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Introduction Background

Larger and larger problems for research and industrial applications with

Computational Fluid Dynamics

I Higher complexity

→ Turbulence, Acoustics, Combustion ...

I High fidelity simulation

→ High Order Discretization, LES, DNS, ...

From right to le�: RANS, LES, DNS

Massively parallel supercomputer for tomorrow

I Supercomputer speed rather based on

number of cores than processor speed
I Largest one today:

I ∼ 10× 10
6

cores

I ∼ 100 PetaFlop/s

I Highlights the limits of exclusive

space-parallelization
Sunway TaihuLight (2016) ©www.dailymail.co.uk

⇒ Space-time parallelism could be an interesting alternative

to enhance e�iciency on exascale supercomputers
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Introduction Background

Actual solutions for time-parallelization

I Space-Time Multigrid - The first born

I Parareal - The famous cadet

I PFASST - When complexity serves e�iciency

I MGRIT - Toward an universal solution

I And many others ...

How to convince the HPC-CFD community ?

I Proof of concept on representative test-cases

1. Accuracy of the time-parallel integration

2. E�iciency gain compared to exclusive space-parallelization

I Solution that can be easily integrated into (huge) pre-existent CFD codes

I Explicit time-stepping solvers

I Temporal evolution of variables (e.g. pressure sensor for acoustics simulation)

I ...

⇒ First step : investigations of Parareal
R1

with space coarsening
R2

[R1] Lions et al., "A ”Parareal” in time discretization of PDE’s" (2001)

[R2] Fischer et al., "A Parareal in time semi-implicit approximation of the Navier-Stokes equations" (2005)
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Introduction Background

What was done so far

PhD Thesis - "Space-time parallel strategies for the numerical simulation of turbulent flows"

(Defended January 9, 2018)

I What could be the best solution from today’s algorithms ? (Chap. 2)

I Can we understand theoretically the behavior of explicit forms of Parareal? (Chap. 3)

I What about large scale turbulent flow problems ? (Chap. 4)

I Space-time parallel e�iciency ?

I Accuracy on two representative test case

(Homogeneous Isotropic Turbulence, Turbulent Channel Flow)

Part of the work was accepted for publication
R1

But there was a major issue at the beginning ...

[R1] Lunet et al., "Time-parallel simulation of the decay of homogeneous turbulence using Parareal with spatial coarsening" (2017)
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Introduction Problematics

Parareal VS Advective Problems

Many studies underlined the di�iculties of Parareal on

∂U
∂t

+ c
∂U
∂x

= 0

I Numerical instabilities
R1

and slow convergence for some se�ing
R2

I Parareal looses its contraction factor on periodic domains (cf. M. Gander’s talk)

Di�iculty to prove with such problem if it would work on CFD problems

1. Parareal does not define a unique algorithm

2. Molecular viscosity and Reynolds number

I "The convergence of Parareal deteriorates as the viscosity parameter becomes smaller and the
flow becomes more and more dominated by convection." R3

I But : the Reynolds number does not have a unique definition !

Low influence of the Reλ number increase compared to other parameters for Homogeneous
Isotropic Turbulence (cf. PhD manuscript)

3. In most CFD problem, space resolution and Reynolds number increase simultaneously

4. Space coarsening implies to choose an interpolation method

(Linear, High Order, Fourier, ....)

[R1] Ruprecht and Krause, "Explicit parallel-in-time integration of a linear acoustic-advection system" (2012)

[R2] Gander, "Analysis of the Parareal algorithm applied to hyperbolic problems using characteristics" (2008)

[R3] Steiner et al., "Convergence of Parareal for the Navier-Stokes equations depending on the Reynolds number" (2015)
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Introduction Problematics

Main object of this talk

I Starts from the 1D linear advection problem with low di�usion

I Focus on one particular Parareal form

1. Space coarsening for G (one point out of two)

2. High order explicit time-integration (RK4)

3. Highly accurate space discretization (Centered 6
th

order)

I Change several parameters that can influence Parareal convergence

(Reynolds, space resolution, interpolation method, ...)

I Increase problem complexity (non-linearity, ...)

I Try to answer the following questions :

What are the most influent parameters for this version of Parareal ?

How to set them to enhance convergence for a more complex case ?
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Numerical Experiment General se�ings

Definition of a baseline test case

I Advection with small di�usion

∂u
∂t

= −c
∂u
∂x

+ ν
∂2u
∂x2

, ν << c

I Periodic 1D mesh with x ∈ [0, 1[

I Gaussian initial solution with varying width

u0(x) = e
− (x − 1/2)2

σ2

I CFL = 1 for both fine and coarse solvers

I Final time T = 64δt (∼ Tperiod/7)

I Time domain decomposition in 4 time-slices
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x
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Error criterion based on fine solution comparison

Ek
T ,L2

=

∥∥Uk
P(T )− UF (T )

∥∥
2

‖UF (T )‖
2

, for k ∈ {0, 1, 2, 3}
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Numerical Experiment General se�ings

What will vary in the next graphs

Main parameters

I Interpolation method

1. Linear (oI = 1, blue-circle)

2. Cubic (oI = 3, orange-square)

3. 7
th

order (oI = 7, green-triangle)

I Space mesh resolution

1. Fine (le� side)

2. Coarse (right side)

Secondary parameters (lines - dashes - dots)

1. Reynolds number

2. Time slice length

3. Regularity of the solution

4. Non-linearity of the advection term
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Numerical Experiment Linear case

Linear case - influence of the Reynolds number

Re = c/ν: from low to high

2000 (line)→ 10000 (dashes)→ 20000 (dots)
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Main observations

I Staggered benefit of interpolation order increase (first on G, then on Parareal convergence)

I Few influence of Re for the 1
st

iteration with low order interpolation or low space resolution
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Numerical Experiment Linear case

Linear case - influence of the time-slice length

Number of δt per time-slice: from large to small

64 (line)→ 32 (dashes)→ 16 (dots)
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Main observations

I Small impact on the convergence

I E�ect is "inverted" when going to high order interpolation
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Numerical Experiment Linear case

Linear case - influence of the solution regularity

Width of the initial Gaussian: from large to small

σ = 8 (line)→ σ = 16 (dashes)→ σ = 32 (dots)
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Main observations

I Mainly influence the coarse solver error, less the convergence

I A too low space resolution cancels the beneficial impact of high order interpolation
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Numerical Experiment Non linear case

The new problem

I Non-linear advection term

∂u
∂t

= −u
∂u
∂x

+ ν
∂2u
∂x2

, ν << max

x
(u0)
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I Centered scheme applied to
1
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Numerical Experiment Non linear case

Non linear case - influence of the Reynolds number

Re = max(u0)/ν: from low to high

2000 (line)→ 10000 (dashes)→ 20000 (dots)
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Main observations

I Similar behavior as the linear case, except for deterioration of the coarse solver accuracy

I Bad space resolution quickly cancels high order interpolation benefits
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Numerical Experiment Non linear case

Non linear case - influence of the time-slice length

Number of δt per time-slice: from large to small

128 (line)→ 64 (dashes)→ 32 (dots)
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Main observation

I Increasing the time-slice length enhances the convergence (for each resolutions)

6= linear case
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Numerical Experiment Non linear case

Non linear case - influence of the solution regularity

Width of the initial Gaussian: from large to small

σ = 8 (line)→ σ = 16 (dashes)→ σ = 32 (dots)
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Main observation

I Increasing sharpness of the solution ' increasing the Reynolds number
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Conclusion

Conclusions from this study

General conclusion for Parareal with space coarsening on advection problem

I Reasonably good convergence obtained for some cases

I Advection is not the only player to blame, there is also

1. Low order interpolation (PLEASE do not use linear interpolation !)

2. Space mesh resolution not adapted to a sharp initial solution

3. ...

I Non-linearity can change everything

1. Increasing the time-slice can enhance the convergence

2. More sensitivity to the tuple: (mesh resolution, solution form)

Perspectives

I Numerical experiments done with the Casper Python code

1. Not open-source yet but can be shared at demand

2. Could be used to conduct many other tests

I Theoretical Fourier analysis of the algorithm to understand its main behavior

(DD25 + dra�)

I Complete convergence theory for the advection-di�usion problem (contraction factor, ...)
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Conclusion

Thanks a lot for your a�ention,

I would be glad to answer if you have

Any questions ?
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