψ ∈ L2(0,T ; H1
0 (Ω)), the following integral equality holds:∫ T

0

{
〈∂tu, ψ〉H−1(Ω),H1

0 (Ω) +
2∑

i=1

(∇ϕi (ui ),∇ψ)Ωi
− (f , ψ)

}
dt = 0.
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Robin domain decomposition for a two-phase flow problem OSWR

OSWR algorithm

For k ≥ 0, at step k , solve in parallel the space-time Robin subdomain problems
(i = 1, 2):

∂tuk
i −∆ϕi (uk

i ) = fi , in Ωi × (0,T ),

uk
i (·, 0) = u0, in Ωi ,

ϕi (uk
i ) = ϕi (gi ), on ΓD

i × (0,T ),

∇ϕi (uk
i )·ni + αi,j Πi (uk

i ) = Ψk−1
i , on Γ× (0,T ),

with

Ψk−1
i := −∇ϕj (uk−1

j )·nj + αi,j Πj (uk−1
j ), j = (3− i), k ≥ 2,

Ψ0
i is an initial Robin guess on Γ× (0,T ).

Ω1 Ω2

Γ×(0, T )

· · · well-posedness of Robin problem following [Ahmed-Japhet-Kern, in preparation]
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Robin domain decomposition for a two-phase flow problem OSWR

Z The discrete solution is found using the cell centered finite volume scheme in
space and the backward Euler scheme in time for the subdomain problem
· · · Following [Enchéry-Eymard-Michel (2006)]
uk,n

h,i ∈ P0(Th,i )×P0(EΓ
h ): unknown discrete saturation at each time step 0 ≤ n ≤ N

Z At each OSWR DD step k ≥ 1 and each time step n ≥ 1, Newton–Raphson
iterative linearization procedure is used to linearize the local Robin problem
At each linearization step m ≥ 1, find uk,n,m

h,i ∈ P0(Th,i )× P0(EΓ
h )

Z Define uk,m
hτ,i |In := uk,n,m

h,i where In is a subinterval in time

Z For a posteriori estimates: P1
τ continuous, piecewise affine in time functions

11 / 25
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Estimates and stopping criteria in a two-phase flow problem Strategy

‖u − ũk,m
hτ ‖]︸ ︷︷ ︸

unknown

≤ Fully computable estimators

Goal : ‖u − ũk,m
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Results on a posteriori error estimates valid during the iteration of an algebraic solver
[Becker-Johnson-Rannacher (95), Arioli (04), Arioli-Loghin(07), Patera & Rønquist (01),
Meidner-Rannacher-Vihharev (09), Jiránek-Strakoš-Vohralík (10), Ern-Vohralík (13)]

More recent results on coupling DD and a posteriori error estimates [V.Rey-C.Rey-Gosselet (14)]
Dirichlet & Neumann subdomain problems⇒ H(div,Ω) flux at each DD iteration
Following [Prager-Synge (47), Ladevèze-Pelle (05), Repin (08), Ern-Vohralík (15)]
not applicable to more general (e.g. Robin, Ventcell) transmission conditions

In our contribution: develop a posteriori estimates for DD algorithms where on the interfaces,
neither the conformity of the flux nor that of the saturation are preserved for unsteady
degenerated non linear problem
Following [Nochetto-Schmidt-Verdi (00), Cancès-Pop-Vohralík (14), Di Pietro-Vohralík-Yousef (15)]
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Estimates and stopping criteria in a two-phase flow problem Strategy

Steady diffusion equation

u = −SSS∇p, in Ω

∇ · u = f , in Ω

p = gD on ΓD ∩ ∂Ω

−u · nnn = gN on ΓN ∩ ∂Ω

S-A.H., C. Japhet, M. Kern, and M. Vohralík, A posteriori stopping criteria for optimized Schwarz domain
decomposition algorithms in mixed formulations, Comput. Methods Appl. Math., (2018), Accepted.
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Estimates and stopping criteria in a two-phase flow problem Strategy

Unsteady diffusion equation

u = −SSS∇p, in Ω×(0,T )

φ
∂p
∂t

+∇ · u = f , in Ω×(0,T )

p = gD on ΓD ∩ ∂Ω×(0,T )

−u · nnn = gN on ΓN ∩ ∂Ω×(0,T )

p(·, 0) = p0 in Ω

S-A.H., C. Japhet, M. Kern, and M. Vohralík, A posteriori stopping criteria for optimized Schwarz domain
decomposition algorithms in mixed formulations, Comput. Methods Appl. Math., (2018), Accepted.

S-A.H., C. Japhet, and M. Vohralík, A posteriori stopping criteria for space-time domain decomposition for
the heat equation in mixed formulations, Electron. Trans. Numer. Anal., (2018), Accepted .

PINT 2017 by M. Kern

In this contribution: we take up the path initiated in the two papers above
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Estimates and stopping criteria in a two-phase flow problem Strategy

‖u − ũk,m
hτ ‖]︸ ︷︷ ︸

unknown

≤ Fully computable estimators︸ ︷︷ ︸
depend on H(div,Ω) flux and a saturation which have good properties

FV method gives uk,n,m
h,i /∈ H1(Ωi ), i = 1, 2 =⇒

{
ϕi (uk,n,m

h,i ) /∈ H1(Ωi )

Πi (uk,n,m
h,i ) /∈ H1(Ωi ) =⇒ Π(uk,n,m

h ) /∈ H1(Ω)

Robin DD method gives uk,n,m
h /∈ H(div , Ω) and Π(uk,n,m

h ) jumps accros Γ

Strategy:{
Follow [Nochetto-Schmidt-Verdi (00), Cancès-Pop-Vohralík (14), Di Pietro-Vohralík-Yousef (15), S-A.H., C. Japhet, M. Kern, and M. Vohralík (18)]
Extension to Robin DD for nonlinear problem in this work

Postprocessing: ũk,m
hτ (uk,m

hτ is piecewise constant and not suitable for the energy norm)
where ũk,m

hτ := ϕ
−1
i (ϕ̃k,m

hτ,i ) with ϕ̃
k,m
hτ,i ∈ P1

τ (P2(Th,i ))

ũk,m
hτ used for theoretical analysis and ϕ̃

k,m
hτ,i used in practice for the estimators

Saturation and flux reconstructions:

Reconstruction saturation sk,n,m
h,i := ϕ

−1
i (ϕ̂k,n,m

h,i )

where ϕ̂
k,m
hτ,i ∈ P1

τ (P2(Th,i ) ∩ H1(Ωi ))-conforming in each subdoamin

modified to ensure the continuity across the interface: Π1(sk,n,m
h,1 ) = Π2(sk,n,m

h,2 )

σ
k,m
hτ : H(div, Ω)-conforming and local conservative in each element, piecewise constant in time
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ũk,m
hτ used for theoretical analysis and ϕ̃

k,m
hτ,i used in practice for the estimators

Saturation and flux reconstructions:

Reconstruction saturation sk,n,m
h,i := ϕ

−1
i (ϕ̂k,n,m

h,i )

where ϕ̂
k,m
hτ,i ∈ P1

τ (P2(Th,i ) ∩ H1(Ωi ))-conforming in each subdoamin

modified to ensure the continuity across the interface: Π1(sk,n,m
h,1 ) = Π2(sk,n,m

h,2 )

σ
k,m
hτ : H(div, Ω)-conforming and local conservative in each element, piecewise constant in time

15 / 25



Estimates and stopping criteria in a two-phase flow problem Strategy

‖u − ũk,m
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Estimates and stopping criteria in a two-phase flow problem Strategy

Potential reconstructions (2 subdomains)
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Estimates and stopping criteria in a two-phase flow problem Theorem

Following [Di Pietro-Vohralík-Yousef (14), Cancès-Pop-Vohralík (14)]
Extension to Robin DD

Qt,i := L2(0, t ; L2(Ωi )), Xt := L2(0, t ; H1
0 (Ω)), X′t := L2(0, t ; H−1(Ω)).

‖u − ũk,m
hτ ‖

2
? :=

2∑
i=1
‖ϕi (ui ) − ϕi (ũk,m

hτ,i )‖2
QT ,i

+
Lϕ

2
‖u − ũk,m

hτ ‖
2
X′ +

Lϕ

2
‖(u − ũk,m

hτ )(·, T )‖2
H−1(Ω)

‖u − ũk,m
hτ ‖

2
] := ‖u − ũk,m

hτ ‖
2
? + 2

2∑
i=1

∫ T

0

(
‖ϕi (ui ) − ϕi (ũk,m

hτ,i )‖2
Qt,i

+

∫ t

0
‖ϕi (ui ) − ϕi (ũk,m

hτ,i )‖2
Qs,i

et−sds

)
dt ;

where Lϕ is the maximal Lipschitz constant of the functions ϕi

Theorem

If ϕ̄ ∈ L2(0,T ; H1
0 (Ω)), where ϕ̄|Ωi := ϕi (ui )− ϕi (sk,m

hτ,i ), i = 1, 2, then

‖u − ũk,m
hτ ‖] ≤

√
Lϕ
2

√
2eT − 1ηk,m

IC + ηk,m
sp + ηk,m

tm + ηk,m
dd + ηk,m

lin

which depend on σk,m
hτ , ϕ̂k,m

hτ,i , ϕ̃
k,m
hτ,i
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Estimates and stopping criteria in a two-phase flow problem Reconsuction techniques

0 - Postprocessing function ϕ̃k,n,m
h,i of ϕi (uk,m

hτ,i )

ϕ̃k,n,m
h,i ∈ P2(Th,i ) at each iteration k , at each time step n, n = 0, ...,N, and at each linearization

step m, is constructed as:

−∇ϕ̃k,n,m
h,i |K = uk,n,m

h,i |K , ∀K ∈ Th,i ,

(ϕ−1(ϕ̃k,n,m
h,i ), 1)K

|K |
= uk,n,m

K |K , ∀K ∈ Th,i .

ϕ̃k,n,m
h,i /∈ H1(Ωi )

1 - Piecewise continuous polynomial ϕ̂k,n,m
h,i in each subdomain

ϕ̂k,n,m
h,i (x) := Iav(ϕ̃k,n,m

h,i )(x) =
1
|Tx|

∑
K∈Tx

ϕ̃k,n,m
h,i |K (x) ∈ P2(Th,i ) ∩ H1(Ωi )

ϕ̂k,n,m
h,i (x) := ϕi (gi (x)) on ΓD

i .
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Estimates and stopping criteria in a two-phase flow problem Reconsuction techniques

2 - Reconstruction saturation

reconstruction saturation in each subdomain: sk,n,m
h |Ωi := ϕ−1

i (ϕ̂k,n,m
h,i )

According to the weak solution u, we require that

sk,n,m
hτ |Ωi ∈ H1(0,T ; H−1(Ω))

ϕi (sk,m
hτ,i ) ∈ L2(0,T ; H1

ϕi (gi )
(Ωi ))

· · · ϕi (sk,n,m
h |Ωi ) := ϕi (ϕ

−1
i (ϕ̂k,n,m

h,i )) = ϕ̂k,n,m
h,i ∈ H1

ϕi (gi )
(Ωi )

Π1(sk,n,m
h |Ω1 ) = Π2(sk,n,m

h |Ω2 ) on Γ

· · · where Πi , 1 ≤ i ≤ 2, is chosen as follows:

Πi (sk,n,m
h |Ωi (xΓ)) =

Πi (ϕ
−1
i (ϕ̂k,n,m

h,i (xΓ))) + Πj (ϕ
−1
j (ϕ̂k,n,m

h,j (xΓ)))

2
.

1
|K |

(sk,n,m
h , 1)K = uk,n,m

K , ∀K ∈ Th

· · · using suitable constants αk,n,m
K and the bK the bubble function on K .
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Estimates and stopping criteria in a two-phase flow problem Reconsuction techniques

3 - Equilibrated flux reconstruction σk,m
hτ

σk,m
hτ ∈ P0

τ (H(div,Ω)),(
f n −

uk,n,m
K − uk,n−1

K
τn

−∇·σk,n,m
h , 1

)
K

= 0, ∀K ∈ Th.

Γ

Γ1
1

Γ2
1

Γ3
1

Γ4
1

Γint
1

Ω1

B1

Ω2

B2

Average of the fluxes on the interface

Misfit of mass balance in each subdomain

Distribute the misfit by coarse grid problem

Add the corrections to the averages

Solve local Neumann problem in the bands

where B1 and B2 are the two bands surrounding the interface Γ in 3D
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Numerical experiments

OUTLINE

Motivations and problem setting

1 Robin domain decomposition for a two-phase flow problem

2 Estimates and stopping criteria in a two-phase flow problem

3 Numerical experiments
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Numerical experiments

Numerical experiment with two rock types
Let Ω = [0, 1]3, Ω = Ω1 ∩ Ω2, where Γ = {x = 1/2}. We consider the capillary pressure
functions and the global mobilities given respectively by

π1(u) = 5u2, π2(u) = 5u2 + 1, λi (u) = u(1− u), i ∈ {1, 2}.

Ω2

Ω1

u = 0.9

Γ

Homogeneous Neumann boundary
conditions are fixed on the remaining part
of ∂Ω

f = 0 in Ω and u0 = 0

π2(0) = π1(u∗1 )⇒ u∗1 =
1
√

5
Here, the gas cannot enter the subdomain Ω2 if π1(u1) is lower than the entry pressure

π1(u∗1 ), with u∗1 =
1
√

5
≈ 0.44.

Robin transmission conditions α = α1,2 = α2,1.

The implementation is based on the Matlab Reservoir Simulation Toolbox (MRST)
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Numerical experiments

Stopping criterion

Number of OSWR iterations
5 10 15 20 25

E
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a
to

rs

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

ηsp
ηtm
ηdd
total

adaptive stopping criteria

classical stopping criteria

DD:

Classical stopping criterion: Residual ≤ 10−6

Adaptive stopping criterion:
ηk,m

dd ≤ 0.1 max
{
ηk,m

sp , ηk,m
tm

}
.

Newton at final iteration of OSWR, t = 6.6:

Classical stopping criterion:
Residual ≤ 10−8

ηk,n,m
lin,i ≤ 0.1 max

{
ηk,n,m

sp,i , ηk,n,m
tm,i , ηk,n,m

dd,i

}
,

i = 1, 2

Number of Newton iterations (subdomain 1)
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Number of Newton iterations (subdomain 2)
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Numerical experiments
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Numerical experiments

Conclusions

The quality of the result is ensured by controlling the error between the approximate
solution and the exact solution at each iteration of the DD algorithm.

Different components of the error have been distinguished.

An efficient stopping criterion for the DD iterations has been established.

Many of the DD and linearization iterations usually performed can be saved.

Future work

Assess how much computing time can be saved

Develop an a posteriori coarse-grid corrector

Extend to advection-diffusion

S-A.H.-Japhet-Kern-Vohralík, accepted, 2018 (steady case)

S-A.H.-Kern-Japhet-Vohralík, EDP-Normandie Proceedings, 2018 (unsteady case - heat equation)

S-A.H.-Japhet-Vohralík, accepted, 2018 (unsteady case - heterogenous)

Ahmed-S-A.H.-Japhet-Kern-Vohralík, Preprint hal, 2018, submitted (two phase flow - nonlinear)

Thank you for your attention!
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